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Abstract. This paper deals with analytical investigations on the possibility
to model nonlinear dynamics emerging by the introduction of time delays into

mathematical models based on differential equations. Specifically a delayed
three-dimension ODE-based model is considered and an analytical sensitivity
analysis on the time delays is performed. The results show that the magni-
tude of the time delay, considered as a parameter of the model, modifies

the stability of the equilibrium points and induces the onset of a Poincaré-
Andronov-Hopf bifurcation. Applications and future research directions are
also discussed within the paper.

1. Introduction

The development and analysis of delayed mathematical models is an important
topic considering the recent applications in biology [4, 5, 6], economics [7, 8, 9] and
social sciences [10]. The introduction of the time delay in differential equations
(models) has been shown to be an efficient method for the modeling of nonlin-
ear dynamics appearing in many complex phenomena of the applied sciences [11].
Consequently the development of mathematical methods for the nonlinear dynam-
ics analysis of such a model are required and the applicability of previous methods
is a fundamental issue towards the definition of a robust and generalized stability
theory. Specifically nonlinear dynamics includes the emergence of chaos, the onset
of Hopf bifurcations, and fluctuations as the magnitude of the parameters of the
model is varied, see, among others, paper [12, 13, 14], the review paper [15] and
the book [16]. It is worth pointing out that the introduction of time delays takes
into account that most of the emerging phenomena in the applied sciences at a
certain time are strictly related to the state of the system at a previous time.

The pertinent literature comprises many contributions in the case of the in-
troduction of only one time delay and for ordinary differential equation (ODE)
models consisting of a system of at most two ODEs. The literature appears very
limited in the case of delayed models that are defined on more than one time delay
(see papers [17, 18, 19] and therein references) and, in particular, for ODE-based
models defined by more than two differential equations. The analytical stability
analysis of the latter mentioned delayed models is difficult considering the prob-
lem to manage the relation among a large number of parameters of the model.
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The development of new methods is thus required in order to construct a general
theory and this step can be pursued by considering specific models.

The present paper is devoted to analytical investigations on the possibility to
control the nonlinear dynamics emerging into a delayed three-dimension ODE-
based model. Specifically two time delays are introduced into a mathematical
model proposed in [9] and an analytical sensitivity analysis on the time delays is
performed. The results show that the magnitude of the time delay, considered
as a parameter of the model, modifies the stability of the equilibrium points and
induces the onset of a Poincaré-Andronov-Hopf bifurcation.

It is worth stressing that, to the best of our knowledge, this is the first time that
time delays are introduced into the differential model [9] and, more in general, for
a three-dimensional ordinary differential equation model.

The present paper is organized as follows: After this introduction, Section 2
outlines the delayed ODE-based model and the related equilibrium points. Section
3 is devoted to the sensitivity analysis on the time delays taken as parameters of the
model and specifically to the local stability analysis of the equilibrium states and
the conditions under which a Poincaré-Andronov-Hopf bifurcation occurs. Finally
Section 4 deals with a critical analysis on the results and the definition of further
research directions.

2. The Delayed Three-dimensional Model

Recently in [9] the following model has been proposed:
·
S(t) = −δS(t)− ηS(t− τ)I(t− τ)− γ1S(t) + α2I(t) + γ2E(t),
·
I(t) = ηS(t− τ)I(t− τ)− δI(t)− α1I(t)− α2I(t),
·
E(t) = −δE(t)− γ2E(t) + γ1S(t) + α1I(t) + ε,

where S, I and E denote the numbers of the susceptible computers, the infected
computers and external computers, respectively; δ is the rate at which each com-
puter dies out; ε is the birth rate of external computers; α1, α2, γ1, γ2 and η are
the states transmission rates.

Bearing in mind how the spread of virus computers occurs, the introduction of
two time delays for S and I is proposed in this paper as follows:

·
S(t) = −δS(t)− ηS(t− τ1)I(t− τ2)− γ1S(t) + α2I(t) + γ2E(t),
·
I(t) = ηS(t− τ1)I(t− τ2)− (δ + α1 + α2) I(t),
·
E(t) = − (δ + γ2)E(t) + γ1S(t) + α1I(t) + ε.

(2.1)

The delayed model (2.1) shares the same equilibrium points of [9]. Accordingly,
the system (2.1) has a unique positive equilibrium (S∗, I∗, E∗), where

S∗ =
α1 + α2 + δ

η
, I∗ =

εγ2η − δ (γ1 + γ2 + δ) (α1 + α2 + δ)

ηδ (α1 + γ2 + δ)
,

E∗ =
ε

δ + γ2
+

γ1 (α1 + α2 + δ)

η (δ + γ2)
+

α1I∗
δ + γ2

.

2
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A DELAYED COMPUTER VIRUS INFECTION MODEL 3

The above equilibrium point has been proved, under suitable technical assumptions
that are not reported here, to be locally asymptotically stable for the non-delayed
model [9]. The next section is devoted to show how the stability of this equilibrium
changes as the magnitude of the time delays τ1 and τ2 is let varied.

3. Local Stability and Onset of Poincaré-Andronov-Hopf Bifurcation

The characteristic equation of the linearized system of (2.1) at the equilibrium
reads detA = 0 where A writes: −δ − γ1 − λ− ηI∗e

−λτ1 α2 − ηS∗e
−λτ2 γ2

ηI∗e
−λτ1 − (δ + α1 + α2)− λ+ ηS∗e

−λτ2 0
γ1 α1 − (δ + γ2)− λ

 ,

namely

λ3+a2λ
2+a1λ+a0+

(
b2λ

2 + b1λ+ b0
)
e−λτ1+

(
c2λ

2 + c1λ+ c0
)
e−λτ2 = 0, (3.1)

where

a2 = 3δ+α1+α2+γ1+γ2, a1 = δ [3δ + 2 (α1 + α2)]+(γ1 + γ2) (2δ + α1 + α2) ,

a0 = δ (δ + γ1 + γ2) (δ + α1 + α2) ,

b2 = ηI∗, b1 = (2δ + α1 + γ2) ηI∗, b0 = (δ + α1 + γ2) δηI∗,

c2 = −ηS∗, c1 = − (2δ + γ1 + γ2) ηS∗, c0 = − (δ + γ1 + γ2) δηS∗.

The equilibrium point (S∗, I∗, E∗) of (2.1) is locally asymptotically stable if
each of eigenvalues in (3.1) has negative real parts. Moreover, the boundary of
the stability region is determined by the equations λ = 0 and λ = iω (ω > 0). If
λ = 0 in (3.1) yields (δ + α1 + γ2) δηI∗ = 0, which is a contradiction. Hence, in
what follows, the case λ = iω, with ω positive is taken into account.

3.1. Case τ1 = 0, τ2 > 0. The characteristic equation (3.1) rewrites:

λ3 + (a2 + b2)λ
2 + (a1 + b1)λ+ a0 + b0 +

(
c2λ

2 + c1λ+ c0
)
e−λτ2 = 0. (3.2)

Let λ = iω, ω > 0, be a root of Eq. (3.2). Then, after separating the real and the
imaginary parts, the following holds:

(a2 + b2)ω
2 − (a0 + b0) = c1ω sinωτ2 +

(
c0 − c2ω

2
)
cosωτ2, (3.3)

ω3 − (a1 + b1)ω = c1ω cosωτ2 −
(
c0 − c2ω

2
)
sinωτ2. (3.4)

Squaring and adding these two equations, it follows:

ω6 + pω4 + qω2 + r = 0, (3.5)

where

p = (a2 + b2)
2 − c22 − 2 (a1 + b1) ,

q = (a1 + b1)
2 − c21 − 2 (a0 + b0) (a2 + b2) + 2c0c2,

r = (a0 + b0)
2 − c20.

3
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It is worth to noting that a direct calculation shows that r > 0. Let z = ω2, then
Eq. (3.5) rewrites as follows:

f(z) = z3 + pz2 + qz + r = 0. (3.6)

The following Lemma holds true.

Lemma 3.1. Let f(z) = z3 + pz2 + qz + r = 0 and

z∗ =
−p+

√
p2 − 3q

3
. (3.7)

Then

1) If p ≥ 0 and q ≥ 0 or if p < 0, q > 0 and p2 − 3q < 0, then Eq. (3.6) has
no positive roots.

2) If p ≥ 0 and q < 0 or if p < 0 and q ≤ 0 or if p < 0, q > 0 and p2−3q ≥ 0,
then Eq. (3.6) has no positive roots if f(z∗) > 0; it has one positive root
z0 = z∗if f(z∗) = 0 and one has f ′(z0) = 0; it has two positive roots z−
and z+, z− < z+, if f(z∗) < 0, and it is f ′(z−) < 0 and f ′(z+) > 0.

Proof. The statement 1) is immediate since r > 0. Next, notice f(0) = r > 0,
f(+∞) = +∞, f ′(z) = 3z2 + 2pz + q, f ′′(z) = 6z + 2p; f(z) has a minimum in
z∗ when p ≥ 0 and q < 0, p < 0 and q ≤ 0, p < 0 and q > 0 with p2 − 3q ≥ 0.
The statement 2) follows from Descartes’ rule of signs that says that the number
of positive roots of (3.6) is equal to the number of sign changes in the sequence
formed of the polynomial’s coefficients or less than the sign changes by a multiple
of 2. �

Bearing all the above in mind, the Eq. (3.2) has purely imaginary roots at
certain values of τ2, which can be determined by (3.3) and (3.4). Indeed, we can
derive

sinωτ2 =
ωkB(ωk)

c21ω
2
k + (c0 − c2ω2

k)
2 , cosωτ2 =

A(ωk)

c21ω
2
k + (c0 − c2ω2

k)
2 ,

with

A(ωk) = [c1 − (a2 + b2) c2]ω
4
k + [(a0 + b0) c2 + (a2 + b2) c0 − (a1 + b1) c1]ω

2
k

− (a0 + b0) c0,

and

B(ωk) = −c2ω
4
k+[(a1 + b1) c2 + (a2 + b2) c1 + c0]ω

3
k−[(a0 + b0) c1 + (a1 + b1) c0] .

Therefore,

τ
(k)
2,j =



1

ωk
cos−1

{
A(ωk)

c21ω
2
k + (c0 − c2ω2

k)
2

}
+

2jπ

ωk
, if B(ωk) ≥ 0,

2(j + 1)π

ωk
− 1

ωk
cos−1

{
A(ωk)

c21ω
2
k + (c0 − c2ω2

k)
2

}
, if B(ωk) < 0,

(3.8)

4
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A DELAYED COMPUTER VIRUS INFECTION MODEL 5

where j = 0, 1, 2, ..., ωk =
√
zk, k ∈ {0,±} , ω− < ω+. In conclusion, λ = ±iωk

is a pair of purely imaginary roots of (3.2) with τ2 = τ
(k)
2,j . According to the Hopf

bifurcation Theorem, we need to verify the transversality condition.

Proposition 3.2. Let λ (τ2) be the root of (3.2) such that

Re(τ
(k)
2,j ) = 0, Im(τ

(k)
2,j ) = ωk.

Then λ = ±iωk are simple roots of (3.2) at τ2 = τ
(k)
2,j and[

dRe(λ)

dτ2

]
τ2=τ

(0)
2,j ,ω=ω0

= 0,

[
dRe(λ)

dτ2

]
τ2=τ

(+)
2,j ,ω=ω+

> 0,

and [
dRe(λ)

dτ2

]
τ2=τ

(−)
2,j ,ω=ω−

< 0.

Proof. Substituting λ = λ (τ2) into (3.2) and taking the derivative with respect to
τ2, we have{

3λ2 + 2 (a2 + b2)λ+ (a1 + b1) + (2c2λ+ c1) e
−λτ2

−
(
c2λ

2 + c1λ+ c0
)
τ2e

−λτ2
} dλ

dτ2
=

(
c2λ

2 + c1λ+ c0
)
λe−λτ2 , (3.9)

namely(
dλ

dτ2

)−1

=
3λ2 + 2 (a2 + b2)λ+ a1 + b1
λ (c2λ2 + c1λ+ c0) e−λτ2

+
2c2λ+ c1

λ (c2λ2 + c1λ+ c0)
− τ2

λ
,

which, together with (3.2), yields(
dλ

dτ2

)−1

= − 3λ2 + 2 (a2 + b2)λ+ a1 + b1
λ (λ3 + (a2 + b2)λ2 + (a1 + b1)λ+ (a0 + b0))

+
2c2λ+ c1

λ (c2λ2 + c1λ+ c0)
− τ2

λ
. (3.10)

Plugging λ = iωk and τ2 = τ
(k)
2,j into (3.10), and using (3.6), we derive that

sign

{
d (Reλ)

dτ2

∣∣∣∣
τ2=τ

(k)
2,j

}
= sign

{
Re

(
dλ

dτ2

)−1

τ2=τ
(k)
2,j

}

= sign

{
C(ωk)

D(ωk)

}
= sign {f ′(zk)} , (3.11)

, where

C(ωk) = 3ω4
k + 2

[
(a2 + b2)

2 − c22 − 2 (a1 + b1)
]
ω2
k + (a1 + b1)

2 − c21

−2 (a0 + b0) (a2 + b2) + 2c0c2, (3.12)

5
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and

D(ωk) = ω6
k +

[
(a2 + b2)

2 − 2 (a1 + b1)
]
ω4
k

+
[
(a1 + b1)

2 − 2 (a0 + b0) (a2 + b2)
]
ω2
k + (a0 + b0)

2
. (3.13)

The conclusion is now straightforward from the previous Lemma. It remains to
prove the simplicity of the root λ = iωk. Assuming that this root is a repeated

root of (3.2), then (3.9) implies
(
−c2ω

2
k + c1iωk + c0

)
iωke

−iωkτ
(k)
2,j = 0, and then

a contradiction ωk = 0. This concludes the proof. �

Therefore a pair of pure imaginary roots λ = ±iωk cross the imaginary axis

from left to right if dRe(λ(τ
(k)
2,j ))/dτ2 > 0. On the contrary, if that derivative is

negative the crossing of imaginary axis is from right to left.

Remark 3.3. The transversality condition does not hold for λ = iω0. For simplicity,
the analysis of this case will not be considered here.

Bearing all the above in mind, the following theorem holds true.

Theorem 3.4. Assume that condition (H1) in [9] holds true and let f(z), z∗ and

τ
(k)
2,j (j = 0, 1, 2, ...) be defined as in (3.6), (3.7) and (3.8), respectively.

1) If p ≥ 0 and q ≥ 0 or if p < 0, q > 0 and p2−3q < 0 or if p ≥ 0, q < 0 and
f(z∗) > 0 or if p < 0, q ≤ 0 and f(z∗) > 0 or if p < 0, q > 0, p2 − 3q ≥
and f(z∗) > 0, then the equilibrium (S∗, I∗, E∗) of system (3.1) is locally
asymptotically stable for all τ2 ≥ 0.

2) If p ≥ 0 and q < 0 or if p < 0 and q ≤ 0 or if p < 0, q > 0 and p2−3q ≥ 0,
and we also have f(z∗) < 0, then the stability of the equilibrium point
(S∗, I∗, E∗) of system (2.1) can change a finite of times, at most, as τ2
is increased and eventually it becomes unstable. System (2.1) undergoes
a Poincaré-Andronov-Hopf bifurcation at (S∗, I∗, E∗) for those values of

τ2 = τ
(k)
2,j (j = 0, 1, 2, ...) for which a stability switch occurs.

3.2. Case τ1 > 0, τ2 fixed in its stable interval. In order to investigate the
effects of multiple delays on the local stability of equilibrium point, in this section
we consider Eq. (3.1) with τ1 > 0 regarded as a parameter and τ2 fixed in its
stable interval. Let λ = iω (ω > 0) be a root of (3.1). Then, we obtain

b1ω sinωτ1 +
(
b0 − b2ω

2
)
cosωτ1 = a2ω

2 − a0

+
(
c2ω

2 − c0
)
cosωτ2 − c1ω sinωτ2, (3.14)

and

b1ω cosωτ1 −
(
b0 − b2ω

2
)
sinωτ1 = ω3

− a1ω −
(
c2ω

2 − c0
)
sinωτ2 − c1ω cosωτ2, (3.15)

Taking squares of (3.14) and (3.15), and then adding them together, we get

g(ω) = 0, (3.16)

6
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A DELAYED COMPUTER VIRUS INFECTION MODEL 7

where

g(ω) = ω6+
(
a22 − b22 + c22 − 2a1

)
ω4+

(
a21 − b21 + c21 − 2a0a2 + 2b0b2 − 2c0c2

)
ω2

+
[
2 (a2c2 − c1)ω

4 + 2 (a1c1 − a0c2 − a2c0)ω
2 + 2a0c0

]
cosωτ2

+
[
−2c2ω

5 + 2 (a1c2 + c0 − a2c1)ω
3 + 2 (a0c1 − a1c0)ω

]
sinωτ2

+ a20 + b20 + c20.

In what follows, Eq. (3.16) is assumed to have at least a positive real root. Let ωl,
l = 1, 2, ..., N, be the positive real roots of (3.16). Then, for every fixed ωl, there
is a sequence of critical values given by

τ
(j)
1,l =



1

ωl
cos−1

{
E(ωl)

(b1ωl)
2
+ (b0 − b2ω2

l )
2

}
+

2jπ

ωl
, if F (ωl) ≥ 0,

2(j + 1)π

ωl
− 1

ωl
cos−1

{
E(ωl)

(b1ωl)
2
+ (b0 − b2ω2

l )
2

}
, if F (ωl) < 0,

(3.17)

where

E(ωl) = b1ωl

[
ω3
l − a1ωl −

(
c2ω

2
l − c0

)
sinωlτ2 − c1ωl cosωlτ2

]
+
(
b0 − b2ω

2
l

)
a2ω

2
l − a0 +

(
c2ω

2
l − c0

)
cosωlτ2 − c1ωl sinωlτ2,

and

F (ω) = (b0 − b2ωl)
2 [

a2ω
2
l − a0 +

(
c2ω

2
l − c0

)
cosωlτ2 − c1ωl sinωlτ2

]
− b1ωl

(
b0 − b2ω

2
l

) [
ω3
l − a1ωl −

(
c2ω

2
l − c0

)
sinωlτ2 − c1ωl cosωlτ2

]
.

Let

τ c1 = min
{
τ
(j)
1,l , l = 1, 2, ..., N, j = 0, 1, 2, ...

}
. (3.18)

When τ1 = τ c1 , Eq. (3.1) has a pair of purely imaginary roots λ = ±iωc. We need
now to verify that λ = ±iωc is a simple root and the transversality condition of
Hopf bifurcation holds. Differentiating λ with respect to τ1 in (3.1), we can get{

3λ2 + 2a2λ+ a1 + (2b2λ+ b1) e
−λτ1

−
(
b2λ

2 + b1λ+ b0
)
τ1e

−λτ1 + (2c2λ+ c1) e
−λτ2

−
(
c2λ

2 + c1λ+ c0
)
τ2e

−λτ2
} dλ

dτ1
=

(
b2λ

2 + b1λ+ b0
)
λe−λτ1

We prove λ = ±iωc is a simple root. If it is not simple, then(
−b22ωc + b1iωc + b0

)
iωce

−iωcτ
c
1 = 0,

7
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8 CARLO BIANCA AND LUCA GUERRINI

which yields the contradiction ωc = 0. Next, we derive(
dλ

dτ1

)−1

=
3λ2 + 2a2λ+ a1 + (2b2λ+ b1) e

−λτ1 + (2c2λ+ c1) e
−λτ2

(b2λ2 + b1λ+ b0)λe−λτ1

−
(
c2λ

2 + c1λ+ c0
)
τ2e

−λτ2

(b2λ2 + b1λ+ b0)λe−λτ1
− τ1

λ
,

and using (3.1), we find

sign

[
dRe(λ)

dτ1

]
τ1=τc

1

= sign

[
Re

(
dλ

dτ1

)−1
]
τ1=τc

1

= sign (P1Q1 − P2Q2) . (3.19)

where

P1 = 2b2ωc sinωcτ
c
1 + b1 cosωcτ

c
1 + τ2

(
c2ω

2
c − c0

)
cosωcτ2

+ (2c2 − τ2c1) sinωcτ2 + a1 − 3ω2
c ,

P2 = 2b2ωc cosωcτ
c
1 − b1 sinωcτ

c
1 + (2c2 − τ2c1)ωc cosωcτ2

− τ2
(
c2ω

2
c − c0

)
sinωcτ2 + 2a2ωc,

Q1 = (−b2ω
3
c + b0ωc) sinωcτ

c
1 − b1ω

2
c cosωcτ

c
1 ,

and

Q2 = (−b2ω
3
c + b0ωc) cosωcτ

c
1 + b1ω

2
c sinωcτ

c
1 .

If sign (P1Q1 − P2Q2) > 0 (resp. < 0), then each crossing at τ c1 is from left to
right (resp. right to left). Bearing all the above in mind, the following result holds
true.

Theorem 3.5. Let g(ω) and τ c1 be defined as in (3.16) and (3.18), respectively.

1) If g(ω) has no positive zero, then the equilibrium (S∗, I∗, E∗) of system
(2.1) is locally asymptotically stable for τ1 ≥ 0.

2) If g(ω) has at least a positive zero, then there exists τ c1 > 0 such that
the equilibrium (S∗, I∗, E∗) of system (2.1) is locally asymptotically stable
for τ1 ∈ [0, τ c1 ) and the system (2.1) undergoes a Poincaré-Andronov-Hopf
bifurcation at (S∗, I∗, E∗) when τ1 = τ c1 if sign (P1Q1 − P2Q2) > 0.

3) If g(ω) has at least a positive zero, then the equilibrium (S∗, I∗, E∗) of
system (2.1) remains stable when τ1crosses τ

c
1 if sign (P1Q1 − P2Q2) < 0.

On the other hand, it becomes unstable when τ1 crosses a value τ1 =

τ
(j)
1,l such that the corresponding value sign (P1Q1 − P2Q2) is positive. In

this case, a Poincaré-Andronov-Hopf bifurcation occurs at this τ1 = τ
(j)
1,l .

Moreover there may exist a lot of stability switches for τ1 > τ
(j)
1,l .

8
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4. Critical Analysis and Research Perspectives

The mathematical analysis developed in the present paper has been addressed
to the emergence of nonlinear dynamics in a delayed three-dimensional mathemat-
ical model. The analysis shows how the magnitude of a time delay, considered as
a parameter, can be responsible of the onset of a Poincaré-Andronov-Hopf bifur-
cation. The results have been obtained employing the methods of the stability
theory and the main problem is to be able to manage the parameters. In partic-
ular the parameters have to satisfy some technical assumptions whose validity is
essential for gaining our analysis. This is an important step that cannot be relaxed
considering the all mathematical models are based on the definition of parameters
which have a specific meaning. The whole analysis has been performed where the
transversality condition holds true, then a first research direction should be inves-
tigate also in the case λ = iω0. According to our results, the model proposed in
[9] with two independent time delays shows a more complicated dynamics. That
is why it seems to be more realistic.

It is worth stressing that the introduction of the two delays has been motivated
by the applications. Time delay can be introduced also in other terms of the
differential system proposed in [9]. In this case the whole analysis should be
revised in order to take into account the role of the other parameters. However
we are confident that our method well fit also in the other cases.

An important research perspective is the (analytical) derivation of explicit for-
mulas for determining the properties of the Poincaré-Andronov-Hopf bifurcation,
namely the nature of the bifurcation (supercritical or subcritical), to determine
the stability of the bifurcating periodic solutions, and to determine the period of
the bifurcating periodic solutions. This analysis can be performed by employing
the normal form method and the center manifold theory [20].

The Poincaré-Andronov-Hopf bifurcation analysis developed in the present pa-
per cannot be straightforward applied to mathematical models that are based on
partial differential equation. Much effort is required in this direction in particular
for what concerns the stability analysis of the stationary states. In this context
our analysis assumes an important role in particular for the mathematical models
based on differential equations that presents a term of control and optimization
[21, 22] or are based on equations of fractional order [23].
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