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Abstract. Consider Xt as being a multivariate Markov process on a finite

alphabet A. The marginal processes of Xt interact depending on the past
states of Xt. We introduce in this paper a consistent strategy to find the

groups of independent marginal processes, conditioned to parts of the state

space, in which the strings in the same part, of the state space, share the same
transition probability to a next symbol on the alphabet A. The groups of con-

ditionally independent marginal processes will be the structure of interaction
of Xt. The theoretical results introduced in this paper ensure, through the

Bayesian Information Criterion, that for a sample size large enough the esti-

mation strategy allows to recover the true conditional structure of interaction
of Xt. Moreover, by construction, the strategy is also capable to catch mutual

independence between the marginal processes of Xt.

1. Introduction

The study of dependence between sources is a topic investigated by several au-
thors in a broad range of contexts, for example see [15] and [21]. This knowledge
is useful to guide decisions and define steps that allow to create corrective set-
tings. It is necessary to highlight some aspects, the complexity of the models to
address such situations and the variety of types of dependence, to represent the
relationship between sources. Just as it is complex, the representation of a source
(or a process), see for instance the large range of models in this line [17], [20],
[14], [1], [12] and [9]. In this paper we present a strategy for identifying groups
of coordinates from a multivariate process, which are independent, when the joint
process is conditioned to certain strings of observations, also, the space of strings
that allow this property can be identified. Moreover, this strategy can be used
before being defined a model for the process, facilitating the implementation of
dependence structures as set forth in [15] and [21]. In [7] this problem was stu-
died and for an appropriated contextualization was chosen a low cost family of
Markov models, as a natural environment. This is the family of partition Markov
models, see [5]. As showed in [7], partition Markov models are convenient to de-
velop an estimation strategy of the interaction structure. The strategy is based on
the Bayesian Information Criterion (see [18]) which allows a consistent estimation
of the interaction structure and also a consistent estimation of partition Markov
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2 M. FERNÁNDEZ ET. AL.

models. However [7] is only concerned with pairwise independence and cannot
detect situations of mutually independence, already registered on the literature.
In this paper we introduce a new estimation strategy which provides a full solution
of the problem to find independent groups of coordinates, being preferable than
the strategy proposed in [7].

The partition Markov models are being investigated for different purposes, see
for example [4]. For instance, the strategy used in [8] is to combine through a
copula (see [16] and [13]) the optimal partitions of the marginal state spaces, co-
ming from the marginal processes and the optimal partition of the joint state space
coming from the multivariate process. The goal in [8] is to define a natural cor-
rection for the estimator of the transition probabilities of a multivariate Markov
process, it is helpful when the sample size is not large enough to ensure a good
quality of the estimator derived only using the Bayesian Information Criterion in
the multivariate process. This procedure shows desirable theoretical properties
that will be essential to increase the predictive ability of the estimation. In [8] the
procedure was applied to multivariate Brazilian financial data in order to show
how this new estimator allows to work with a longer past (order of the process),
than the one allowed by the usual procedure of estimation, when the data size is
not large enough to ensure reliable results.

Here, we describe the topics covered in this paper. In section 2 we introduce
the concept of Markov chain with partition L, which is a partition of the state
space defined through a stochastic equivalence between strings of the state space.
Also we introduce the concept structure of interaction, defined over the previous
partition of the state space. In section 3 we describe the consistent model se-
lection procedure for choosing the structure of interaction, that is based on the
Bayesian Information criterion. In section 4 we obtain groups of series which are
conditionally independent. In the case, we use 4 series which are representative
in the Brazilian market: VALE (VALE5), ITAUUNIBANCO (ITUB4), AMBEV
S/A (ABEV3) and BRADESCO (BBDC4), period: January 02, 2006-July 31,
2015. We conclude this paper with a discussion in section 5. The auxiliary result’s
proof is in the Appendix 7.

2. Preliminaries

Let Xt = (X(1)t, ..., X(k)t) be the state of the set of k processes at time t, where
X(i)t ∈ B and it is the state of the i-process at time t for i = 1, ..., k; Xt ∈ A = Bk,
B is a finite and enumerable set of elements. We will assume that Xt is an order M,
Markov chain, with M <∞. The concatenation of elements from A, amam+1 . . . an
where ai ∈ A, m ≤ i ≤ n, is denoted by anm. Given the state space of strings of
size M which is S = AM , for each s ∈ S, a ∈ A, we denote the conditional
probability of the k-variate process by P (a|s) = Prob(Xt = a|Xt−1

t−M = s). The
next definition introduces a notion of equivalence ∼ between strings from the state
space S, induced by the joint probability of the process. Also, we introduce the
notion of partition L corresponding to ∼ .

Definition 2.1. Let Xt be an order M, k-variate Markov chain, with alphabet
A = Bk and state space S = AM ,M < ∞, (i) for each s, r ∈ S, s ∼ r if
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FULL INTERACTION PARTITION ESTIMATION IN STOCHASTIC PROCESSES 3

P (a|s) = P (a|r) ∀a ∈ A; (ii) Xt has partition L if this partition is the one defined
by the equivalence relationship ∼ introduced by i.

Then, the set of parameters for a Markov chain over the alphabet A with
partition L is given by the set of conditional probabilities {P (a|L) : a ∈ A,L ∈ L},
where P (a|L) = P (a|s), for any s ∈ L. Thus, the total number of parameters
will be |L|(|A| − 1). The model integrated by such parameters is called Partition
Markov Model (PMM). Now we show, an introduction of the interaction structure
under investigation. This structure was explored in [7] under the perspective of
other strategy of estimation considering the PMM models and in [19] considering
Variable Length Markov Chain models. The target is to obtain for each part
of the partition of the state space, a partition of the set of coordinates of the
multivariate process. The partition of coordinates will split the set of coordinates
in independent subsets, called in this paper as Structure of Interaction. For a
collection of coordinates u = {u1, ...ul} ⊆ {1, 2, ..., k} and a = (a1, ..., ak) ∈ A,
define, au = (au1 , ..., aul

) that is a vector composed only by the u coordinates of
a. For each part L ∈ L define the transition probability from L to a vector au, of u

coordinates, P (au|L) = Prob
(

(X(u1)t, ..., X(ul)t) = au|Xt−1
t−M = s

)
, ∀s ∈ L. The

previous equality holds because L is a part of the partition L following Definition
2.1-i., i.e. all the strings in L share the same transition probability. Given L ∈ L,
consider IL a partition of {1, . . . , k} such that

∀a ∈ A, P (a|L) =
∏
C∈IL

P (aC |L). (2.1)

We define the optimal partition which satisfies the previous relation.

Definition 2.2. Let Xt be an order M and k-variate Markov chain, with alphabet
A = Bk, state space S = AM , M <∞ and partition of the state space L,

i. for each L ∈ L define DL as the largest partition of {1, 2, ..., k}, such that

P (a|L) =
∏
C∈DL

P (aC |L), ∀a ∈ A.

ii. DL = {DL}L∈L is the structure of interaction of the process Xt.
iii. M = {MP }P∈DL with MP = ∪{L∈L:DL=P}L and DL given by i., is the

partition of interactions of S.

According to Definition 2.2-i., we note that the number of parameters needed
to specify the transition probability from L to a is

∑
C∈DL

(|B||C| − 1),∀a ∈ A.

Example 2.3. Suppose the partition of S (Definition 2.1)-ii is given by 4 parts,
say L = {L1, L2, L3, L4}, in a process with k = 5 coordinates. Suppose also the
structure of interaction is given by Table 1. The elements (list of parts of L) of the

Table 1. Parts of the partition related to ∼ and its structure of interaction.

Part L1 L2 L3 L4

DL {1, 2}, {3, 4, 5} {1, 2, 3}, {4, 5} {1, 2}, {3, 4, 5} {1, 2}, {3}, {4, 5}
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4 M. FERNÁNDEZ ET. AL.

Table 2. Composition of M, the partition of interactions.

Part of M MDL1
MDL2

MDL4

Parts of L L1 ∪ L3 L2 L4

partition of interactionsM (Definition 2.2-iii) are exposed in Table 2. This means
that all the strings in the state space S included in the parts L1 and L3 share
the same interaction between the coordinates, and split the 5 coordinates in two
independent sets {1, 2} and {3, 4, 5}. If we consider the part Li, for i = 1, 3, we
have P (a|Li) = P (a1,2|Li)P (a3,4,5|Li), with a1,2 = (a1, a2), a3,4,5 = (a3, a4, a5),
∀a = (a1, a2, a3, a4, a5).

3. Estimation

In this section we will introduce the methodology of estimation, which consists
of the strategic use of the Bayesian Information Criterion to produce consistent
estimates of the structure of interaction. We give an overview of the process
of estimating the partition L, and in the sequence, the article is devoted to the
estimation of the structure of interaction.

3.1. Estimation of L, a Review. Consider a sample xn1 of the process Xt,
a ∈ A and s ∈ S. We will denote by Nn(s) the number of occurrences of s in
the sample and by Nn(s, a) the number of occurrences of s followed by a in the

sample, Nn(s) =
∑n+1
m=M+1 1{xm−1

m−M=s}, Nn(s, a) =
∑n
m=M+1 1{xm−1

m−M=s,xm=a}.

Definition 3.1. Let xn1 be a sample of Xt, for any s, r ∈ S,

dn(s, r) =
2

(|A| − 1) ln(n)

∑
a∈A

{
Nn(s, a) ln

(
Nn(s, a)

Nn(s)

)
+ Nn(r, a) ln

(
Nn(r, a)

Nn(r)

)
− (Nn({s, r}, a) ln

(
Nn({s, r}, a)

Nn(s) +Nn(r)

)}
,

with Nn({s, r}, a) = Nn(s, a) +Nn(r, a).

dn can be generalized to subsets of S and it has the property of being equivalent
to the Bayesian Information Criterion to decide if s ∼ r for any s, r ∈ S. See [5]
for a more complete explanation.

Remark 3.2. (i) As a consequence of Theorem 2.1 proved in [5], if Xt is a
discrete time, order M, Markov chain on a finite alphabet A and xn1 is a
sample of the process, then for n large enough, for each s, r ∈ S, dn(r, s) <
1 if and only if s and r belong to the same class.

(ii) The algorithm introduced in [6] (using dn) returns the true partition for

the source, this means that under the assumptions of Theorem 2.1 [5], L̂n
given by the algorithm converges almost surely eventually to L, where L
is the partition of S given by Definition 2.1-ii.
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FULL INTERACTION PARTITION ESTIMATION IN STOCHASTIC PROCESSES 5

(iii) For each a ∈ A and s ∈ S, the estimator of P (a|s) or P (a|L̂) is defined by∑
r∈L̂Nn(r, a)/

∑
r∈L̂Nn(r), such that s ∈ L̂ and L̂ is a part of L̂n.

We complete this brief exposition of the estimation process, used in this paper,
with the following references regarding the estimation of variable length Markov
chains and Markov chains both included in the PMM class, see [2], [3] and [10].

3.2. Consistent Estimation of the Structure of Interaction. In this section
we present the maximum likelihood expression that allows the estimation of the
underlying structure DL, introduced by Definition 2.2. Based on an estimate of
the partition of the state space S, the Bayesian Information Criterion enables to
obtain an estimated structure that converges eventually almost surely to the true
structure of interaction. To estimate the probabilities we introduce some comple-
mentary notation, for s ∈ S the number of occurrences in xn1 of the string s follo-
wed by a vector that has the coordinates listed by u equal to au, Nn(s, au) =

∣∣{t :

M < t ≤ n, xt−1
t−M = s, (x(u1)t, ..., x(ul)t) = au}

∣∣, where each element xt is such

that xt = (x(1)t, x(2)t, . . . , x(k)t). In addition for each part L ∈ L, NLn (L, au) =∑
s∈LNn(s, au) and NLn (L) =

∑
s∈LNn(s). Given a sample of the process xn1 , if we

write P (xn1 ) = Prob(Xn
1 = xn1 ), we obtain under the assumption of a hypothetical

partition L of S, Definition 2.1-ii, and the structure of interaction DL, given by

Definition 2.2-ii., P (xn1 ) = P (xM1 )
∏
L∈L,a∈A

∏
C∈DL

P (aC |L)N
L
n (L,a). The max-

ima for
∏
L∈L,a∈A

∏
C∈DL

P (aC |L)N
L
n (L,a) is

ML(L,DL, xn1 ) =
∏

L∈L,a∈A

∏
C∈DL

(
NLn (L, aC)

NLn (L)

)NLn (L,a)

,

and the Bayesian Information Criterion expression under this formulation will be
given by the next definition.

Definition 3.3. Let xn1 a sample from the k-variate Markov chain Xt, of order
M, M < ∞ with alphabet A = Bk and state space S = AM . Suppose L is
the partition introduced by Definition 2.1-ii. and DL is the structure of interac-
tion given by Definition 2.2-ii., then, the corresponding BIC is BIC(L,DL, xn1 ) =

ln (ML(L,DL, xn1 ))−
∑
L∈L

∑
C∈DL

(|B||C| − 1) ln(n)
2 .

The model selection methodology is consistent as we show in the next result.
A preliminary version of this result is displayed in [7] (without proof). Here we
present all the results with proofs. We will use to prove those results the divergence

measure between two probability distributions, D(P ||Q) =
∑
b∈C P (b) ln{P (b)

Q(b)} for

P and Q probability distributions on C.

Theorem 3.4. Let Xt be a k-variate Markov chain, of order M,M < ∞, with
alphabet A = Bk and state space S = AM . With partition of the state space L
(Definition 2.1-ii.) and structure of interaction DL (Definition 2.2-ii.). Define,

D̂ = arg maxD∈D{BIC(L,D, xn1 )}, where D is the set of all possible structures
under the condition (2.1) and BIC(L,D, xn1 ) is given by Definition 3.3 in D ∈ D.
Then, D̂ = DL eventually almost surely as n→∞.
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6 M. FERNÁNDEZ ET. AL.

Proof. Suppose D̂ = {D̂L1 , . . . , D̂L|L|} 6= DL ∀n. Then, from Definition 2.2 ∃ D̃ =

{D̃L1
, . . . , D̃L|L|} such that at least one part (say L1) is such that |D̃L1

| ≥ |D̂L1
|.

Note that the indexing of D̂ and D̃ is the same, and equal to |L|, because L =

{L1, . . . , L|L|} is the true partition. By simplicity we suppose D̃Li = D̂Li ,∀i 6= 1.

We have D̂L1
= {G1, G2, . . . , GJL1

} whereGi is a collection of coordinates. Also we

assume D̃L1
= {G̃11, G̃12, G2, . . . , GJL1

}. It means that G1 according to D̂L1
repre-

sents a block of coordinates, which is split into two setsG1 = G̃11∪G̃12 according to

D̃L1
. P (aG1 |L1) = P (aG̃11 |L1)P (aG̃12 |L1),∀a ∈ A, then by Proposition 7.1, there

exists n0 such that BIC(L, D̃, xn1 ) > BIC(L, D̂, xn1 ), when n > n0, which is a
contradiction. On the other hand if there is a value a ∈ A such that P (aG1 |L1) 6=
P (aG̃11 |L1)P (aG̃12 |L1), define δ := D

(
P (·G1 |L1)||P (·G̃11 |L1)P (·G̃12 |L1)

)
and δn

:= D
(
P̂ (·G1 |L1)||P̂ (·G̃11 |L1)P̂ (·G̃12 |L1)

)
, observe that δ > 0 and P̂ is constructed

following remark 3.2-iii. Following the same ideas from the proof of Proposition

7.1 we can write
BIC(L,D̃,xn

1 )−BIC(L,D̂,xn
1 )

n = −δn + c0
ln(n)
n , for some positive con-

stant value c0. (i) Given a constant value K > 1 and ε = δ
K there is a value n1 > 1

such that ∀n > n1 : c0
ln(n)
n < δ

K , (ii) because δn → δ, when n → ∞, then given

ε = (1 − 2
K )δ there is a value n2 > such that ∀n > n2 : δn >

2
K δ. From (i) and

(ii), if n > max(n1, n2),
BIC(L,D̃,xn

1 )−BIC(L,D̂,xn
1 )

n = −δn + c0
ln(n)
n < − δ

K . As a

consequence BIC(L, D̃, xn1 )−BIC(L, D̂, xn1 ) < − δ
Kn < 0, when n > max(n1, n2).

So, it is not possible for a partition D̃ under this condition, to be the arg max of
the BIC. �

3.3. Full Estimation of the Structure of Interaction. In this section, we
will estimate the structure of interaction using the Bayesian Information Crite-
rion. The strategy proposed in this paper, to estimate the structure of interac-
tion, exceeds the detection capability of the proposal in [7]. In [7] it is showed
a consistent algorithm to detect pairwise independence between the coordinates
of a multivariate process. Nevertheless that pairwise consistent algorithm is not
appropriate to situations as the exposed by the next example. In contrast, the
strategy introduced by this paper is specially designed to detect situations such as
the introduced in the example 3.5, since this strategy is jointly consistent.

Example 3.5. (see [11]) Let (X1, X2, X3) be a vector with joint probability
mass p(x1, x2, x3) = 1

4 if (x1, x2, x3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} and
p(x1, x2, x3) = 0 otherwise. As a consequence, the pairwise probability mass func-
tion is pij(xi, xj) = 1

4 if (xi, xj) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} and pij(xi, xj) = 0

otherwise, if i 6= j, i, j ∈ {1, 2, 3}. Even more, pi(xi) = 1
2 if xi = 0, 1 and

pi(xi) = 0 otherwise. Then, the variables Xi and Xj are pairwise indepen-
dent, because pij(xi, xj) = pi(xi)pj(xj), when i 6= j with i, j ∈ {1, 2, 3}. But
p(x1, x2, x3) 6= p1(x1)p2(x2)p3(x3) and this means that X1, X2 and X3 are not
mutually independent.

Now, we show a result which support the strategy of estimation, based on
Theorem 3.4.
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Theorem 3.6. Let Xt be under the assumptions of Theorem 3.4 and consider xn1
a sample of the k-variate process Xt. Define D̂n = arg maxD∈D{BIC(L̂n,D, xn1 )}.
where L̂n is the estimator of L - see Remark 3.2-ii - and D is the set of all possible
structures under the condition (2.1), BIC(L̂n,D, xn1 ) is given by Definition 3.3 and

evaluated in L̂n and D ∈ D. Then, eventually almost surely as n→∞, D̂n = DL.

Proof. According to [6]: given a sample xn1 of Xt, ∃ n1 such that L̂n = L, ∀n > n1

with probability 1. Therefore, D̂n = arg maxD∈D{BIC(L,D, xn1 )},∀n > n1. From

Theorem 3.4, D̂n → DL eventually almost surely when n → ∞. This means ∃ n2

such that D̂n = DL,∀n > n2, with probability 1. �

The following relation supports the estimation strategy, derived from Theorem
3.6.

3.3.1. Strategy. From Definition 3.3 for a fixed partition L, BIC(L,DL, xn1 ) is∑
L∈L

( ∑
C∈DL

[∑
a∈A

NLn (L, a) ln

(
NLn (L, aC)

NLn (L)

)
− (|B||C| − 1)

ln(n)

2

])
, (3.1)

the contribution of each part L in L will be denoted by BICL(DL, xn1 ) where DL
is an element in the structure of interaction DL,

BICL(DL, xn1 ) =
∑
C∈DL

[∑
a∈A

NLn (L, a) ln

(
NLn (L, aC)

NLn (L)

)
− (|B||C| − 1)

ln(n)

2

]
.

(3.2)
From equations (3.1)-(3.2),

BIC(L,DL, xn1 ) =
∑
L∈L

BICL(DL, xn1 ), (3.3)

then, for each L ∈ L,

arg max
D∈D
{BIC(L,DL, xn1 )}|L = arg max

DL∈DL
{BICL(DL, xn1 )}. (3.4)

Where DL is the set of all possible structures following the condition (2.1) over
{1, ..., k} of L. And arg maxD∈D{BIC(·)}|L denotes the arg max related to the L
part - left side of equation (3.4). The strategy is expressed by the equation (3.4),
that is, using the term on the right of this equation, we can find by the Bayesian
Information Criterion, the optimal structure of interaction for each estimated part.
See the procedure: (1) obtain L̂n; (2) for each L̂ ∈ L̂n obtain D̂L̂; (3) define

D̂ = {D̂L̂ : L̂ ∈ L̂n}. This procedure being performed for each element L̂, is

equivalent to performing the maximization for all elements of L̂n simultaneously
- equation (3.3). Furthermore, the convergence of this strategy is assured by the
Theorem 3.6. The strategy represented by the equations (3.3)-(3.4) is specially
designed to detect situations such as example 3.5, since this strategy is jointly
consistent.
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4. Application

In the application we study four series of the Brazilian financial market: VALE
(VALE5), ITAUUNIBANCO (ITUB4), AMBEV S/A (ABEV3) and BRADESCO
(BBDC4). For each marginal process we study the returns of the closing prices.
We define Xt(i) = 1 if Pt+1(i) ≥ Pt(i) and Xt(i) = 0 otherwise (B = {0, 1}), where
Pt(i) is the closing price, at time t of the financial series i, with i = 1, 2, 3, 4. Table
3 identifies each series. The four series considered here compound the BOVESPA

Table 3. Four of the main BOVESPA index’s stocks. Period:
January, 02-2006–July, 31-2015, sample size=2368.

Coordinate (i) Company Code Sector
1 VALE VALE5 Basic Materials/Mining
2 ITAUUNIBANCO ITUB4 Financial
3 AMBEV S/A ABEV3 Non-Cyclical Consumer Goods
4 BRADESCO BBDC4 Financial

index (IBOVESPA). IBOVESPA is the main indicator of the Brazilian stock mar-
ket’s performance. In Table 4 we present the results obtained by applying the
Bayesian Information Criterion. The memory of the joint process is blog|A|(2367)c
=2, with |A|=16. In order to illustrate the estimation strategy introduced here,
in Table 4 we selected the top 3 Bayesian Information Criterion values for each
of the estimated parts, obtained from Definition 3.1, and on the left side of each
value of the Bayesian Information Criterion, we show the structure of interaction
for each case. The composition of each part L̂i member of L̂n can be obtained in
www.ime.unicamp.br/~jg/sm/ and Table 5 shows two of them. It is concluded
from the Table 4 that the partition of the state spaceM is composed by 2 elements,
the estimates are given by the junction of parts 1 and 2 in one case, M̂1 = L̂1∪ L̂2

and parts 3 and 4 on the other, M̂2 = L̂3∪L̂4, meaning that for all strings in M̂1 the
4 series are dependent and for all strings in M̂2 the series 1 and 2 will behave inde-
pendently of series 3 and 4. These results are summarized in Table 6. For instance
if we focus on the state xt−1 = (1, 1, 1, 0), we have that for an arbitrary state xt =
(xt(1), xt(2), xt(3), xt(4)), P (xt|xt−1

t−2) = P (xt(1), xt(2)|xt−1
t−2)P (xt(3), xt(4)|xt−1

t−2),
for xt−2 = (0, 1, 1, 1), (1, 0, 0, 1), (0, 1, 0, 1) (cases listed in Table 5). Since the

strings (0, 1, 1, 1)(1, 1, 1, 0) and (1, 0, 0, 1)(1, 1, 1, 0) ∈ L̂3 and (0, 1, 0, 1)(1, 1, 1, 0) ∈
L̂4, we have

P (xt|(0, 1, 1, 1)(1, 1, 1, 0)) = P (xt|(1, 0, 0, 1)(1, 1, 1, 0))

6= P (xt|(0, 1, 0, 1)(1, 1, 1, 0)).

For all the strings in M̂2, the two series from the financial sector are separated
each other. Price increases for the financial series ITUB4 are dependent on the
values of VALE5, from the sector Basic Materials/Mining. Similarly, increases in
the price of the financial series BBDC4 are dependent of ABEV3, coming from
the sector Non-Cyclical Consumer Goods.
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FULL INTERACTION PARTITION ESTIMATION IN STOCHASTIC PROCESSES 9

Table 4. D̂L̂i
associated with each estimated part L̂i, i =

1, 2, 3, 4. In boldface letter the best result of the Bayesian Informa-
tion Criterion and at its left the winning partition of coordinates.
L̂i estimated by the distance given by Definition 3.1.

Part of L̂n D̂L̂ BIC value
{1,2,3,4} -5152.6078

L̂1 {1, 3, 4}{2} -5315.7120
{1, 2, 3}{4} -5341.8196

{1,2,3,4} -189.9074

L̂2 {1, 2, 4}{3} -235.9355
{1, 2, 3}{4} -242.3120

{1,2}{3,4} -103.6107

L̂3 {1, 3}{2, 4} -103.6399
{1, 4}{2, 3} -105.6649

{1,2}{3,4} -111.9021

L̂4 {1, 4}{2, 3} -115.8587
{1, 3}{2, 4} -116.3862

Table 5. Composition of two parts.

Part Strings

L̂3 (0,0,0,0)(0,1,1,0); (0,0,0,1)(0,0,0,0); (0,1,1,1)(1,1,1,0)
(1,0,0,1)(1,1,1,0); (1,0,1,1)(0,0,1,1); (1,1,0,1)(1,0,1,1)

L̂4 (0,0,1,1)(1,0,1,1); (0,1,0,1)(1,0,0,0); (0,1,0,1)(1,1,1,0)
(0,1,1,1)(1,0,1,0); (1,0,0,0)(1,0,0,0); (1,0,0,0)(1,0,1,0)

Table 6. Structure of Interaction by parts which share the same
type of interaction between the series.

M̂i Interaction in M̂i

M̂1 = L̂1 ∪ L̂2 {VALE5, ITUB4, ABEV3, BBDC4}
M̂2 = L̂3 ∪ L̂4 {VALE5, ITUB4}, {ABEV3, BBDC4}

5. Conclusion

In this article we review the concept of interaction, introduced in [7]. We intro-
duce a strategy to find groups of coordinates, conditionally independent. We show
in Theorem 3.6 (see also Theorem 3.4) that is possible to consistently estimate the
structure of interaction. Also, based on the construction of the overall Bayesian
Information Criterion is possible to quantify the contribution of each part (mem-
bers of L) to the overall Bayesian Information Criterion. From that, we propose
a strategy, based on Theorem 3.6 to produce an efficient estimate which detects
the mutual independence. In this way we ended the problem introduced in [7]
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10 M. FERNÁNDEZ ET. AL.

in the context of partition Markov models and by [19] in the context of variable
length Markov models (particular cases of partition Markov models). Finally, in
the application to real data we analysed four main financial series of the Brazil-
ian market, we observe that there is a portion of the state space in which can
be identified two independent groups of series, those pairs of series are: {VALE
(VALE5), ITAUUNIBANCO (ITUB4)} and {AMBEV S/A (ABEV3), BRADE-
SCO (BBDC4)}, respectively.
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7. Appendix

Proposition 7.1. Given (X,Y ) ∼ P, {(xi, yi)}ni=1 i.i.d. sample of (X,Y ) with
values in A = {0, 1}2. Then, if X and Y are independent, ∃n0 > 1 :

Dif({(xi, yi)}ni=1) = BIC({(xi, yi)}ni=1, I)−BIC({(xi, yi)}ni=1) > 0,∀n > n0.

Where BIC({(xi, yi)}ni=1, I) denotes the BIC under the assumption of indepen-
dence between X and Y.

Proof. If rn(x, y) =
∑n

i=1 1{(xi,yi)=(x,y)}
n , rn,1(x) =

∑n
i=1 1{xi=x}

n and rn,2(y) =∑n
i=1 1{yi=y}

n . In general,

BIC({(xi, yi)}ni=1) =
∑

(x,y)∈A

nrn(x, y) ln(rn(x, y))− 3 ln(n)

2
,

because A = {0, 1}2.
On the other hand, if X and Y are independent, BIC({(xi, yi)}ni=1, I) is∑

x∈{0,1}

nrn,1(x) ln(rn,1(x)) +
∑

y∈{0,1}

nrn,2(y) ln(rn,2(y))− 2 ln(n)

2

because in this case we have only 2 parameters to specify which are the marginal
distributions PX(0) =

∑
y P (0, y) and PY (0) =

∑
x P (x, 0). Then,

Dif({(xi, yi)}ni=1) =
∑

x∈{0,1}

nrn,1(x) ln(rn,1(x)) +
∑

y∈{0,1}

nrn,2(y) ln(rn,2(y))

−
∑

(x,y)∈A

nrn(x, y) ln(rn(x, y)) +
ln(n)

2

=
∑

(x,y)∈A

nrn(x, y) ln
(rn,1(x)rn,2(y)

rn(x, y)

)
+

ln(n)

2
.

Then,
BIC({(xi,yi)}ni=1,I)−BIC({(xi,yi)}ni=1)

n > 0 if and only if,

ln(n)

2n
> D

(
rn(·, ·)||rn,1(·)rn,2(·)

)
.

From [3] we have D
(
rn(·, ·)||rn,1(·)rn,2(·)

)
≤

∑
(x,y)∈A

(
rn,1(x)rn,2(y)−rn(x,y)

)2

rn,1(x)rn,2(y) .

Because X and Y are independent, the numerator rn,1(x)rn,2(y) − rn(x, y) goes
to zero when n→∞, and the left side will be arbitrary small when n→∞. �

41
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