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Abstract. Stock exchange deals in securities like shares or bonds issued by

the companies or corporations in the private and public sectors. National
Stock Exchange is widest and full automatic trading system in India. Nifty

50 is one of the stock price investor and 50 companies were invested in the

traders. Autoregressive Integrated Moving Average model is one of the most
accepted forecasting models and a vital area of the Box-Jenkins approach to

time series modeling. In this paper, the Nifty 50 stock market prices were

evaluated and predicted the trend of upcoming trading days stock market
fluctuations using Box-Jenkins methodology. From the results, it can be

observed that influence R-Square value is (94%) high and Mean Absolute

Percentage Error is very small for the fitted model. Thus the prediction
accuracy is more suitable of Nifty 50 closing stock price. It is concluded

that closing stock price of Nifty 50 taken in the present study shows slow
decreasing fluctuations trend for upcoming trading days.

1. Introduction

The National Stock Exchange (NSE) is a stock market in India, which is set up
on November 1992. NSE was the first exchange in the country to provide a mod-
ern, fully automated screen-based electronic trading system which accessible easy
trading facility to the investors widen across the length and breadth of the country.
NSE was set up by a group of leading Indian financial institutions at the request
of the government of India to bring precision to the Indian capital market. Based
on the recommendation lay out in the government committee, It has been estab-
lished with a diversified shareholding comprise domestic and universal investors.
NSE was also instrumental in create the National Securities Depository Limited
(NSDL) which allows investors to securely embrace and transfer their shares and
bonds electronically. It also allows investor to hold and trade in as few as one
share or bond. This not only made holding financial instrument convenient, but
more importantly eliminated the need for paper certificates and really reduced the
incidents of fake certificates and falsified transactions of Indian stock market. The
NSDL combined with the transparency, lower transaction prices and effectiveness
that NSE offered, significantly increased the attractiveness of the Indian stock
market to overall investors.
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Similarly, The Nifty 50 is an indicator of the top 50 major companies on the NSE.
If the Nifty 50 goes upward, it means that most of the stocks in India went up
during the period and the Nifty 50 goes downward, that the stock price of most
of the major stocks on down.

A lot of method has been used for NSE, including autoregressive model (AR),
autoregressive moving average model (ARMA), autoregressive integrated moving
average model (ARIMA) and so on. In the steadiness of forecast and explanation,
ARIMA is a widely used model. In this paper, the Nifty 50 data of 2015 is firstly
examined and then ARIMA model is used to fit the data.
Stock market price are most concerned about the stock opening price, lowest
price, highest price, closing price, adjusted closing price and volume. In technical
analysis, the highest and lowest price represents the inclusive struggle among multi
outer forces. The volume represents the market trade activity, and the closing price
is on behalf of the balance from the multi contest, which can be seen as the opening
price of the next trading day. In nature, a trading day closing price is not only
associated with the previous trading day closing price. In this paper, the Nifty 50
closing stock price (in Rs.) data was used. Then the time period is January to
December of 2015, with 245 observations. The Data is obtained from the financial
part of Yahoo.com and the computations are done by using SPSS 20 software.

2. Review of Related Work

Naylor et al (1972) made more wide and detailed comparison of alternative
methods and examined Box-Jenkins approach in compare to econometric model
for the year 1963 through 1967. They observed that the accuracy of ARMA
models of Box-Jenkins methodology was significantly better than the accuracy of
econometric model. Nelson (1972) compared regression and ARMA methods for
a longer time horizon. It concluded that the simple ARMA models are relatively
stronger with respect to post sample predictions than the complex econometric
models. If the mean square error is a fitting measure of loss an unweighted assess-
ment clearly indicated that a decision maker will be better off relying simply on
ARMA predictions in the post sample period in the forecasting phase. Leseps and
Morell (1977) in their study establish that the stock price follows a long-term trend
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with short-term fluctuation and forecast the exchange rate. Jawahar Farook and
Senthamarai Kannan (2014) used Stochastic Modeling to forecast Carbon Dioxide
Emissions for the upcoming months. Banerjee, D. (2014) applied ARIMA model
to forecast in Indian Stock Exchange the future stock indices. Paulo Rotela Ju-
nior et al. (2014) described ARIMA model to obtain short-term forecasts for the
next month in order to minimize prediction errors for the Bovespa Stock Index.
Renhao Jin et al. (2015) used ARIMA model to predict in Shanghai Composite
Stock Price Index and they are consider to closing stock price.

3. Objective of Study

To forecast the National Stock Exchange closing stock price of Nifty 50 using
ARIMA model in Time Series Analysis.

4. Methodology

4.1. Box-Jenkins (ARIMA). In time series analysis, an ARIMA model is a
generalization of an ARMA model. These models are fitted to time series data
either to better identify with the data or to predict future points in the series. They
are applied in many cases where data illustrate evidence of non-stationarity, where
as differencing step can be applied to reduce the non-stationarity. Non-seasonal
ARIMA models are generally denoted ARIMA (p, d, q) where parameters are non-
negative integers then p, d, q refer to the autoregressive, differencing, and moving
average terms for the non-seasonal component of the ARIMA model. Seasonal
ARIMA models are usually denoted ARIMA (p, d, q) (P, D, Q)m, where m refers
to the number of periods in each season, and P,D,Q refer to the autoregressive,
differencing, and moving average terms for the seasonal component of the ARIMA
model. ARIMA models form an important area of the Box – Jenkins approach
to time-series modeling. It is also known as Box-Jenkins method. A non-seasonal
stationary can be modeled as a combination of the past values and the errors which
can be denoted as ARIMA (p, d, q) are can be expressed as

yt = c + ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + et − θ1et−1 − θ2et−2 − ...− θqet−q

The Box-Jenkins (ARIMA) methodology for analyzing and modeling time series
is characterized by four steps:

• Identification
• Estimation
• Diagnostic checking
• Forecast

4.1.1. Identification. The identification stage, finding the time series data is sta-
tionary or not and compare the estimated Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) to find a match. We choose, as a tenta-
tive model, the ARMA process whose theoretical ACF and PACF best match the
estimated ACF and PACF.

73



4 ASHIK M. A. AND KANNAN S. K.

4.1.2. Estimation. Estimating the parameters for Box – Jenkins models is a
rather complicated non – linear estimation problem. The main approaches for
fitting Box - Jenkins models are non linear least squares and maximum likelihood
estimation. Parameter estimates are usually obtained by maximum likelihood,
which is asymptotically correct for time series. Estimators are always sufficient,
efficient, and consistent for Gaussian distribution and which are asymptotically
normal with efficient for several non-Gaussian distribution.

4.1.3. Diagnostic Checking. The diagnostic checking is necessary to test the ap-
propriateness of the selected model. Model selection can be made based on the
values of certain criteria like log likelihood, Akaike Information Criteria (AIC)/
Bayesian Information Criteria (BIC)/ Schwarz-Bayesian Information Criteria (SBC).

AIC =
{
n (1 + log 2π) + n log σ2 + 2m

}
BIC = −2 log(L) + k log (n)

SBC = log σ2 + (m log n) /n

If the model selection is done, it is necessary to verify the satisfactoriness of the
estimated model. This is done by studying the pattern among the residuals, if
there is any. The estimated residuals can be computed as
ê = Yt − Ŷt ; Where Ŷt is the estimated observation at time t.
The values of êt, which are either less than -3 or greater than 3, indicate that
the corresponding residuals are outliers. The values of ACF may be studied to
verify whether the series of residuals is white-noise. After tentative model has
been fitted to the data, it is important to perform diagnostic checks to test the
satisfactoriness of the model. It has been found that it is effective to measure
the overall adequacy of the chosen model by examining a quantity Q known as
Ljung-Box statistic whose approximate distribution is chi-square and computed as
follows:

Q = n (n+ 2)

h∑
p=1

(n− k)
−1
r2p

The Ljung-Box (Q) statistic is compared to critical values from chi-square distri-
bution. While the diagnostic checking is fulfilled effectively and the model is found
adequate, the fitted model can be used for forecasting purpose.

4.1.4. Forecasting. Forecasting is the prediction of values of a variable based on
identified past values of that variable or other associated variables. Forecasting
also may be based on expert judgments, which in turn are based on chronological
data and experience. In analysis part, the appropriate model is found satisfactory,
and the fitted model can be used for forecasting purpose.

5. Empirical Result

5.1. Descriptive Statistics. During the period of Nifty 50 in NSE, there are no
outliers observations (Fig 1). The minimum and maximum of stock closing price
is 7558.80 and 8996.25 respectively. The Nifty 50 stock closing prices are observed
at an average of 8281.52 among a standard deviation of 346.77.
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Figure 1. Whisker-Box diagram plot of Nifty 50 closing stock price

Table 1. Descriptive Statistics of Nifty 50 Closing Stock Price

Statistic Std.Error

CL Price N50

N 245
Mean 8281.52 22.155
95% Confidence
Interval for Mean

Lower Bound 8237.87
Upper Bound 8325.15

5% Trimmed Mean 8280.69
Median 8323
Variance 120255.471
Std.Deviation 346.77
Minimum 7558.80
Maximum 8996.25
Range 1437.45
Sum 2028971.35
Skewness -.034 .156
Kurtosis -.974 .310

Missing Value: Nil

5.2. Stationary Sequence. A timeplot diagram is firstly used all the NSE
Nifty50 data of 2015 based on closing price. As shown in Figure 2, a clear U-
shape trend can be found, which is corresponding the Indian economics. The
Nifty 50 changes from around 8400 points in the beginning to around 8000 points
in the end of year 2015. This fluctuation trend breaks the hypotheses of weaker
stationary. In many application cases, the weaker stationary is used instead of
strongly stationary.
A weaker form of stationarity commonly engaged in time series is known as second-
order stationarity, which only require that 1st moment and auto-covariance do not
be different among respect to time. So, for a continuous-time stochastic process
x(t), it has the following properties: the mean function E{x(t)} must be constant
and the covariance function depends only on the difference between t1 and t2only
desires to be indexed by one variable rather than two variables.
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Figure 2. Time plot of Nifty 50 closing stock price

Figure 3. Time plot and P-P plot of the first order differencing
of Nifty50 closing stock price

Following ARIMA model, a First order differencing is computed for the data after
that time plot and P-P plot of the differencing data is shown in Figure 3. The
differencing data shows a stationary pattern, and an Autocorrelation (Figure 4) is
also done on the differencing data, which displays a short-term autocorrelation and
confirms the stationary of the differencing data. To construct an precise inference
of the data, autocorrelation check for white noise is done on the differencing data.

5.3. ARIMA Modeling. The basic idea of ARIMA model is to view the data
sequence as formed by a Stochastic Process on time. Once the model has been
identified, the model can be used to estimate the future value based on the the past
and present value of the time series. Modern statistical methods and Econometric
models have been able to aid companies predict the future in certain process.
According to the identification rules on time series, the corresponding model can be
established. If a partial correlation function of a stationary sequence is truncated,
and auto-correlation function is tailed, it can be concluded the sequences for AR
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model; if partial correlation function of a stationary sequence is tailed, and the
auto-correlation function is truncated, it can be strong that the MA model can be
fitted for the sequence. If the partial correlation function of a stationary sequence
and the autocorrelation function are tailed, then the ARMA model is appropriate
for the sequence. Based on the results from an ARIMA model can be fitted to the
original Nifty 50 data of 2015, also the parameters in ARIMA (p,1,q) need to be
determined. From the Figure 4, the Autocorrelation and Partial Autocorrelation
are safe to the concluded.

Figure 4. ACF and PACF diagram of the first order
differencing of Nifty 50 closing stock price

5.4. Fitted ARIMA Model. Plotting of ACF and PACF of (Figure 4) show
that the order of p and q can almost be 1. We entertained Nine interim ARIMA
models and choose that model which has minimum Normalized BIC. The models
and corresponding Normalized BIC values are presented in Table 2. From the
Table 2, the most suitable model is ARIMA (0, 1, 1) due to having the lowest
Normalized BIC values.

Table 2. Normalized BIC value of Nifty 50 closing stock price

ARIMA (p,d,q) Normalized BIC

ARIMA (0,1,0)
ARIMA (1,1,0)

ARIMA (0,1,1)
ARIMA (1,1,1)
ARIMA (2,1,0)
ARIMA (2,1,1)
ARIMA (2,1,2)
ARIMA (1,1,2)
ARIMA (0,1,2)

9.453
9.341
8.979
9.001
9.244
9.026
9.054
9.028
9.019

The model verification is concerned with checking the residuals of the model to
observe if they contain any systematic pattern which still can be removed to get
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better on the chosen ARIMA. This is done through examining the autocorrelations
and partial autocorrelations of the residuals of various orders. For the various
correlations up to 24 lags are computed and the same along with their significance
which is tested by Box-Ljung (Q) test are provided in Table 3.

Table 3. ACF value of first order differencing of Nifty 50
closing stock price

Lag Autocorrelation Std.Error
Box-Ljung Statistic
Value DF Sig

1 .059 .064 .857 1 .355
2 -.032 .063 1.107 2 .575
3 .009 .063 1.126 3 .771
4 .035 .063 1.424 4 .840
5 -.084 .063 3.197 5 .670
6 -.073 .063 4.556 6 .602
7 .064 .063 5.604 7 .587
8 -.080 .063 7.232 8 .512
9 .012 .063 7.269 9 .609

10 .030 .062 7.504 10 .677
11 -.003 .062 7.506 11 .757
12 -.063 .062 8.522 12 .743
13 -.052 .062 9.230 13 .755
14 -.006 .062 9.241 14 .815
15 -.087 .062 11.223 15 .737
16 -.106 .062 14.161 16 .587
17 -.036 .061 14.501 17 .631
18 -.041 .061 14.952 18 .665
19 .066 .061 16.132 19 .648
20 .072 .061 17.528 20 .618
21 -.055 .061 18.331 21 .628
22 .078 .061 19.990 22 .584
23 .043 .061 20.500 23 .612
24 .074 .061 21.995 24 .580

Std.Error - Process assumed is independence (white noise)
Sig - Based on the asymptotic chi-square approximation

As the results indicate, none of these correlations is notably different from zero
at a reasonable level. This proves that the chosen ARIMA model is an appropriate
model. The ACF and PACF of the residuals (Figure 5) also indicate ‘good fit’ of
the model. Therefore the fitted ARIMA model for Nifty 50 closing stock price is

Ŷt = C + Yt−1 − θ1εt−1 + εt

Ŷt = −1.827 + Yt−1 + 0.063εt−1 + εt

The graphical comparison of the actual values and the predict values of Nifty50
is presented. These measures show that the forecasting inaccuracy is low and the
forecast graph of Nifty50 closing stock price is given in Figure 6.
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Figure 5. Residual ACF and PACF diagram of actual Nifty 50

Table 4. Model Parameters of Nifty 50 closing stock price

Estimate SE T Sig

CL Price N50 No transformation
Constant -1.827 5.783 -.316 .752
Difference 1
MA Lag 1 -.063 .064 -.982 .327

Table 5. Model Statistics of Nifty 50 closing stock price

Model
Model Fit Ljung-Box No.of

OutliersR-squared RMSE MAPE MAE Statistics DF Sig

CL Price N50 .940 82.998 .491 60.627 13.724 17 .687 0

Figure 6. Forecast graph of Nifty 50 closing stock price

The forecast value is around 7820 and with a relative small standard error, which is
also reflected in the 95% confidence limits. The predicted value is a little different
from actual value, which is adequate for financial practice. The fluctuation of
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Nifty 50 stock data is can be caused by various factors, such as India financial,
RBI policy, International events and policy’s. Finally (Figure 7), the comparison
of forecast and actual closing stock price of Nifty 50.

Table 6. Predicted value of Nifty 50 closing stock price

Obs Forecast LCL UCL |Std.Error|
246
247
248
249
250

7814.92
7816.09
7778.26
7740.44
7726.61

7780.49
7701.73
7641.95
7591.62
7547.23

8115.34
8190.45
8246.57
8293.25
8333.99

23.63
31.45
37.26
47.15
52.26

Figure 7. Actual and Forecast graph of Nifty 50 closing stock price

6. Conclusion

This paper does a study on 2015 NSE Nifty 50. ARIMA model offer an excellent
technique for forecasting the importance of any variable. It is strength deceit in
the verity that the method is fitting for any time series with any pattern of change.
In the process of model building, the original Nifty 50 data is found to be Non-
Stationary, but the first order differencing of original Nifty 50 data is stationary.
In this study, ARIMA (0, 1, 1) model is developed for analyzing and forecasting
Nifty 50 closing stock price among all of various tentative ARIMA models as it
has lowest BIC values. From the results, it can be observed that influence R-
Square value is (94%) high and Mean Absolute Percentage Error is very small for
the fitted model. Thus the prediction accuracy is more fitting of Nifty 50. It is
concluded that closing stock price of Nifty 50 taken in the present study shows
slow decreasing fluctuations trend for upcoming trading days.
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