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Abstract. A multi-item multi-objective fixed charged solid shipment model
with criterion e.g. shipment penalty, amounts, demands and carriages as
type-2 triangular fuzzy variables with condition on few components and car-
riages is proposed here. A nearest interval approximation model applying
generalized credibility measure for the constraints is introduced for this par-
ticular model with the critical value based reductions of corresponding type-2
fuzzy parameters. An example is provided to explain the model with hypo-
thetical data and is then worked out by applying generalized reduced gradient
(GRG) technique.

1. Introduction

The solid shipment (transportation) model (SSM) is an exclusive form of linear
programming model where we deal with condition of sources, stations and car-
riages. The classical shipment model is an exclusive form of solid shipment model
if only one type of carriage is taken under consideration. During the shipment
movement due to complex situation, a few important criterions in the SSM are
always treated as unclear variables to fit the realistic positions. There are cases to
form a shipment plan for the later months; the amount quantity at every origin,
the requirement at every station and the carriage quantity are frequently necessary
to be determined by experienced knowledge or probability statistics as a result of
no definite data. It is much better to explore this issue by applying fuzzy or sto-
chastic optimization models. It is difficult to predict the exact shipment cost for
a sure time period. Shipment model is associated with additional costs along with
shipping cost. These locked penalties might be due to road taxes, toll charges etc.
In this case it is called fixed charge shipment model. Fuzzy set theory is the one
of the popular approaches to deal with uncertainty. Type-2 fuzzy sets were intro-
duced by [13] as a development of type-1 fuzzy sets [12]. Type-2 fuzzy sets have
membership functions as type-1 fuzzy sets. The advantage of type-2 fuzzy sets is
that they are helpful in a few cases where it is uncertain to find the definite mem-
bership functions for fuzzy sets. Multi-item SSM is a model of shipping multiple
components from multiple sources to multiple destinations over a few carriages.
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While transporting a few components from source, a situation may arise when not
all brands of components can be shipped over all brands of carriages because of
quality of components (e.g. liquid, breakable etc.). Multi-item solid fixed charge
shipment model (MISFCSM) with condition on carriages is a model of shipping
goods to a few destinations over a particular carriage with additional fixed charge
for that particular route. Multi-item multi-objective solid shipment models are
models that are used to find optimal solutions of multiple objective functions of
shipping multiple components from multiple sources to multiple destinations over
a few carriage.
The main motivation of this paper is to study solid shipment model with type-2
fuzzy parameters. The solid shipment model with type-1 fuzzy parameters has
been discussed by many researchers [2, 3, 11].
The paper is structured as follows: section 2 presents a few basic preliminaries
related to the concept. We have discussed the nearest interval approximation of
continuous type-2 fuzzy variables in section 3. We have formulated a multi-item
multi-objective solid fixed charged shipment model with conditions on a few brands
and carriages in the sense that a few specific brands are restricted to be shipped
over a few particular carriages in section 4. The shipment criterion, e.g., unit
shipment penalty, fixed costs, amounts, demands, carriage capacities are taken as
type-2 triangular fuzzy variables. We have investigated the model by formulating
a nearest approximation model applying the CV based reductions in section 5.
The model is then solved numerically in section 6 applying fuzzy programming
technique and LINGO 16 solver.

2. Preliminaries

Definition 2.1. A type-1 fuzzy variable [9] is defined as a function from the
possibility space [1] to the set of real numbers, whereas a type-2 fuzzy variable
[7] is defined as a function from the fuzzy possibility space [9] to the set of real
numbers.

Definition 2.2. [13]. A type-2 fuzzy set B̃ defined on the universe of discourse
Y is described by a membership function µ̃B̃ : Y 7→ F ([0, 1]) and is expressed by

the following set notation : B̃ = {
(

y, µ̃B̃(y)
)

: y ∈ Y }.

Example 2.3. [6] A type-2 triangular fuzzy variable τ̃ ′ is expressed by (r′1, r
′
2, r

′
3;

θ′l, θ
′
r), where r′1, r

′
2, r

′
3 ∈ R and θ′l, θ

′
r are two criterion defining the degree of am-

biguity that τ̃ ′ takes a value x and the secondary possibility distribution function
µ̃τ̃ ′(x) of τ̃ ′ is denoted as
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Example 2.4. The secondary possibility distribution τ̃ ′ = (5, 6, 7; 0.5, 0.5) is
given by

µ̃τ̃ ′(x′) =



















((0.5x′ − 2.5), (x′ − 5), (1.5x′ − 7.5)), if x′ ∈ [5, 5.5];

((1.5x′ − 8), (x′ − 5), (0.5x′ − 2)), if x′ ∈ (5.5, 6];

((10− 1.5x′), (7 − x′), (4 − 0.5x′)), if x′ ∈ (6, 6.5];

((3.5− 0.5x′), (7 − x′), (10.5− 1.5x′)), if x′ ∈ (6.5, 7].

2.1. Critical Values for RFVs. The different forms of critical values(CV) [10]

of a regular fuzzy variable τ̃ ′ is defined below.
(i) the optimistic CV of τ̃ ′, denoted by CV ∗[τ̃ ′], is defined as

CV ∗[τ̃ ′] = sup
α′ ∈ [0,1]

[α′ ∧ Pos{τ̃ ′ ≥ α′}]

(ii) the pessimistic CV of τ̃ ′, denoted by CV∗[τ̃
′], is defined as

CV∗[τ̃
′] = sup

α′ ∈ [0,1]

[α′ ∧Nec{τ̃ ′ ≥ α′}]

(iii) the CV of τ̃ ′, denoted by CV [τ̃ ′], is defined as
CV [τ̃ ′] = sup

α′ ∈ [0,1]

[α′ ∧ Cr{τ̃ ′ ≥ α′}].

Theorem 2.5. [10] Suppose that τ̃ ′ = (s′1, s
′
2, s

′
3; η

′
l, η

′
r) be a type-2 triangular

fuzzy variable. Then we have:
(i) The reduction of τ̃ ′ to τ ′1 applying the optimistic CV reduction approach has
the consecutive possibility distribution
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(ii) The reduction of τ̃ ′ to τ ′2 applying the pessimistic CV reduction approach has
the consecutive possibility distribution
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(iii) The reduction of τ̃ ′ to τ ′3 applying the CV reduction approach has the con-
secutive possibility distribution
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3. Nearest interval approximation of continuous type-2 fuzzy variables

Kundu et al.[4] proposed the interval approximation of type-2 fuzzy variables
by applying the α cut of the optimistic, pessimistic and credibilistic approximation
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of type-2 triangular fuzzy variables given by theorem 3.1. Lastly, using interval
approximation method to these α cuts estimated crisp intervals are obtained which
are given below:
(i) applying α cut of the optimistic CV based reduction(optimistic in-
terval approximation):
The optimistic interval approximation of τ̃ is [CL, CR] where,
CL = CL1 + CL2 (3.1)
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.

(ii) applying α cut of the pessimistic CV based reduction(pessimistic
interval approximation):
The pessimistic interval approximation of τ̃ is [CL, CR] where,
CL = CL1 + CL2, (3.3)
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CR = CR1 + CR2, (3.4)
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(iii) applying α cut of the CV reduction( credibilistic interval approxi-
mation):The credibilistic interval approximation of τ̃ is [CL, CR] where,
CL = CL1 + CL2, (3.5)

CL1 =
(1+η′
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2η′
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[
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.

CR = CR1 + CR2, (3.6)
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′
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l

ln(1 + η′l)−
s′
3
−s′
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.

4. Model: Multi-item multi-objective solid fixed charged shipment
model with condition on carriages

Suppose that K(k = 1, 2, ...,K) different modes of carriages are necessary to
transport l components from m sources Oi(i = 1, 2, ...,m) to n stations Dj(j =
1, 2, ..., n) and also(t = 1, 2, ...., R) objectives are to be minimized. In addition to
that there are a few conditions on a few particular components and carriages so
that a few components can not be shipped over a few carriages. Suppose that Ik
as the set of components which can be shipped over carriages k(k = 1, 2, ...,K).
We use the representation p′(p′ = 1, 2, ..., l) to stand for the components.
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The solid fixed charge shipment model (SFCSM) is linked with two types of costs,
unit shipment cost for shipping unit product from source i to station j and a
fixed cost for the direction (i, j). Here we develop a multi-item multi-objective
solid fixed charged shipment model(MIMOSFCSM) with m sources, n stations, k
carriages, unit shipment costs and fixed costs criterion as T2 FVs as follows:

MinZt =

l
∑

p′=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
′

ijk(c
tp′

ijkx
p′

ijk) + etp
′

ijky
p′

ijk, t = 1, 2, 3, ......R

subject to

n
∑

j=1

K
∑

k=1

dp
′

ijkx
p′

ijk ≤ ap
′

i , i = 1, 2, ...,m; p′ = 1, 2, ..., l,

m
∑

i=1

K
∑

k=1

dp
′

ijkx
p′

ijk ≥ bp
′

j , j = 1, 2, ..., n; p′ = 1, 2, ..., l,

l
∑

p′=1

m
∑

i=1

n
∑

j=1

dp
′

ijkx
p′

ijk ≤ fk, k = 1, 2, ...,K, (4.1)

xp′

ijk ≥ 0, ∀ i, j, k, p′,

where dp
′

ijk are defined as

dp
′

ijk =

{

1, ifp′ ∈ IK ∀ i, j, k, p′;

0, otherwise,
and yp

′

ijk =

{

1, ifxp′

ijk > 0;

0, otherwise.

Here, xp′

ijkis the decision variable representing the amount of p′-th article shipped

from source i to station j, etp
′

ijk is the type-2 fuzzy fixed cost linked with direction

(i, j) for the objective Zt. The unit shipment cost ctp
′

ijk(from i-th origin to j-th

station by k-th carriage for p′-th article) for the objective Zt, total supply of p′-th

article ap
′

i at i-th source, total requirement of p′-th article bp
′

j at j-th station and
total quantity fk of k-th carriage are all type-2 fuzzy variables.

5. Solution Procedure

5.1. applying nearest interval approximation. We consider ctp
′

ijk, e
tp′

ijk, a
p′

i ,

bp
′

j and fk are type-2 triangular fuzzy variables denoted by ctp
′

ijk=(ctp
′1

ijk , ctp
′2

ijk , ctp
′3

ijk ;

θp
′

l,ijk, θ
p′

r,ijk), e
tp′

ijk=(etp
′1

ijk , etp
′2

ijk , etp
′3

ijk ; θ′p
′

l,ijk, θ
′p′

r,ijk),a
p′

i = (ap
′1

i , ap
′2

i , ap
′3

i ; θp
′

l,i, θ
p′

r,i),

bp
′

j =(bp
′1

j , bp
′2

j , bp
′3

j ; θp
′

l,j , θ
p′

r,j), and fk=(f1
k , f

2
k , f

3
k ; θl,k, θr,k). We find the credibilis-

tic interval approximation of ctp
′

ijk, e
tp′

ijk, a
p′

i , bp
′

j , fk from(3.5)-(3.6) and suppose

these are [ctp
′

ijkL, c
tp′

ijkR], [e
tp′

ijkL, e
tp′

ijkR], [a
p′

iL, a
p′

iR], [b
p′

jL, b
p′

jR], and [fkL, fkR]. Then with

these credibilistic interval approximations the problem (4.1) becomes
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MinZt =
l
∑
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m
∑
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n
∑
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K
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′
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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{

1, if p′ ∈ IK ∀ i, j, k, p′;

0, otherwise,
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′
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{

1, if xp′

ijk > 0;

0, otherwise.

5.1.1. Deterministic Form. The left hand side of the origin, station and car-

riage quantity constraints of the problem (5.1) are denoted by Sp′

i , Dp′

j and Ek

respectively. Here the right hand sides of these constraints are interval numbers
and left hand sides are crisp, then the possibility degree [14] of satisfaction of these
constraints are represented as
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The constraints are allowed to be satisfied with a few predetermined possibility

degree level αp′

i , βp′

j and γk(0 < αp′

i , βp′

j , γk ≤ 1) respectively, i.e. P
S

p′

i
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D
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j
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′
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,b
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ing inequalities of the constraints are found as follows:

Sp′

i ≤ ap
′

iR − αp′

i [ap
′

iR − ap
′

iL], (5.2)

Dp′

j ≥ bp
′

jL + βp′

j [bp
′

jR − bp
′

jL], (5.3)

Ek ≤ ekR − γk[ekR − ekL]. (5.4)

5.2. Fuzzy programming technique. Zimmermann [15] established that fuzzy
linear programming technique regularly provides useful solutions and an optimal
compromise solution for multiple objective problems. The following are the steps
to solve the several objective models applying fuzzy programming technique:
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Step 1: The several objective model is solved as a one objective model applying,

every time, single objective Z̄t to find the optimal solution Xt∗ = xp′

ijk of R distinct
single objective model.
Step 2: The values of R objective functions at all these R optimal solutions Xt∗

are calculated and the upper and lower bound for every objective is fixed by
Ut = Max{Z̄t(X

1∗), Z̄t(X
2∗), ......., Z̄t(X

t∗)} and Lt = Z̄t(X
t∗).

Step 3: The linear membership function µt(Z̄t) corresponding to tth objective is
calculated as

µt(Z̄t) =











1, if Z̄t ≤ Lt;
Ut−Z̄t

Ut−Lt
, if Lt < Z̄t < Ut;

0, if Z̄t ≥ Ut, ∀t.
Step 4: The fuzzy linear programming model is expressed applying max-min op-
erator as
Max δ
subject to

δ ≤ µt(Z̄t) =
Ut − Z̄t

Ut − Lt

, ∀t (5.5)

and the constraints of (5.1)
δ ≥ 0 and δ = mint{µt(Z̄t)}.
Step 5: The diminished model is worked out and the optimum solutions are ob-
tained.
We obtain minimum objective function value (say Zt) and maximum possible

objective function value (say Z̄t) for [c
tp′

ijkL, c
tp′

ijkR], [e
tp′

ijkL, e
tp′

ijkR] by solving the suc-
ceeding two models:

Zt = min
c
tp′

ijkL
≤c

tp′

ijk
≤c

tp′

ijkR
,e

tp′

ijkL
≤e

tp′

ijk
≤e

tp′

ijkR

[

Min

l
∑

p′=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
′

ijk(c
tp′

ijkx
p′

ijk) + etp
′

ijky
p′

ijk

]

(5.6)

Z̄t = max
c
tp′

ijkL
≤c

tp′

ijk
≤c

tp′

ijkR
,e

tp′

ijkL
≤e

tp′

ijk
≤e

tp′

ijkR

[

Min

l
∑

p′=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
′

ijk(c
tp′

ijkx
p′

ijk) + etp
′

ijky
p′

ijk

]

(5.7)

subject to the above constraints (5.2)− (5.4) for both cases.

6. Numerical Model

The proposed model is illustrated numerically in this section with hypotheti-
cal data. The proposed approachability is solved numerically by taking one ex-
ample of the model. Consider the model with objective functions (t = 1, 2),
sources (i = 1, 2, 3), stations (j = 1, 2, 3), carriage (k = 1, 2, 3, 4) and components
(p′ = 1, 2, 3). Suppose that I1 = {1, 2}, I2 = {1, 2, 3}, I3 = {3}, I4 = {1, 2, 3}.
The shipment penalty and fixed costs for this model are given in Tables 1 − 12.
The supplies, demands and carriage capacities are the following data: a11 =
[22.4651, 25.5349], a21 = [26.9808, 29.5287], a31 = [24.982, 28.0359], a12 = [26.9861,
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30.5347], a22 = [21.9722, 26.0278], a32 = [33.4874, 36.0084], a13 = [27.4935, 29.013],
a23 = [22.9768, 25.5349], a33 = [23.9768, 27.5581], b11 = [9.9913, 13.0043],
b21 = [14.9947, 16.5026], b31 = [15.9894, 19.0053], b12 = [11.4847, 14.0102],
b22 = [12.0192, 13.9808], b32 = [11.9739, 15.013], b13 = [10.4836, 13.5164],
b23 = [9.4823, 11.5059], b33 = [12.4858, 16.0057], e1 = [34.9898, 37.0102],
e2 = [47.473, 50.018], e3 = [28.987, 32.0261], e4 = [41.4847, 44.5153].
The fixed credibility levels for the constraints are taken as αp

i = 0.7, βp
j = 0.7, γk =

0.7. We found minimum and maximum value of the objective functions(t = 1, 2)
by solving (5.6) and (5.7) and resulting solutions are found as follows:
Z1 = 329.5304; x1

131 = 12.6066, x1
211 = 12.1004, x1

321 = 10.8889, x1
322 = 2.3637,

x2
122 = 11.695, x2

114 = 16.0502, x2
224 = 1.6973, x2

234 = 10.8988, x3
132 = 12.9245,

x3
312 = 5.1268, x3

322 = 14.1013, x3
332 = 2.0252, x3

114 = 12.9737 and
Z̄1 = 518.6123; x1

111 = 10.7794, x1
131 = 12.6066, x1

211 = 1.321, x1
321 = 10.8889,

x1
322 = 2.3637, x2

122 = 9.6698, x2
114 = 16.0502, x2

134 = 2.0252, x2
224 = 3.7225, x2

234 =
8.8736, x3

132 = 14.9497, x3
312 = 7.152, x3

322 = 14.1013, x3
114 = 10.9485.

Z2 = 421.015; x1
131 = 12.6066, x1

211 = 12.1004, x1
322 = 13.2526, x2

211 = 1.6973,
x2
122 = 13.3923, x2

114 = 14.3529, x2
234 = 10.8988, x3

312 = 0.9583, x3
322 = 5.6836,

x3
332 = 14.9497, x3

123 = 8.4177, x3
114 = 17.1422 and

Z̄2 = 658.6885; x1
111 = 10.7794, x1

131 = 12.6066, x1
211 = 1.321, x1

322 = 13.2526,
x2
122 = 13.3923, x2

114 = 14.3529, x2
214 = 1.6973, x2

234 = 10.8988, x3
332 = 14.9497,

x3
213 = 16.7569, x3

114 = 1.3436, x3
124 = 14.1013.

Here, L11 = 329.5304, U11 = 383.6979, L12 = 518.6123, U12 = 559.8821, L21 =
421.015, U21 = 454.8664, L22 = 658.6885, and U22 = 697.5698 are the lower
(Lt1, Lt2) and upper bounds (Ut1, Ut2) corresponding to the first and second ob-
jective functions respectively. The compromise optimal solution of (5.5) applying
LINGO 16 solver, based upon GRG technique are as follows: x1

111 = 10.7794,
x1
131 = 12.6066, x1

211 = 1.321, x1
321 = 2.277984, x1

322 = 10.97462, x2
122 = 13.3923,

x2
114 = 14.3529, x2

214 = 1.6973, x2
234 = 10.8988, x3

132 = 10.4533, x3
322 = 8.919884,

x3
332 = 4.4964, x3

213 = 7.837016, x3
114 = 10.26348, x3

124 = 5.181416, δ = 0.3489903
and the minimum first and second shipment cost(first and second objective value)
is Z∗

1 = 360.8425, Z̄∗
1 = 545.4793, Z∗

2 = 442.9211, Z̄∗
2 = 684.0006.

i.e. [360.8425, 545.4793] and [442.9211, 684.0006].

7. Conclusion

In this paper, we have projected and worked out a multi-item multi-objective
solid fixed charge shipment model with type-2 triangular fuzzy variables. A nearest
interval approximation approach is used to solve the model applying LINGO 16
solver.
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Appendix A. Data

Table 1. c11ijk

i/j 1 2 3 k
1 [1.4975, 2.5025] [2.5028, 3.4972] [1.4974, 2.5026]
2 [1.4926, 2.5074] [3.4977, 4.5023] [2.9795, 4.5102] 1
3 [2.0159, 3.4921] [2.5, 3.5] [3.5025, 4.4975]
1 [2.4847, 4.5051] [2.9947, 4.5026] [4.9908, 7.5023]
2 [6.4866, 8.5045] [4.5, 6] [5.5025, 6.4975] 2
3 [1.5, 2.5] [1.5079, 2.4921] [2.5048, 3.4952]
1 [3.9939, 5.5031] [4.4931, 5.5069] [6.5059, 7.4941]
2 [4.5074, 5.4926] [6.5, 7.5] [4.0205, 5.4898] 4
3 [6.5, 7.5] [6, 7.5] [8.4978, 9.5022]
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Table 2. c12ijk

i/j 1 2 3 k
1 [5.5, 7] [4.4975, 7.0099] [5.9898, 8.0102]
2 [4, 6] [7.5, 8.5] [7.5042, 8.9916] 1
3 [7.0041, 8.9959] [7.9808, 10.0192] [9.4884, 11.0232]
1 [5.4821, 7.0359] [1.5025, 2.9951] [5.4974, 6.5026]
2 [5.9852, 7.5074] [3.9947, 6.0053] [4.4936, 5.5064] 2
3 [9.498, 10.502] [7.4955, 10.0179] [7.502, 10.4898]
1 [1.5092, 2.9816] [4.5, 5.5] [2.5051, 3.4949]
2 [3.5028, 4.4972] [3.0205, 4.9795] [1.9898, 4.0102] 4
3 [8.0041, 9.498] [3.9954, 6.0046] [5.9959, 8.0041]

Table 3. c13ijk

i/j 1 2 3 k
1 [4.4904, 5.5096] [4.0102, 5.4949] [2.5025, 3.4975]
2 [6.4974, 7.5026] [5.9916, 7.5042] [6.4978, 8.0043] 2
3 [2.0148, 3.4926] [2.5048, 3.4952] [3.4978, 4.5022]
1 [10.5048, 11.4952] [5.5074, 6.9852] [6.0046, 7.9954]
2 [4.5145, 5.4855] [10.5143, 11.9714] [9.4974, 10.5026] 3
3 [10.4921, 11.5079] [11.4941, 12.5059] [12.4812, 13.5188]
1 [2.5153, 4.4949] [4.0049, 5.4975] [4.9951, 6.5025]
2 [10.9898, 12.5051] [10.9796, 13.5051] [12.5069, 14.4977] 4
3 [6.5672, 8.4776] [8.0489, 9.4755] [7.4898, 10.502]

Table 4. e11ijk

i/j 1 2 3 k
1 [4.5102, 5.4898] [3.9943, 5.5028] [5.9947, 7.5026]
2 [3.0148, 4.4926] [2.0232, 3.9768] [5.0102, 7.9796] 1
3 [3.9898, 5.5051] [5.009, 6.4955] [6.5065, 7.4935]
1 [3.9795, 6.0205] [4.0296, 6.4926] [4.9659, 7.5085]
2 [6.9947, 8.5026] [7.9947, 9.5026] [8.991, 10.5045] 2
3 [9.9852, 11.5074] [11.4975, 12.5025] [12.5116, 13.4884]
1 [7.5074, 8.9852] [8.0057, 9.9943] [8.9947, 11.0053]
2 [9.9752, 12.0248] [10.9905, 13.0095] [12.0046, 13.9954] 4
3 [4.0109, 5.9891] [5.0118, 6.9882] [6.0128, 7.9872]
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Table 5. e12ijk

i/j 1 2 3 k
1 [4.0232, 5.4884] [5.0232, 6.4884] [6.018, 7.491]
2 [7.0109, 8.4945] [8.5051, 9.4949] [9.5051, 10.4949] 1
3 [9.9091, 11.5045] [10.982, 12.509] [11.9905, 13.5048]
1 [6.0148, 7.4926] [7.018, 8.491] [8.013, 9.4935]
2 [9.4955, 10.5045] [10.4884, 11.5116] [11.4952, 2.5048] 2
3 [12.5, 13.5] [13, 14.5] [13.0106, 15.4974]
1 [4.5051, 5.4949] [6.0053, 7.4974] [6.9898, 8.5051]
2 [2.9905, 4.5048] [3.991, 5.5045] [4.4874, 6.5042] 4
3 [5.5222, 7.4926] [7, 8.5] [7.4874, 9.5042]

Table 6. e13ijk

i/j 1 2 3 k
1 [1.5026, 2.4974] [2.5074, 3.4926] [3.498, 4.502]
2 [4.5074, 5.4926] [5.4977, 6.5023] [5.4935, 7.5022] 2
3 [6.4921, 8.5026] [7.9951, 9.5025] [8.9954, 10.5023]
1 [4, 5.5] [4.4921, 6.5026] [5.4847, 7.5051]
2 [8.9905, 10.5048] [9.991, 11.5045] [10.4921, 12.5026] 3
3 [14.0046, 15.4977] [13.4885, 16.5023] [15.9959, 17.502]
1 [2.9894, 5.5026] [4.5208, 6.4931] [5.5349, 7.4884]
2 [6.5, 8.5] [8.0232, 9.4884] [9.0192, 10.4904] 4
3 [9.9954, 11.5023] [10.4931, 12.5023] [11.9954, 13.5023]

Table 7. c21ijk

i/j 1 2 3 k
1 [1.4975, 2.5025] [2.5028, 3.4972] [1.4974, 3.0053]
2 [1.4926, 2.5074] [3.4977, 4.5023] [2.9795, 4.5102] 1
3 [2.5079, 3.4921] [2, 3.5] [3.5025, 4.4975]
1 [3.4949, 4.5051] [2.9947, 4.5026] [4.4977, 5.5023]
2 [4.4955, 8.5313] [4.5, 7.5] [6.5025, 8.9901] 2
3 [1.5, 3] [1.5079, 2.9841] [2.5048, 3.9905]
1 [9.9939, 12.0061] [9.9861, 11.5069] [12.0118, 13.4941]
2 [10.0148, 11.9852] [12, 13.5] [12.0205, 13.9795] 4
3 [12, 13.5] [12, 13.5] [12.9913, 15.5022]
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Table 8. c22ijk

i/j 1 2 3 k
1 [6, 8] [4.9951, 8.0099] [6.4847, 9.0102]
2 [4.5, 7] [8, 9.5] [8.0084, 9.9916] 1
3 [7.5061, 9.9959] [8.4713, 11.0192] [9.9768, 12.0232]
1 [5.9641, 8.0359] [2.0049, 3.9951] [5.9947, 7.5026]
2 [6.4778, 8.5074] [4.4921, 7.0053] [4.9872, 6.5064] 2
3 [9.9959, 11.5020] [7.991, 11.0179] [8.0041, 11.4898]
1 [2.0184, 3.9816] [5, 6.5] [3.0102, 4.4949]
2 [4.0057, 5.4972] [3.5307, 5.9795] [2.4847, 5.0102] 4
3 [8.5061, 10.498] [4.4931, 9.0139] [6.4939, 9.0041]

Table 9. c23ijk

i/j 1 2 3 k
1 [8.4713, 11.0192] [8.0102, 9.494] [6.0049, 7.4975]
2 [8.9947, 11.5079] [10.9916, 13.0084] [6.9957, 9.0043] 2
3 [5.0148, 6.9852] [6.0095, 7.9905] [4.9957, 7.0043]
1 [11.0095, 12.4952] [6.0148, 7.9852] [6.5069, 8.9954]
2 [5.0289, 6.4855] [11.0286, 12.9714] [9.9947, 11.5026] 3
3 [10.9841, 12.5079] [11.9882, 13.5059] [12.9624, 14.5188]
1 [3.0204, 5.4949] [4.5074, 6.4975] [5.4926, 7.5025]
2 [11.4847, 13.5051] [11.4745, 14.5051] [13.0092, 15.4977] 4
3 [7.0896, 9.4776] [8.5734, 10.4755] [7.9877, 11.502]

Table 10. e21ijk

i/j 1 2 3 k
1 [2.0205, 3.4898] [2.4972, 3.5028] [4.4974, 5.5026]
2 [1.5074, 2.4926] [1.5116, 2.4884] [3.5051, 5.9796] 1
3 [2.4949, 3.5051] [3.5045, 4.4955] [4.5065, 5.4935]
1 [2.4898, 4.0205] [3.0148, 4.4926] [3.9829, 5.5085]
2 [5.4974, 6.5026] [6.4974, 7.5026] [7.4955, 8.5045] 2
3 [8.4926, 9.5074] [9.4975, 10.5025] [10.5116, 11.4884]
1 [5.5074, 6.9852] [6.5028, 7.9943] [7.4974, 9.0053]
2 [8.4876, 10.0248] [9.4952, 11.0095] [10.5023, 11.9954] 4
3 [2.5055, 3.9891] [3.5059, 4.9882] [4.5064, 5.9872]
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Table 11. e22ijk

i/j 1 2 3 k
1 [2.5116, 3.4884] [3.5116, 4.4884] [4.509, 5.491]
2 [5.5055, 6.4945] [6.5051, 7.4949] [7.0102, 8.4949] 1
3 [8.4955, 9.5045] [9.491, 10.509] [10.4952, 11.5048]
1 [4.5074, 5.4926] [5.509, 6.491] [6.5065, 7.4935]
2 [7.4955, 8.5045] [7.9768, 9.5116] [9.4952, 10.5048] 2
3 [10.5, 11.5] [11.5, 12.5] [12.0053, 13.4974]
1 [2.5051, 3.4949] [4.5026, 5.4974] [5.4949, 6.5051]
2 [1.4952, 2.5048] [2.4955, 3.5045] [3.4958, 4.5042] 4
3 [4.5074, 5.4926] [5, 6.5] [6.4958, 7.5042]

Table 12. e23ijk

i/j 1 2 3 k
1 [1.5026, 2.4974] [1.5074, 2.4926] [1.498, 2.502]
2 [2.5074, 3.4926] [3.4977, 4.5023] [4.4978, 5.5022] 2
3 [5.4974, 6.5026] [6.4975, 7.5025] [7.4977, 8.5023]
1 [2.5, 3.5] [3.4974, 4.5026] [4.4949, 5.5051]
2 [7.4952, 8.5048] [8.4955, 9.5045] [9.4974, 10.5026] 3
3 [12.5023, 13.4977] [12.4931, 14.5023] [14.498, 15.502]
1 [1.9947, 3.5026] [3.5069, 4.4931] [4.5116, 5.4884]
2 [5.5, 6.5] [6.5116, 7.4884] [7.5096, 8.4904] 4
3 [8.4977, 9.5023] [9.4977, 10.5023] [10.4977, 11.5023]
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