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Abstract. In this paper some inclusions for generators of Feller semigroups
and evolution families are considered. Existence of solutions of these inclu-

sions is proved with the use of stochastic flows having the same generators as
the semigroups and evolution families.

1. Introduction and Preliminaries

The second order tangent vector in Rn or on a manifold is a second order
differential operator without constant term whose matrix of coefficients at the
second order derivatives is symmetric and positive semi-definite.

Examples of the second order tangent vector is a generator of the Feller semi-
group or of the Feller evolution family and a generator of the stochastic flow (these
notions are recalled below, see details, say, in [1, 2, 3, 4]). It is known that under
some natural conditions, say, of smoothness and boundedness type, from such a
generator one can recover the corresponding semigroup, evolution family and flow.
This relation can be considered as an equation with second order tangent vectors.
Here we deal with the case where the set-valued field of genmerators is given and
so the equation is turned into the inclusion. For investigation of these inclusions
we apply some methods from [5, 6].

The set of symmetric positive-definite n×nmatrices we denote by S+(n) and its
closure, the set of positive semi-definite matrices, by S̄+(n). Below, for simplicity,
instead of using the words “second order tangent vector” we call the set of single
valued differential operator semi-elliptic if its second order part takes values in the
space S̄+(n) (i.e. the matrices may degenerate) and elliptic if they lie in S+(n)
(positive definite symmetric square matrices).

Let us recall some notions from the Theory of Set-Valued Maps (see e.g. [8]).

Definition 1.1. A set-valued map F from the metric space X into the metric
space Y is called upper semicontinuous at x ∈ X if for each ε > 0 there exists
δ > 0 such that for every x′ from δ-neighbourhood of x the image F (x′) belongs
to ε-neighbourhood of F (x). It is called upper semi-continuous if it is upper semi-
continuous at each x.

Definition 1.2. A set-valued map F from the metric space X into the metric
space Y is called lower semicontinuous at x ∈ X if for each ε > 0 there exists
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δ > 0 such that for every x′ from δ-neighbourhood of x the image F (x) belongs
to ε-neighbourhood of F (x′). It is called lower semi-continuous if it is lower semi-
continuous at each x.

Definition 1.3. Let X and Y be normed spaces. Set-valued map F from X to Y
is called Lipschitz continuous at x ∈ X if there exist k > 0 and neighborhood U
of x such that

∀x1, x2 ∈ U, F (x1) ⊂ F (x2) + k∥x1 − x2∥BY ,

where BY is the unit ball in Y . It is called Lipschitz continuous if it is Lipschitz
continuous at each point x ∈ X and the constant k is independent of x.

We denote the norm of a set-valued map in a standard way

∥F (x)∥ = sup
y∈F (x)

∥y∥.

Consider the one-point compactification Rn ∪ {∞} of Rn.
By definition, a function f on Rn belongs to C0(Rn) if it is continuous on

Rn ∪ {∞}, takes zero value at {∞} and if for every ε > 0 there exists a compact
subset Kε of Rn such that ∥f(x)∥Rn < ε for each x from Kε.

2. Autonomous case and Feller semigroups

Definition 2.1. A family {U(t) : t ≥ 0} of operators defined on L∞(Rn) is a
Feller semigroup on C0(Rn) if the following properties holds.

(1) U(t)C0(Rn) ⊂ C0(Rn), ∀t ≥ 0.
(2) semigroup property: U(t+ τ) = U(t)U(τ), ∀t, τ ≥ 0, U(0) = I.
(3) ∥U(t)f∥∞ ≤ ∥f∥∞.
(4) positivity: f ≥ 0 implies S(t)f ≥ 0.
(5) lim

t↓0
[U(t)f ](x) = f(x).

Definition 2.2. The infinitesimal generator G of the semigroup U(t) is the oper-
ator G such that

Gf(x) = lim
t↓0

U(t)f(x)− f(x)

t
.

Let (Ω,F ,P) be some probability space. Consider a stochastic differential equa-
tion of the Ito type

dξs,x(t) = a(ξs,x(t))dt+A(ξs,x(t))dw(t) (2.1)

for some Wiener process w(t) ∈ Rn and ξs,x(s) = x. The solution of (2.1) defines
the Feller semigroup U(t) by its action on f ∈ C2(Rn):

[U(t)f ](x) = Ex[f(ξ(t))]. (2.2)

Consider Euclidean space Rn and let L be a second order semi-elliptic au-
tonomous differential operator without constant term on that space. Consider
differential equation

∂u

∂t
− Lu = 0, (2.3)
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with the condition u(0) = f(x), t ∈ [0, T ]. The solution of it can be defined
thought the semigroup U(t) as follows

u(t, x) = U(t)f(x). (2.4)

Then the generator of this family is L.
Note that L coincides with the generator of the equation (2.1), i.e. it is an

operator of the form:

L(x) = ai(x)
∂

∂xi
+

1

2
σij(x)

∂2

∂xi∂xj
,

where σ(x) = A(x)A∗(x).
On the other hand, each Feller semigroup with generator L defines a strong

Markov process such that (2.2) holds and solution of equation (2.3) for the operator
L that has form (2.4).

We look for the solution of the following problem. Take the set-valued second
order semi-elliptic differential operator L(x) and find a semigroup whose generator
satisfies the inclusion

L(x) ∈ L(x). (2.5)

We use the following notation:

∥L(x)∥ = sup
y∈L(x)

{∥y(x)∥}, ∥y(x)∥ = sup
f∈C2

{∥y(x)f∥
∥f∥C2

}
,

∥y(x)f∥ = ∥y1(x)f∥+ ∥y2(x)f∥, where y(x) = y1(x)
∂

∂qi
+ y2(x)

∂2

∂qi∂qj
.

Theorem 2.3. Let L(x) be an upper semicontinuous set-valued operator with
closed convex values such that for each x ∈ Rn the following inequality holds

∥L(x)∥ ≤ K(1 + ∥x∥)2. (2.6)

Then there exists a Feller semigroup U(t) with generator L(x) such that for all
x ∈ Rn inclusion (2.5) is satisfied.

Proof. Consider a sequence of positive numbers εi → 0. By [5, Theorem 2] and [6,
Theorem 4] for every number εi there exists a single-valued continuous operator
Li(t, x) whose graph belongs to the εi-neighborhood of graph of L(t, x) in [0, T ]×
Rn such that the sequence Li(t, x) point-wise converges to a Borel measurable
selector L(t, x) of L(t, x) as i goes to ∞.

The sequence {Li}∞i=1 gives us sequences {ai}∞i=1 and {σi}∞i=1 where the latter is
positive semi-definite. Introduce σ̃i = σi+ εiI so that σ̃i is positive definite. Since
each ai and σ̃i are continuous, they can be approximated by smooth ones. Without
loss of generality we preserve the notations for these smooth approximations. Thus
by the construction we get that Li(x) is a 2εi-approximation of L(x) and the
sequence Li(x) point-wise converges to L(x).

Consider Ω = C0([0, T ],Rn) equipped with the σ-algebra F generated by cylin-
der sets. Denote by Pt the σ-subalgebra of F generated by cylinder sets with bases
over [0, t] ⊂ [0, T ].
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For each i we get decomposition σ̃i(x) = Ai(x)A
∗
i (x) and the stochastic differ-

ential equation of the form

dξ(t) = ai(t, ξ(t))dt+Ai(t, ξ(t))dw(t)

with the initial condition ξi(0)|x = x. Since the coefficients of this equation are
smooth and condition (2.6) is fulfilled, it has unique strong solution (see for ex-
ample, [7]). The solution defines measure µi on (Ω,F). The whole set of these
measures (that we get for each i) is weakly compact. Thus we can choose subse-
quence {µq}∞q=1 that weakly converges to some measure µ.

The coordinate process on the probability space (Ω,F , µ), say ξ(t), has the
infinitesimal generator L(x).

Then by [1, Theorem 2] it defines a Feller semigroup U(t) such that

U(t)f(x) = Ex[f(ξ(t))].

Also by this Theorem semigroup U(t) has the generator L(x) which by the con-
struction lies in L(x). �

3. Non-autonomous case and Feller evolution families

In this section we study the solvability of inclusions given in terms of generators
of Feller evolution families. We consider the cases where the set-valued field of non-
autonomous generators has a selection generating unique Markov process. A more
general case will be considered in future works.

Recall that the family of operators U(s, t) (take t ≥ s) on C0(Rn) is called the
Feller evolution family if the following properties hold:

(1) the evolution property U(s, τ)U(τ, t) = U(s, t) (s ≤ τ ≤ t)and U(s, s) = I;
(2) operators U(s, t) acts in C0(Rn): U(s, t)(C0(Rn)) ⊂ C0(Rn);
(3) operators U(s, t) are strongly continuous jointly in both parameters;
(4) for any f ∈ C0(Rn), 0 ≤ f ≤ 1 and t ≥ s ≥ 0 the inequality 0 ≤ U(s, t)f ≤

1 holds.

The infinitesimal generator of such a family is an operator G(s, x) such that its
action on every function from C0(Rn) is given by the formula

G(s, x)f(x) = lim
t↓s

U(t, s)f(x)− f(x)

t− s
.

For more details see e.g. [1].
The same second order tangent vectors may also be generators of stochastic

flows. Take mappings a(t, x) and A(t, x) from R× Rn to Rn and the set of linear
operators on Rn respectively. Consider in Rn the stochastic dynamical system
governed by the following equation of Itô type{

dξs,x(t) = a(t, ξs,x(t))dt+A(t, ξs,x(t))dw(t),
ξs,x(s) = x.

(3.1)

given on a certain probability space (Ω,F ,P), where w(t) is a Wiener process
on that space with values in Rn; 0 ≤ s ≤ t ≤ T . Recall that the infinitesimal
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generator of this stochastic evolution family of processes is an operator G(s, x)
which acts on the functions f ∈ C(Rn,R) in the following way

G(s, x)f(x) = lim
t↓s

E[f(ξs,x(t))]− f(x)

t− s
,

where E is the expectation. Then for f ∈ C2(Rn,R) it can be written in the form

G(s, x) = ai(s, x)
∂

∂qi
+

1

2
(AA∗)ij(s, x)

∂2

∂qi∂qj
,

where qi, i = 1, 2, . . . , n are coordinates in Rn.
Denote by µs,x the measures on the space of sample paths corresponding to the

solutions ξs,x(t) of (3.1).
Consider a set-valued semi-elliptic differential operator G(s, x) on R × Rn. It

can be written in the form

G(s, x) = ai(s, x)
∂

∂qi
+αij(s, x)

∂2

∂qi∂qj
,

where a(s, x) and α(s, x) are set-valued mappings from R×Rn to Rn and to S̄+(n),
respectively.

In Rn it is convenient to introduce the norm of the semi-elliptic differential
operator G(s, x) as the sum of norms of its components, i.e., the norm of the
vector of first order part plus the norm of the matrix of second order part.

Denote by I the closed interval [0, T ] in R.

Theorem 3.1. Suppose that the measurable set-valued semi-elliptic differential
operator G(s, x) has the single valued second order term α(s, x) that is C2-smooth
in x and satisfies the inequality

∥a(s, x)∥2 + ∥trα(s, x)∥ < K(s)(1 + ∥x∥2), (3.2)

for some function K(s) on I. Then there exists a Feller evolution family with
generator G(s, x) such that the inclusion

G(s, x) ∈ G(s, x) (3.3)

holds for all (s, x) from I × Rn.

Proof. Recall that there exists a measurable selection G(s, x) of the set-valued
map G(s, x) (see e.g. [8]). Since G(s, x) is a semi-elliptic differential operator, its
selection G(s, x) can be written in the form

G(s, x) = ai(s, x)
∂

∂qi
+ αij(s, x)

∂2

∂qi∂qj
, (3.4)

where a(s, x) is measurable and α(s, x) is the above-mentioned positive semi-
definite symmetric C2-smooth matrix. By [9, Theorem 1] there exists Lipschitz
continuous A(s, x) such that α(s, x) = A(s, x)A∗(s, x). Since estimate (3.2) holds,
the stochastic equation without drift

dξ̃s,x(t) = A(t, ξ̃s,x(t)dw(t),
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where w(t) is a Wiener process in Rn, has a unique strong solution for each initial

data ξ̃s,x(s) = x. Then by results of [7] the equation with drift a(t, x)

dξs,x(t) = a(t, ξs,x(t)dt+A(t, ξs,x(t)dw(t),

has unique weak solution for each initial data. Hence there is a unique week
solution ξ(t), t ∈ I, of equation

dξ(t) = a(t, ξ(t))dt+A(t, ξ(t))dw(t),

such that for t ∈ I, t ≥ s it coincides with ξs,x(t) with probability 1.
This solution (see, e.g. [1]) is a Markov process. Thus we get the dynamical sys-

tem of form (3.1), and the operators U(t, s) defined as U(t, s)f(x) = E(f(ξs,x(t))),
form a Feller evolution family with the generator G(s, x). So, inclusion (3.3) holds
for each (s, x) ∈ I × Rn. �
Theorem 3.2. Suppose that a set-valued elliptic differential operator G(s, x) is
such that a(s, x) and α(s, x) are Lipschitz continuous (in set-valued sense) and
their values belong to the sets of nonempty closed convex subsets of Rn and S+(n),
respectively. Let also inequality (3.2) hold. Then there exists a Feller evolution
family such that inclusion (3.3) holds for all (s, x) from I × Rn.

Proof. By [8, Theorem 9.4.3] there exists a Lipschitz continuous selection G(s, x)
of the set-valued map G(s, x). Obviously it satisfies estimate (3.2). From the fact
that α(s, x) is non-degenerate, it follows that there exists Lipschitz continuous
A(s, x) such that A(s, x)A∗(s, x) = σ(s, x).

By the existence theorem of strong solutions (see e.g. [7]) the equation

dξs,x(t) = a(t, ξs,x(t)dt+A(t, ξs,x(t)dw(t),

has unique strong solution ξs,x(t) starting at the moment s from the point x.
As in Theorem 3.1, construct the Feller evolution family by the rule

U(t, s)f(x) = E(f(ξs,x(t))). Its generator satisfies inclusion (3.3). �
Suppose that a set-valued elliptic differential operator G(s, x) is lower semi-

continuous and has convex closed images. Then by Michael’s selection theorem
(see e.g. [8]) it has a continuous selection G(s, x). Since G(s, x) is elliptic, i.e.,
the matrix α(s, x) of second order part is non-degenerate, there exists continuous
matrix A(s, x) such that α(s, x) = A(s, x)A∗(s, x) (see, e.g., [10]). This matrix
A(s, x) together with the first order term a(s, x) of G(s, x) determine the stochastic
differential equation of form (3.1) with continuous coefficients. Let inequality (3.2)
hold. Then the above equation has a weak solution for each initial data for t ∈ I,
t ≥ s. Assume also that this solution is weakly unique.

Theorem 3.3. Under the above assumptions there exists a Feller evolution family
such that inclusion (3.3) holds for all (s, x) from I × Rn.
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inclusions with set-valued diffusion terms on Riemannian manifolds, Appl. Anal. 86 (2007)
1105-1116

[6] Azarina, S.V. and Gliklikh, Yu.E.: Stochastic differential inclusions in terms of infinitesimal
generators and mean derivatives, Appl. Anal. 88 No. 1 (2009) 89-105

[7] Gihman, I.I. and Skorohod, A. V.: Theory of Stochastic Processes, Vol.3, Springer-Verlag,
New York, 1979.

[8] Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Birkhaäser, 1990.
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