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Abstract. Consider a single server queueing model wherein the server can take 
two types of vacation, namely, type I vacation and type II vacation. The server 
will take type I vacation / longer duration vacation, once the server completes 
the service to all customers in the system and the server will take type II 
vacation / shorter duration vacation, once the server finds the system empty 
after returning from type I vacation. Also type II vacation can be interrupted if 
the number of customers in the system reaches some predefined thresholds. 
The explicit analytical expressions of transient state probabilities are derived 
using the generating function technique. To support the theoretical results, we 
added numerical illustrations. 
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1. Introduction  

1.1 Literature Survey 

 In a real-time scenario, it is quite natural that the server will not be available 
for a certain period of time due to sudden breakdown or due to the maintenance 
work or when the server is involved in some other secondary task and so on.  The 
period during which server is unavailable is called vacation period of the server.  The 
vacation queueing model was introduced by Levy and Yechialli [8]. To know more 
about the vacation queueing model, the readers may refer to Doshi [4,5], Takagi [14] 
and Tian and Zhang [15]. Further, Servi and Finn [11] were the first to introduce the 
idea of working vacation in an  
𝑀/𝑀/1 queueing model. 

 Li and Tian [9] introduce the concept of vacation interruption for an 
𝑀/𝑀/1 queue. Li, Tian and Ma [10] analyzed the 𝐺𝐼/𝑀/1 queue with working 
vacations and vacation interruption. Zhang and Hou [17] dealt with the concept of 
working vacations and vacation interruption in a 𝑀/𝐺/1 queue. Ayyappan, Sekar and 
Ganapathi [2] made a similar study in an 𝑀/𝑀/1 retrial queue. Sreenivasan, 
Chakravarthy and Krishnamoorthy [12] introduced the threshold concept in queueing 
models wherein the server on vacation may be interrupted when the queue size 
reaches some specified value, say N(1 ≤ 𝑁 < ∞). 

In recent times, Ibe and Isijola [6] introduced a different type of vacation 
called differentiated vacations in which a server can take two types of vacations: longer 
duration vacation and shorter duration vacation. Longer duration vacation means at 
the end of zero customers; the server can take a vacation of specific duration whereas 
shorter duration refers to the short break post the longer duration vacation when the 
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server has no customer in the queue. For example, in our mobile phones, the sleep 
mode can be thought of as a differentiated vacation. Also, the reader may refer to 
papers by Alouf, Altman, and Azad [1], Ibe and Isijola[7], Vijayashree and Janani [16] 
and Suranga Sampath and Jicheng Liu [13] for an in-depth study on queues subject to 
differentiated vacation. 

One of the potential applications of vacation queueing model is in Wireless 
Sensor Networks (WSN). WSN consists of several smaller devices called server nodes 
with multiple energy levels and various computational limits. A massive task in 
network design is minimizing energy consumption. To minimize energy consumption, 
the vacation queueing model plays a vital role in modeling and analyzing the sensor 
nodes (Boutoumi and Nawel Gharbi [3]). By considering the need for efficient energy-
saving schemes in WSN, Isijola and Ibe [7] introduced vacation interruption with 
some threshold in differentiated vacation and derived the steady- state probabilities.  

Certain other real-life situations are modeled according to this type of 
vacation policy.  For example, a doctor in the hospital might take short break of 
specified duration amidst his busy schedule. However, there are situations wherein he 
may be necessitated to extend his duration of non-availability to a longer time. Yet, 
during an emergency need of the patient, the doctor’s vacation can be interrupted 
depending upon the need. Similarly, the vacation of an active soldier may be 
interrupted due to urgent defense needs and many more such practical scenario does 
exist.  

1.2 Importance of the considered model 

Consider the sleep mode in IEEE 802.16E. The sleep modes in IEEE 
802.16E power saving mechanism are of two types. The type 1 mode is based on 
binary increasing sleep window size while the type 2 mode has constant sleep window 
size.  The Subscriber Station (SS) sleep mode mechanism is setup into repetitive sleep 
cycles to save energy. The sleep mode technology run as follows. The SS 
communicates with Base Station (BS) during busy period to send and receive data 
packets. The SS stays in an idle state for some random duration if there is no data 
traffic between SS and BS.  Upon completion of idle state and still if there are no data 
traffic between SS and BS, then the SS will send a message to BS requesting 
permission to undergo sleep mode.  After receiving mobile sleep response from BS 
station, it goes to the sleeping mode.  Also, the sleep mode can be interrupted with 
some threshold when the data traffic is large. We have modelled the above scenario as 
differentiated vacation queueing model with interruption and we derived the transient 
probabilities of the same. 

Most of the papers related to vacation queueing models provide only the 
steady -state analysis. However, steady- state analysis cannot be applied to systems that 
never approach equilibrium whereas transient analysis helps to analyse the system at 
any arbitrary time. Therefore, in this paper, the transient analysis of an 𝑀/𝑀/1queue 
with differentiated vacation and partial interruption policy is addressed.  

Furnished below are the details of the remaining sections of this paper. 

• Section 2describes the model 
• Section 3 provides the time-dependent probabilities of the model  
• Section 4 presents the numerical illustrations  
• Section 5 gives the concluding remarks 
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2. Model Description 

Consider a single server queueing model. The pattern of arrivals, service and 
vacations are as follows. 

• Arrivals follow Poisson distribution with parameter 𝜆 
• Service time follow exponential distribution with parameter 𝜇 
• Vacation time follow exponential distribution with two different 

parameters 𝛾1and𝛾2for type I and type II vacationrespectively 

The server takes type I vacation once the server completes the service to all customers 
in the system and the server takes type II vacation once the server finds the system 
empty after returning from type I vacation. Also, the type II vacation of the server can 
be interrupted if the number of customers in the system reaches some predefined 
threshold, say  𝑘2. 

 Let 𝕩(𝑡) represents the cumulative number of customers in the system 
and 𝕁(𝑡)denotes the server state. The state, 𝕁(𝑡) = 0 refers to the functional state of 
the server, 𝕁(𝑡) = 1 refers to type 1 vacation  state of the server and 𝕁(𝑡) = 2  refers to 
type 2 vacation state of the server. Then, (𝕏(𝑡), 𝕁(𝑡)) defines a continuous time 
Markov process with state space, 
𝑆 = {(0,1) ∪ (0,2) ∪ (𝑛, 𝑗); 𝑛 = 1,2… ; 𝑗 = 0,1,2}.  The pictorial representation of 
the model is given in Figure 1. 

 

Figure 1. Representation of the Model  

 The meaning of 𝑃𝑛,𝑗(𝑡) is the time-dependent probability for the system to 

be in state 𝑗 with 𝑛 customers at time 𝑡. Assume that initially, 𝑃0,1(0) = 1. Then, 

     𝑃1,0
′ (𝑡) = −(𝜇 + 𝜆)𝑃1,0(𝑡) + 𝜇𝑃2,0(𝑡) + 𝛾2𝑃1,2(𝑡) + 𝛾1𝑃1,1(𝑡),                          (2.1) 

     𝑃𝑛,0
′ (𝑡) = −(𝜇 + 𝜆)𝑃𝑛,0(𝑡) + 𝜇𝑃𝑛+1,0(𝑡) + 𝜆𝑃𝑛−1,0(𝑡) + 𝛾2𝑃𝑛,2(𝑡) + 𝛾1𝑃𝑛,1(𝑡); 

𝑛 = 2,3… (𝑘2 − 1),   (2.2) 

  𝑃𝑘2,0
′ (𝑡) = −(𝜇 + 𝜆)𝑃𝑘2,0(𝑡) + 𝜆𝑃𝑘2−1,0(𝑡) + 𝜇𝑃𝑘2+1,0(𝑡) + 𝛾1𝑃𝑘2,1(𝑡)

+ 𝜆𝑃𝑘2−1,2(𝑡),                                                                                   (2.3) 
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   𝑃𝑛,0
′ (𝑡) = −(𝜇 + 𝜆)𝑃𝑛,0(𝑡) + 𝜇𝑃𝑛+1,0(𝑡) + 𝜆𝑃𝑛−1,0(𝑡) + 𝛾1𝑃𝑛,1(𝑡) ;  

 𝑛 = (𝑘2 + 1), (𝑘2 + 2)… .,         (2.4) 

   𝑃0,1
′ (𝑡)  = −(𝜆 + 𝛾1)𝑃0,1(𝑡) + 𝜇𝑃1,0(𝑡),                                                                     (2.5) 

    𝑃𝑛,1
′ (𝑡) = −( 𝜆 + 𝛾1)𝑃𝑛,1(𝑡) + 𝜆𝑃𝑛−1,1(𝑡); 𝑛 = 1,2,3, …,                                     (2.6) 

    𝑃0,2
′ (𝑡) = −𝜆𝑃0,2(𝑡) + 𝛾1𝑃0,1(𝑡),                                                                                 (2.7) 

and  

     𝑃𝑛,2
′ (𝑡) =  −(𝜆 + 𝛾2)𝑃𝑛,2(𝑡) + 𝜆𝑃𝑛−1,2(𝑡); 𝑛 = 1,2,3, … (𝑘2 − 1).                     (2.8) 

3. Time Dependent Probabilities 

This section provides explicit analytical expressions for the time dependent 
probabilities of the model described above. Taking Laplace transform of equations 
(2.5) to (2.8) leads to 

 
       𝑠𝑃̂0,1(𝑠) = 1 − (𝜆 + 𝛾1)𝑃̂0,1(𝑠) + 𝜇𝑃̂1,0(𝑠), 

        𝑠𝑃̂𝑛,1(𝑠) = −(𝜆 + 𝛾1)𝑃̂𝑛,1(𝑠) + 𝜆𝑃̂𝑛−1,1(𝑠)  ; 𝑛 = 1,2,3, …       

        𝑠𝑃̂0,2(𝑠) = −𝜆𝑃̂0,2(𝑠) + 𝛾1𝑃̂0,1(𝑠),     

and 

        𝑠𝑃̂𝑛,2(𝑠) = −(𝜆 + 𝛾2)𝑃̂𝑛,2(𝑠) + 𝜆𝑃̂𝑛−1,2(𝑠), 𝑛 = 1,2,3, … (𝑘2 − 1). 

The above equations can be rewritten as, 
 

  𝑃̂0,1(𝑠) =
1

𝑠 + 𝜆 + 𝛾1

+
𝜇

𝑠 + 𝜆 + 𝛾1

𝑃̂1,0(𝑠),                                                                 (3.1) 

   𝑃̂𝑛,1(𝑠) =
𝜆

𝑠 + 𝜆 + 𝛾1

𝑃̂𝑛−1,1(𝑠) =
𝜆𝑛

(𝑠 + 𝜆 + 𝛾1)
𝑛
𝑃̂0,1(𝑠) ; 𝑛 = 1,2,3, …       

   𝑃̂0,2(𝑠) =
𝛾1

(𝑠 + 𝜆)
𝑃̂0,1(𝑠), 

and 

    𝑃̂𝑛,2(𝑠) =
𝜆

𝑠 + 𝜆 + 𝛾2

𝑃̂𝑛−1,2(𝑠) =
𝜆𝑛

(𝑠 + 𝜆 + 𝛾2)
𝑛
𝑃̂0,2(𝑠)

=
𝜆𝑛𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾2)
𝑛
𝑃̂0,1(𝑠); 𝑛 = 1,2… (𝑘2 − 1).  

Substituting for 𝑃̂0,1(𝑠) from equation (3.1) in the above equations yields, 

  𝑃̂𝑛,1(𝑠) =
𝜆𝑛

(𝑠 + 𝜆 + 𝛾1)
𝑛+1

+
𝜆𝑛𝜇

(𝑠 + 𝜆 + 𝛾1)
𝑛+1

𝑃̂1,0(𝑠)  ; 𝑛 = 1,2,3, …                  (3.2) 

  𝑃̂0,2(𝑠) =
𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)
+

𝛾1𝜇

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)
𝑃̂1,0(𝑠),                              (3.3) 

and 
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    𝑃̂𝑛,2(𝑠) =
𝜆𝑛𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑛

+
𝜆𝑛𝛾1𝜇

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑛
𝑃̂1,0(𝑠); 

𝑛 = 1,2… (𝑘2 − 1).           (3.4) 

 

Taking inverse Laplace transform of the equations (3.1) to (3.4) gives, 

       𝑃0,1(𝑡) = 𝑒−(𝜆+𝛾1)𝑡 + 𝜇𝑒−(𝜆+𝛾1)𝑡 ∗ 𝑃1,0(𝑡),                                                      (3.5) 

                                                                    

      𝑃𝑛,1(𝑡) =
𝜆𝑛𝑡𝑛

𝑛!
(𝑒−(𝜆+𝛾1)𝑡 + 𝜇𝑒−(𝜆+𝛾1)𝑡 ∗  𝑃1,0(𝑡)) ; 𝑛 = 1,2…                         (3.6) 

       𝑃0,2(𝑡) = 𝛾1𝑒
−𝜆𝑡 ∗ (𝑒−(𝜆+𝛾1)𝑡 + 𝜇𝑒−(𝜆+𝛾1)𝑡 ∗ 𝑃1,0(𝑡)),                                    (3.7) 

and 

          𝑃𝑛,2(𝑡) = 𝜆𝑛𝛾1 (𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗
𝑒−(𝜆+𝛾2)𝑡𝑡𝑛−1

(𝑛 − 1)!
)

+ 𝜇𝜆𝑛𝛾1 (𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗
𝑒−(𝜆+𝛾2)𝑡𝑡𝑛−1

(𝑛 − 1)!
∗  𝑃1,0(𝑡)) ; 

𝑛 = 1,2… (𝑘2 − 1). (3.8)  

Hence, all the vacation state probabilities (both type I and type II) are expressed in 
terms of  𝑃1,0(𝑡). 

Evaluation of  𝑷𝒏,𝟎(𝒕) for 𝒏 = 𝟏, 𝟐… (𝒌𝟐 − 𝟏) 

Define 

𝑄(𝑧, 𝑡) = ∑ 𝑃𝑛,0(𝑡)𝑧
𝑛

𝑘2−1

𝑛=1

, 

then 

𝜕𝑄(𝑧, 𝑡)

𝜕𝑡
 = ∑ 𝑃𝑛,0

′ (𝑡)𝑧𝑛

𝑘2−1

𝑛=1

. 

Multiplying equation (2.1) by 𝑧 and equation(2.2) by 𝑧𝑛 and summing it over all 
possible values of  𝑛, we get after some algebra, 

𝜕𝑄(𝑧, 𝑡)

𝜕𝑡
− (−(𝜆 + 𝜇) +

𝜇

𝑧
+ 𝜆𝑧) 𝑄(𝑧, 𝑡)

= −𝜇𝑃1,0(𝑡) + 𝜇𝑃𝑘2,0(𝑡)𝑧
𝑘2−1 − 𝜆𝑃𝑘2−1,0(𝑡)𝑧

𝑘2

+ 𝛾1 ∑ 𝑃𝑛,1(𝑡)𝑧
𝑛   +

𝑘2−1

𝑛=1

𝛾2 ∑ 𝑃𝑛,2(𝑡)𝑧
𝑛

𝑘2−1

𝑛=1

. 
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Upon integrating the above linear differential equation with respect to ‘𝑡’, we obtain 

  𝑄(𝑧, 𝑡)

= ∫ (−𝜇𝑃1,0(𝑦) + 𝜇𝑃𝑘2,0(𝑦)𝑧𝑘2−1 − 𝜆𝑃𝑘2−1,0(𝑦)𝑧𝑘2 + 𝛾1 ∑ 𝑃𝑛,1(𝑦)𝑧𝑛

𝑘2−1

𝑛=1

𝑡

0

+ 𝛾2 ∑ 𝑃𝑛,2(𝑦)𝑧𝑛

𝑘2−1

𝑛=1

)𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑒(
𝜇
𝑧
+𝜆𝑧)(𝑡−𝑦)𝑑𝑦.                                                           (3.9) 

If 𝛼 = 2√𝜆𝜇and 𝛽 = √
𝜆

𝜇
, then 𝑒𝑥 𝑝 (

𝜇

𝑧
+ 𝜆𝑧) 𝑡 = ∑ (𝛽𝑧)𝑛𝐼𝑛(𝛼𝑡),∞

𝑛=−∞  where 𝐼𝑛(𝑡) is 

the modified Bessel function of order 𝑛. Using the above fact in equation (3.9) and 
hence comparing the coefficients of 𝑧𝑛 for 𝑛 = 1,2,3. . . . 𝑘2 − 1 results in, 

𝑃𝑛,0(𝑡) = ∫ −𝜇𝑃1,0(𝑦)𝛽𝑛𝐼𝑛(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑑𝑦
𝑡

0

+∫ 𝜇𝑃𝑘2,0(𝑦)𝛽𝑛−𝑘2+1𝐼𝑛−𝑘2+1(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑑𝑦
𝑡

0

+ ∫ −𝜆𝑃𝑘2−1,0(𝑦)𝛽𝑛−𝑘2

𝑡

0

𝐼−(−𝑛+𝑘2)(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑑𝑦

+𝛾1 ∫ ∑ 𝑃𝑖,1(𝑦)𝛽𝑛−𝑖𝐼𝑛−𝑖(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)

𝑘2−1

𝑖=1

𝑡

0

𝑑𝑦

+ 𝛾2 ∫ ∑ 𝑃𝑖,2(𝑦)𝛽𝑛−𝑖𝐼𝑛−𝑖(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)

𝑘2−1

𝑖=1

𝑑𝑦
𝑡

0

; 

 1 ≤ 𝑛 ≤ 𝑘2 − 1 (3.10) 

Taking Laplace Transform on both the sides of the equation (3.10) leads to, 

 

    𝑃̂𝑛,0(𝑠)      = −𝜇𝑃̂1,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛
1

√𝜔2 − 𝛼2

+ 𝜇𝑃̂𝑘2,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2+1
1

√𝜔2 − 𝛼2

− 𝜆𝑃̂𝑘2−1,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑘2−𝑛
1

√𝜔2 − 𝛼2

+ 𝛾1 ∑ 𝑃̂𝑖,1(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑖
1

√𝜔2 − 𝛼2

𝑘2−1

𝑖=1

+ 𝛾2 ∑ 𝑃̂𝑖,2(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑖
1

√𝜔2 − 𝛼2

𝑘2−1

𝑖=1

.                          

Substituting for 𝑃̂𝑖,1(𝑠) and 𝑃̂𝑖,2(𝑠) from equation (3.2) and equation (3.4) in the 
above equation leads to, 
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𝑃̂𝑛,0(𝑠) = −𝜇𝑃̂1,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛
1

√𝜔2 − 𝛼2

+ 𝜇𝑃̂𝑘2,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2+1
1

√𝜔2 − 𝛼2

− 𝜆𝑃̂𝑘2−1,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑘2−𝑛
1

√𝜔2 − 𝛼2

+ 𝛾1 ∑ [
𝜆𝑖

(𝑠 + 𝜆 + 𝛾1)
𝑖+1

(1

𝑘2−1

𝑖=1

+ 𝜇𝑃̂1,0(𝑠)) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑖
1

√𝜔2 − 𝛼2
]

+ 𝛾2 ∑

[
 
 
 
 

𝜆𝑖𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑖

(1 + 𝜇𝑃̂1,0(𝑠)) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑖
1

√𝜔2 − 𝛼2]
 
 
 
 𝑘2−1

𝑖=1

; 

             𝑛 = 1,2,3. . . . 𝑘2 − 1                                (3.11) 

                             

With 𝑛 = 𝑘2 − 1 in equation (3.11), we get 

 𝑃̂𝑘2−1,0(𝑠) (1 + 𝜆𝑔̂𝑘2−2(𝑠))

= −𝜇𝑃̂1,0(𝑠)𝑔̂0(𝑠) + 𝜇𝑃̂𝑘2,0(𝑠)
1

√𝜔2 − 𝛼2

+ (1

+ 𝜇𝑃̂1,0(𝑠)) [ ∑ (
𝛾1𝜆

𝑖

(𝑠 + 𝜆 + 𝛾1)
𝑖+1

𝑘2−1

𝑖=1

+
𝛾2𝜆

𝑖𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑖
) 𝑔̂𝑖(𝑠)],                                                                   (3.12) 

where 

𝑔̂𝑖(𝑠) = (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑘2−1−𝑖
1

√𝜔2 − 𝛼2
; 𝑖 = 0,1,2… (𝑘2 − 1). 

Taking inverse Laplace transform for the equation (3.12), we get 
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𝑃𝑘2−1,0(𝑡) = ∑(−𝜆𝑔𝑘2−2(𝑡))
∗𝑗

∞

𝑗=0

∗ [−𝜇𝑃1,0(𝑡) ∗ 𝑔0(𝑡) + 𝜇𝑃𝑘2,0(𝑡) ∗ 𝐼0(𝛼𝑡)𝑒−(𝜆+𝜇)𝑡

+ (𝛿(𝑡) + 𝜇𝑃1,0(𝑡))

∗ ( ∑ [𝛾1𝜆
𝑖
𝑒−(𝜆+𝛾1)𝑡𝑡𝑖

𝑖!
∗ 𝑔𝑖(𝑡)]

𝑘2−1

𝑖=1

+ ∑ 𝛾1𝛾2𝜆
𝑖 (𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗

𝑒−(𝜆+𝛾2)𝑡𝑡𝑖−1

(𝑖 − 1)!

𝑘2−1

𝑖=1

∗ 𝑔𝑖(𝑡)))],                                                                               (3.13) 

where 

𝑔𝑖(𝑡) =
1

(2𝜇)𝑘2−1−𝑖
𝛼𝑘2−1−𝑖𝑒−(𝜆+𝜇)𝑡𝐼𝑘2−1−𝑖(𝛼𝑡), 𝑖 = 0,1,2…𝑘2 − 1. 

In a similar way, inverse Laplace transform of equation (3.11) results in, 

𝑃𝑛,0(𝑡) = [−𝜇𝑃1,0(𝑡) ∗ (
𝛼

2𝜇
)

𝑛

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛(𝛼𝑡)]

+ [𝜇𝑃𝑘2,0(𝑡) ∗ (
𝛼

2𝜇
)

𝑛−𝑘2+1

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛−𝑘2+1(𝛼𝑡)]

− [𝜆𝑃𝑘2−1,0(𝑡) ∗ (
𝛼

2𝜇
)

𝑘2−𝑛

𝑒−(𝜆+𝜇)𝑡 𝐼𝑘2−𝑛(𝛼𝑡)]

+ [(𝛿(𝑡) + 𝜇𝑃1,0(𝑡))

∗ ∑ (𝛾1𝜆
𝑖
𝑒−(𝜆+𝛾1)𝑡𝑡𝑖

𝑖!
+ 𝛾1𝛾2𝜆

𝑖𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗
𝑒−(𝜆+𝛾2)𝑡𝑡𝑖−1

(𝑖 − 1)!
)

𝑘2−1

𝑖=1

∗ (
𝛼

2𝜇
)

𝑛−𝑖

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛−𝑖(𝛼𝑡)] ; 𝑛 = 1,2,3. . . . 𝑘2 − 1  

Hence,𝑃𝑛,0(𝑡), 1 ≤ 𝑛 ≤ 𝑘2 − 1 is expressed in terms of  𝑃𝑘2,0(𝑡), 𝑃𝑘2−1,0(𝑡)and 
𝑃1,0(𝑡) in the above equation where 𝑃𝑘2−1,0(𝑡) is given by equation (3.13). Below, we 

present the method of finding 𝑃𝑛,0(𝑡) in terms of 𝑃1,0(𝑡)for 𝑛 = 𝑘2, 𝑘2 + 1,… . 

Evaluation of  𝑷𝒏,𝟎(𝒕) for 𝒏 = 𝒌𝟐, 𝒌𝟐 + 𝟏,… 

Define 

𝐵(𝑧, 𝑡) = ∑ 𝑃𝑛,0(𝑡)𝑧
𝑛

∞

𝑛=𝑘2

, 

then 
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𝜕𝐵(𝑧, 𝑡)

𝜕𝑡
 = ∑ 𝑃𝑛,0

′ (𝑡)𝑧𝑛

∞

𝑛=𝑘2

. 

Multiplying equation (2.3) by 𝑧 and equation(2.4) by 𝑧𝑛 and summing it over all 
possible values of  𝑛, we get after some algebra, 

𝜕𝐵(𝑧, 𝑡)

𝜕𝑡
− (−(𝜆 + 𝜇) +

𝜇

𝑧
+ 𝜆𝑧)𝐵(𝑧, 𝑡)

= 𝜆𝑃𝑘2−1,0(𝑡)𝑧
𝑘2 + 𝜆𝑃𝑘2−1,2(𝑡)𝑧

𝑘2 − 𝜇𝑃𝑘2,0(𝑡)𝑧
𝑘2−1

+ 𝛾1 ∑ 𝑃𝑛,1(𝑡)𝑧
𝑛

∞

𝑛=𝑘2

. 

After integrating the above equation with respect to ‘𝑡’ leads to, 

𝐵(𝑧, 𝑡)   

= ∫ (𝜆𝑃𝑘2−1,0(𝑡)𝑧
𝑘2 + 𝜆𝑃𝑘2−1,2(𝑡)𝑧

𝑘2 − 𝜇𝑃𝑘2,0(𝑡)𝑧
𝑘2−1

𝑡

0

+ 𝛾1 ∑ 𝑃𝑛,1(𝑡)𝑧
𝑛

∞

𝑛=𝑘2

)𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑒(
𝜇
𝑧
+𝜆𝑧)(𝑡−𝑦)𝑑𝑦.                                                              (3.14)  

Along the similar lines as before, comparing the coefficients of 𝑧𝑛 for  
𝑛 = 𝑘2, 𝑘2 + 1… leads to, 

𝑃𝑛,0(𝑡)

= ∫ 𝜆𝑃𝑘2−1,0(𝑦)𝛽𝑛−𝑘2𝐼𝑛−𝑘2
(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑑𝑦

𝑡

0

+ ∫ 𝜆𝑃𝑘2−1,2(𝑦)𝛽𝑛−𝑘2

𝑡

0

𝐼𝑛−𝑘2
(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑑𝑦

− ∫ 𝜇𝑃𝑘2,0(𝑦)𝛽𝑛−𝑘2+1
𝑡

0

𝐼𝑛−𝑘2+1(𝛼(𝑡 − 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦)𝑑𝑦

+𝛾1 ∫ ∑ 𝑃𝑖,1(𝑦)𝛽𝑛−𝑖𝐼𝑛−𝑖(𝛼(𝑡

∞

𝑖=𝑘2

𝑡

0

− 𝑦))𝑒−(𝜆+𝜇)(𝑡−𝑦) 𝑑𝑦.                                                                                                            (3.15) 

Taking Laplace transform for the equation (3.15), we get 

𝑃̂𝑛,0(𝑠) = 𝜆𝑃̂𝑘2−1,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2
1

√𝜔2 − 𝛼2

+ 𝜆𝑃̂𝑘2−1,2(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2
1

√𝜔2 − 𝛼2

− 𝜇𝑃̂𝑘2,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2+1
1

√𝜔2 − 𝛼2

+ 𝛾1 ∑ 𝑃̂𝑖,1(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑖
1

√𝜔2 − 𝛼2

∞

𝑖=𝑘2

.         

Substituting for 𝑃̂𝑖,1(𝑠) and 𝑃̂𝑘2−1,2(𝑠) from equation (3.2) and equation (3.4) in the 
above equation leads to, 
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𝑃̂𝑛,0(𝑠)

= 𝜆𝑃̂𝑘2−1,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2
1

√𝜔2 − 𝛼2

+
𝜆𝑘2𝛾1 (1 + 𝜇𝑃̂1,0(𝑠))

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑘2−1

(
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2
1

√𝜔2 − 𝛼2

− 𝜇𝑃̂𝑘2,0(𝑠) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑘2+1
1

√𝜔2 − 𝛼2
                                             

+ 𝛾1 ∑
𝜆𝑖

(𝑠 + 𝜆 + 𝛾1)
𝑖+1

(1 + 𝜇𝑃̂1,0(𝑠)) (
𝜔 − √𝜔2 − 𝛼2

2𝜇
)

𝑛−𝑖
1

√𝜔2 − 𝛼2

∞

𝑖=𝑘2

;  

                                                                                              𝑛 = 𝑘2, 𝑘2 + 1,….              (3.16) 

With 𝑛 = 𝑘2 in equation (3.16), we get after simplification 

𝑃̂𝑘2,0(𝑠) (1 + 𝜇𝑔̂𝑘2−2(𝑠))

= 𝜆𝑃̂𝑘2−1,0(𝑠)
1

√𝜔2 − 𝛼2

+ (1 + 𝜇𝑃̂1,0(𝑠)) [
1

√𝜔2 − 𝛼2

𝜆𝑘2𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑘2−1

+ 𝛾1 ∑ 𝜆𝑖𝑙𝑖(𝑠)

∞

𝑖=𝑘2

],                                                                                                                     (3.17) 

where 𝑙𝑖(𝑠) =
1

(𝑠+𝜆+𝛾1)𝑖+1 (
𝜔−√𝜔2−𝛼2

2𝜇
)

𝑘2−𝑖
1

(√𝜔2−𝛼2)
, 𝑖 = 𝑘2, 𝑘2 + 1,…. 

Taking inverse Laplace transform for the equation (3.17), we get 

𝑃𝑘2,0(𝑡)

= ∑(−𝜇𝑔𝑘2−2(𝑡))
∗𝑗

∞

𝑗=0

∗ {−𝜆𝑃𝑘2−1,0(𝑡) ∗ 𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) + (𝛿(𝑡) + 𝜇𝑃1,0(𝑡))

∗ [𝜆𝑘2𝛾1 (𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ 𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗
𝑒−(𝜆+𝛾2)𝑡𝑡𝑘2−2

(𝑘2 − 2)!
)

+ 𝛾1 ∑ 𝜆𝑖𝑙𝑖(𝑡)

∞

𝑖=𝑘2

]},                                                                                                                    (3.18) 

where 

𝑙𝑖(𝑡) =
𝛼𝑘2−𝑖

(2𝜇)𝑘2−𝑖
𝑒−(𝜆+𝜇)𝑡𝐼𝑘2−𝑖(𝛼𝑡) ∗

𝑒−(𝜆+𝛾1)𝑡𝑡𝑖

𝑖!
, 𝑖 = 𝑘2, 𝑘2 + 1 …   . 

Substituting the equation (3.17) in equation (3.12) leads to, 
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𝑃̂𝑘2−1,0(𝑠) (1 + 𝜆𝑔̂𝑘2−2(𝑠))

= −𝜇𝑃̂1,0(𝑠)𝑔̂0(𝑠)

+
𝜇

√𝜔2 − 𝛼2
∑ (−𝜇𝑔̂𝑘2−2(𝑠))

𝑚

[𝜆𝑃̂𝑘2−1,0(𝑠)
1

√𝜔2 − 𝛼2

∞

𝑚=0

+ (1 + 𝜇𝑃̂1,0(𝑠)) [
1

√𝜔2 − 𝛼2

𝜆𝑘2𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑘2−1

+ 𝛾1 ∑ 𝜆𝑖𝑙𝑖(𝑠)

∞

𝑖=𝑘2

]]

+ (1

+ 𝜇𝑃̂1,0(𝑠)) [ ∑ (
𝛾1𝜆

𝑖

(𝑠 + 𝜆 + 𝛾1)
𝑖+1

𝑘2−1

𝑖=1

+
𝛾2𝜆

𝑖𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑖
) 𝑔̂𝑖(𝑠)],                                                                        (3.19) 

  

Taking inverse Laplace transform for the equation (3.19) 

 𝑃𝑘2−1,0(𝑡)

= ∑(−𝐹(𝑡))∗𝑗

∞

𝑗=0

∗ [−𝜇𝑃1,0(𝑡) ∗ 𝑔0(𝑡) + 𝜇𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡)

∗ ∑ (−𝜇𝑔𝑘2−2(𝑡))
∗𝑚

∗ (𝛿(𝑡) + 𝜇𝑃1,0(𝑡))

∞

𝑚=0

∗ (𝜆𝑘2𝛾1 (𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ 𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗
𝑒−(𝜆+𝛾2)𝑡𝑡𝑘2−2

(𝑘2 − 2)!
) + 𝛾1 ∑(𝜆𝑖𝑙𝑖(𝑡))

∞

𝑖=𝑘2

)

+ (𝛿(𝑡) + 𝜇𝑃1,0(𝑡)) ∗ ∑ (
𝛾1𝜆

𝑖𝑒−(𝜆+𝛾1)𝑡𝑡𝑖

𝑖!
+

𝛾2𝜆
𝑖𝑒−(𝜆+𝛾2)𝑡𝑡𝑖−1

(𝑖 − 1)!
∗ 𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡)

𝑘2−1

𝑖=1

∗ 𝑔𝑖(𝑡)],                                                                                                                                           (3.20) 

where 

𝐹(𝑡) = 𝜆𝑔𝑘2−2(𝑡) − (𝜇𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ 𝜆𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ ∑(−𝜇𝑔𝑘2−2(𝑡))
∗𝑚

∞

𝑚=0

). 

In a similar way, substituting equation (3.12) in equation (3.17) leads to, 
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𝑃̂𝑘2,0(𝑠) (1 + 𝜇𝑔̂𝑘2−2(𝑠))

= −𝜇𝑃̂1,0(𝑠)𝑔̂0(𝑠)
𝜆

√𝜔2 − 𝛼2
∑ (−𝜆𝑔̂𝑘2−2(𝑠))

𝑚
∞

𝑚=0

+
𝜆

√𝜔2 − 𝛼2
∑ (−𝜆𝑔̂𝑘2−2(𝑠))

𝑚

[𝜇𝑃̂𝑘2,0(𝑠)
1

√𝜔2 − 𝛼2

∞

𝑚=0

+ (1

+ 𝜇𝑃̂1,0(𝑠)) [ ∑ (
𝛾1𝜆

𝑖

(𝑠 + 𝜆 + 𝛾1)
𝑖+1

𝑘2−1

𝑖=1

+
𝛾2𝜆

𝑖𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑖
) 𝑔̂𝑖(𝑠)]]

+ (1

+ 𝜇𝑃̂1,0(𝑠)) [
1

√𝜔2 − 𝛼2

𝜆𝑘2𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑘2−1

+ 𝛾1 ∑ 𝜆𝑖𝑙𝑖(𝑠)

∞

𝑖=𝑘2

].   

Taking inverse Laplace transform of the above equation results in, 

    𝑃𝑘2,0(𝑡) = ∑(−𝐺(𝑡))
∗𝑗

∞

𝑗=0

∗ [−𝜇𝑃1,0(𝑡) ∗ 𝑔0(𝑡) ∗ 𝜆𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡)

∗ ∑ (−𝜆𝑔𝑘2−2(𝑡))
∗𝑚

∞

𝑚=0

               + 𝜆𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡)

∗ (𝛿(𝑡) + 𝜇𝑃1,0(𝑡)) ∗ ∑ (−𝜇𝑔𝑘2−2(𝑡))
∗𝑚

∞

𝑚=0

∗ ∑ 𝑔𝑖(𝑡)

𝑘2−1

𝑖=1

∗ (
𝛾1𝜆

𝑖𝑒−(𝜆+𝛾1)𝑡𝑡𝑖

𝑖!
+

𝛾2𝜆
𝑖𝑒−(𝜆+𝛾2)𝑡𝑡𝑖−1

(𝑖 − 1)!
∗ 𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡)

+ (𝛿(𝑡) + 𝜇𝑃1,0(𝑡))

∗ (𝜆𝑘2𝛾1 (𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ 𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗
𝑒−(𝜆+𝛾2)𝑡𝑡𝑘2−2

(𝑘2 − 2)!
)

+ 𝛾1 ∑(𝜆𝑖𝑙𝑖(𝑡))

∞

𝑖=𝑘2

)] , 

                                            (3.21) 

where 
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𝐺(𝑡) = 𝜇𝑔𝑘2−2(𝑡) − (𝜇𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ 𝜆𝑒−(𝜆+𝜇)𝑡𝐼0(𝛼𝑡) ∗ ∑(−𝜆𝑔𝑘2−2(𝑡))
∗𝑚

∞

𝑚=0

). 

Also, the inverse Laplace transform of equation (3.16) yields 

𝑃𝑛,0(𝑡) = [𝜆𝑃𝑘2−1,0(𝑡) ∗ (
𝛼

2𝜇
)

𝑛−𝑘2

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛−𝑘2
(𝛼𝑡)]

+ [𝜆𝑛𝑒−𝜆𝑡 ∗ 𝑒−(𝜆+𝛾1)𝑡 ∗ 𝑒−(𝜆+𝛾2)𝑡
𝑡𝑛−1

(𝑛 − 1)!
∗ (𝛿(𝑡) + 𝑃1,0(𝑡)𝜇)

∗ (
𝛼

2𝜇
)

𝑛−𝑘2

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛−𝑘2
(𝛼𝑡)]

− [𝜇𝑃𝑘2,0(𝑡) ∗ (
𝛼

2𝜇
)

𝑛−𝑘2+1

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛−𝑘2+1(𝛼𝑡)]

+ ∑ 𝛾1𝜆
𝑖𝑒−(𝜆+𝛾1)𝑡

𝑡𝑖

𝑖!
∗ +𝛾1𝛾2𝜆

𝑖𝑒−𝜆𝑡 ∗ (𝛿(𝑡) + 𝑃1,0(𝑡)𝜇)

∞

𝑖=𝑘2

∗ (
𝛼

2𝜇
)

𝑛−𝑖

𝑒−(𝜆+𝜇)𝑡 𝐼𝑛−𝑖(𝛼𝑡). 

Hence, 𝑃𝑛,0(𝑡), 𝑘2 ≤ 𝑛 ≤ ∞ is expressed in terms of𝑃𝑘2−1,0(𝑡) and 𝑃𝑘2,0(𝑡) which are 
expressed in terms of 𝑃1,0(𝑡) in equation (3.20) and equation (3.21) respectively. 
Therefore, all the probabilities are expressed purely in terms of 𝑃1,0(𝑡).Using the 
normalization condition given by  

∑𝑃𝑛,1(𝑡) + ∑ 𝑃𝑛,2(𝑡)

𝑘2−1

n=0

+ ∑ 𝑃𝑛,0(𝑡)

𝑘2−1

n=1

+ ∑ 𝑃𝑛,0(𝑡)

∞

n=𝑘2

= 1

∞

n=0

 , 

the term 𝑃1,0(𝑡) can be explicitly determined. 

Remark: 

i) Let 𝜋𝑛,𝑗 denote the steady state probability.   Mathematically, let 

𝜋𝑛,𝑗 = lim
𝑡→∞

𝑃𝑛,𝑗(𝑡) 

By the final value theorem of Laplace transform which states 

lim
𝑡→∞

𝑃𝑛,𝑗(𝑡) = lim
𝑠→0

𝑠𝑃̂𝑛,𝑗(𝑠) 

It is observed that 𝜋𝑛,𝑗 =   lim
𝑠→0

𝑠𝑃̂𝑛,𝑗(𝑠).Therefore from equation (3.2) 

       lim
         𝑠→0

𝑠𝑃̂𝑛,1(𝑠) = lim
𝑠→0

𝑠 (
𝜆𝑛

(𝑠 + 𝜆 + 𝛾1)
𝑛+1

+
𝜆𝑛𝜇

(𝑠 + 𝜆 + 𝛾1)
𝑛+1

𝑃̂1,0(𝑠)) 

𝜋𝑛,1 =
𝜆𝑛𝜇

(𝜆 + 𝛾1)
𝑛+1

𝜋1,0. 

 The above equation is same as equation obtained by Ibe and Isijola [14] 

               Similarly, from equation (3.4) 

134



K.V. VIJAYASHREE, B. JANANI *AND K. AMBIKA  

 

lim
𝑠→0

 𝑠𝑃̂𝑛,1(𝑠) = lim
𝑠→0

 𝑠 (
𝜆𝑛𝛾1

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑛

+
𝜆𝑛𝛾1𝜇

(𝑠 + 𝜆)(𝑠 + 𝜆 + 𝛾1)(𝑠 + 𝜆 + 𝛾2)
𝑛
𝑃̂1,0(𝑠)) 

                        Hence, 

                                                  𝜋𝑛,2 =
𝜆𝑛−1𝛾1𝜇

(𝜆 + 𝛾1)(𝜆 + 𝛾2)
𝑛
𝜋1,0 

which coincides with the steady state probability obtained by Ibe and Isijola 
[14]. 

ii) When there is no vacation interruption,𝑃𝑛,0(𝑡) is given by 
 

𝑃𝑛,0(𝑡) =    𝛾1 ∫ ∑ 𝑃𝑘,1(𝑦)𝛽𝑛−𝑘(𝐼𝑛−𝑘(𝛼(𝑡 − 𝑦))

∞

𝑘=1

𝑡

0

− 𝐼𝑛+𝑘(𝛼(𝑡 − 𝑦)))𝑒−(𝜆+𝜇)(𝑡−𝑦) 𝑑𝑦 

+ 𝛾2 ∫ ∑𝑃𝑘,2(𝑦)𝛽𝑛−𝑘(𝐼𝑛−𝑘(𝛼(𝑡 − 𝑦))

∞

𝑘=1

𝑡

0

− 𝐼𝑛+𝑘(𝛼(𝑡 − 𝑦)))𝑒−(𝜆+𝜇)(𝑡−𝑦) 𝑑𝑦. 

 
which coincides with the result obtained by Vijayashree and 
Janani[16]. 

4. Numerical Analysis 

This section presents the way in which𝑃𝑛,𝑗(𝑡), mean and variance of the 
system behaves as time progresses for different parameter values. Even though the 
system under consideration is of infinite capacity, for the purpose of numerical 
analysis n is limited to 20. 

Figure 2 presents the behavior of𝑃0,1(𝑡) against time for 𝜆 = 0.4, 𝜇 =

0.6 and 𝛾2 = 1. The server is in Type I vacation initially with zero customers. 
Therefore, all the probabilities for  𝑃0,1(𝑡) start at one. As we allow customers to join 
the system even during Type I vacation, we find that the possibility for the system to 
be empty decreases with an increase in time. Further, at a given instant of time, 
𝑃0,1(𝑡)decreases with increases in 𝛾1. This is because as 𝛾1 increases, the server is more 
likely to avail another vacation of shorter duration (Type II). 
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Figure 2. 𝑷𝟎,𝟏(𝒕)  versus 𝒕 

Figure 3 and Figure 4 depicts the graph of  𝑃𝑛,1(𝑡) against time t for the 
same parameter values along with 𝛾1 = 0.9 and varying values of n. All the values for 
𝑃𝑛,1(𝑡) start at zero as we assumed that the server is in type I vacation initially with 
zero customers.We observe that at a particular instant of time, the probability to find 
the system with fewer customers is relatively high.  However, for a specific value of n, 
the probability value increases during the initial period, it reaches a peak and gradually 
decreases until it converges. Also, the peak probability reduces with an increase in n 
due to the specific choice of 𝛾1. 
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Figure 3. 𝑷𝒏,𝟏(𝒕)  versus 𝒕 

 

Figure 4. 𝑷𝒏,𝟏(𝒕) versus 𝒕  
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Figure 5 and Figure 6 depicts the behavior of  𝑃𝑛,2(𝑡)versus 𝑡for varying 

values of n. The values of 𝑃𝑛,2(𝑡) are equal to zero at the initial state, increase steadily 
till it reaches a specific value and gradually decreases. For our choice of the parameter 
values, we observe that for the low value of n, it is more likely for the system to be in 
state(𝑛, 2) initially and the probability reduces drastically as time progresses. The 
behavior is justified by the fact that arrivals continue to join the system at the rate 𝜆 
even during type II vacation. Furthermore with 𝛾2 = 1, the system is more likely to 
make a transition from (𝑛, 0) to (𝑛, 2) for the corresponding n as time progresses. 

 

Figure 5.  𝑷𝒏,𝟐(𝒕)  versus 𝒕 
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Figure 6.  𝑷𝒏,𝟐(𝒕) versus 𝒕  

Figure 7 and Figure 8 depicts the behavior of  𝑃𝑛,0(𝑡) against time for 
varying values of n. It is observed that for a particular value of n the transient state 
probability increases as time progresses and converges to the corresponding steady-
state probabilities. Note that for a specific n, 𝑃𝑛,0(𝑡) increases steadily as the transition 
into the state (𝑛, 0) can take place either from (𝑛 − 1,0) at the rate 𝜆 or from 
(𝑛, 1) at the rate 𝛾1or from (𝑛, 2) at the rate 𝛾2.However, for a particular value of t 
the value of the probability decreases with increase in the number of customer in the 
system. This is because it is more probable to find the system with fewer customers at 
any time as service takes place continuously at an exponential rate with parameter,𝜇 =
0.6. 
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Figure 7. 𝑷𝒏,𝟎(𝒕) versus 𝒕  

 

Figure 8. 𝑷𝒏,𝟎(𝒕) versus 𝒕 

 

 

 

 

 

Table 1 presents the values of the steady state probabilities for the different choices of 
n as depicted in the various figures as converging probabilities.  
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𝑛 𝑃𝑛,1 𝑛 𝑃𝑛,2 𝑛 𝑃𝑛,0 

10 

11 

12 

13 

14 

15 

16 

17 

18 

5.6974e-07 

1.7550e-07 

5.4063e-08 

1.6655e-08 

5.1311e-09 

1.5809e-09 

4.8711e-09 

1.5010e-10 

4.6254e-11 

3 

4 

5 

6 

7 

15 

16 

17 

18 

0.4094*10-2 

0.1173*10-2 

3.3630e-04 

9.6411e-05 

2.7645e-05 

1.1336e-09 

3.2393e-10 

9.2566e-11 

2.6452e-11 

7 

8 

9 

10 

13 

16 

17 

18 

19 

0.2426*10-1 

0.1610*10-1 

0.1065*10-1 

0.7023*10-2 

0.1984*10-2 

6.2081e-04 

4.1174e-04 

2.7316e-04 

1.8136e-04 

 

Table 1: Steady State Probabilities for varying values of n 

Figure 9 describes how the mean value changes according to varying values of 𝛾1. The 
mean value increases when the value of 𝛾1decreases. Figure 10 describes how the 
variance value changes according to varying values of  𝛾1.The variance value also 
increases when the value of 𝛾1decreases. 
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Figure 9. Mean versus 𝒕 

. 

 

Figure 10.  Variance versus 𝒕 

 

References 

1. Alouf, S., Altman, E., and Azad, A. P, “Analysis of an z queue with repeated 
inhomogeneous vacations – application to IEEE 802.16e power saving” (Research Report 
RR-6488). INRIA,2008. 

2. Ayyappan, G,  Sekar G. and Ganapathi, A.M,” M/M/1 retrial queueing system with 
vacation interruptions under Erlang-K service”, International Journal of Computer 
Applications, vol.2, pp. 52-57, 2010. 

3. Boutoumi B and Gharbi N, “Two Thresholds Working Vacation Policy for Improving 
Energy Consumption and Latency in WSNs”, In: Takahashi Y., Phung-Duc T., 
Wittevrongel S., Yue W. (eds) Queueing Theory and Network Applications. QTNA 
2018. Lecture Notes in Computer Science, vol 10932. Springer, Cham 

4. Doshi, B.T, “Queueing systems with vacation – A survey”, Queueing System, vol.1, pp. 29-
66, 1986. 

5. Doshi, B. T,  “Single server with vacations”, Stochastic Analysis of Computer and 
Communication Systems, H. Takagi, Ed. Amsterdam, The Netherlands: Elsevier, 1990. 

6. Ibe, O.C.  and Isijola, O. A,  “𝑀/𝑀/1 multiple vacation queueing systems with 
differentiated vacations,” Modelling and Simulation in Engineering, vol.2014,  
Article ID 158247, 2014a. 

7. Isijola O. A.and Ibe O.C,“𝑀/𝑀/1 multiple vacation queueing systems with differentiated 
vacations and vacation interruptions,” IEEE Access, vol.2, pp. 1384-1395, 2014b.  

8. Levy, Y. and Yechiali, U, “Utilization of idle time in an M/G/1 queueing system”, 
Management Science, vol.22, pp.202-211,1975. 

9. Li, J. and Tian, N, “The 𝑀/𝑀/1 queue with working vacations and vacation interruption,” 
Journal of Systems Science and Systems Engineering, vol.16, pp. 121-127, 2007. 

10.  Li, J.H,   Tian, N.S.  and Ma, Z.Y, “Performance analysis of 𝐺𝐼/𝑀/1 queue with working 
vacations and vacation interruption,” Applied Mathematical Modelling, vol.32, pp. 2715-
2730, 2008. 

142



K.V. VIJAYASHREE, B. JANANI *AND K. AMBIKA  

 
11. Servi, L. D., and Finn,S. G.,”𝑀/𝑀/1 queues with working vacations(𝑀/𝑀/1/

𝑊𝑉)”,Performance Evaluation, vol. 50, pp. 41–52, 2002. 
12. Sreenivasan, C. Chakravarthy, S.R.  and Krishnamoorthy, A,” 𝑀𝐴𝑃/𝑃𝐻/1 queue with 

working vacations, vacations interruptions and 𝑁 policy,” Applied Mathematical 
Modelling, vol.37, pp. 3879-3893, 2013. 

13. Suranga Sampath, M. I. G. and Jicheng Liu,” Impact of customers’ impatience on an 
𝑀/𝑀/1 queueing system subject to differentiated vacations with a waiting server, Quality 
Technology and Quantitative Management, vol. 17, pp.125-148, 2020. 

14. Takagi, H. Queueing Analysis: A Foundation of Performance Analysis, Volume I: Vacation 
and Priority Systems. Part 1 Amsterdam.  The Netherlands: Elsevier, 1991. 

15. Tian, N. and Zhang, G. Vacation Queueing Models: Theory and Applications, New York, 
Springer Verlag, 2006. 

16. Vijayashree, K.V.  and Janani, B, ‘Transient Analysis of an 𝑀/𝑀/1 Queueing Systems 
subject to Differentiated Vacations’, Quality Technology and Quantitative Management, 
vol.15, pp. 730-748,2018. 

17. Zhang, M. and Hou, Z, “Performance analysis of 𝑀/𝐺/1 queue with working vacations 
and vacation interruption,” Journal of Computational and Applied Mathematics, vol.234, 
pp. 2977-2985, 2010. 

 

VIJAYASHREE K.V: DEPARTMENT OF MATHEMATICS, ANNA UNIVERSITY, CHENNAI, 

TAMILNADU, INDIA. 

E-MAIL: VKVIJI@GMIAL.COM 

JANANI B*: DEPARTMENT OF MATHEMATICS, RAJALAKSHMI INSTITUTE OF 

TECHNOLOGY, CHENNAI, TAMILNADU, INDIA. 

E-MAIL: JANANISRINI2009@GMAIL.COM 

AMBIKA K: DEPARTMENT OF MATHEMATICS, ANNA UNIVERSITY, CHENNAI, 

TAMILNADU, INDIA. 

E-MAIL: AMBISAVI.AMBIKA@GMAIL.COM  

 

143

mailto:vkviji@gmial.com
mailto:jananisrini2009@gmail.com

