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Abstract. In this paper, we introduce and study new class Mn(ω, ϑ, µ, θ)

of meromorphic univalent functions defined in U∗ = {z : z ∈ C and 0 <
|z| < 1} = U \{0}.We obtain coefficients inequaities, distortion theorems,
extreme points, closure theorems, radius of convexity estimates and modified

Hadamard products.

1. Introduction

Let Σ∗ denote the class of meromorphic function of the form

f(z) =
1

z
+

∞∑
n=1

anz
n, (an ≥ 0) (1.1)

which are analytic in the punctured unit disc U∗ = {z : z ∈ C and 0 < |z| < 1} =
U \{0}. Let g(z) ∈ Σ∗ be given by

g(z) =
1

z
+

∞∑
n=1

bnz
n (1.2)

then the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) = 1

z
+

∞∑
n=1

anbnz
n = (g ∗ f)(z) (1.3)

A function f ∈ Σ∗ is meromorphic starlike of order ω(0 ≤ ω < 1), if

−Re

{
zf ′(z)

f(z)

}
> ω, (z ∈ U). (1.4)

The class of such functions is denoted by Σ∗(ω). A function f ∈ Σ∗ is meromorphic
convex of order ω(0 ≤ ω < 1), if

−Re

{
1 +

zf ′′(z)

f ′(z)

}
> ω, (z ∈ U). (1.5)

The class of such functions is denoted by Σ∗
k(ω). The classes Σ∗(ω) and Σ∗

k(ω)
were introduced and studied by Pommerenke [5], Miller [3], Mogra et al. [4], Cho
[2] , Venkateswarlu et al. [8].
In [1], Atshan and Kulkarni introduced Rapid-operator for analytic functions and
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2 ANEW SUBCLASS OF MEROMORPHIC...

Rosy and Sunil Varma [6] modified their operator to meromorphic functions as
follows.

Lemma 1.1. For f ∈ Σ∗ given by (1.1), 0 ≤ µ ≤ 1 and 0 ≤ θ ≤ 1, if the operator
Sθ
µ : Σ∗ → Σ∗ is defined by

Sθ
µf(z) =

1

(1− µ)θΓ(θ + 1)

∫ ∞

0

t1+θe
−t
1−µ f(zt)dt (1.6)

then

Sθ
µf(z) =

1

z
+

∞∑
n=1

L(n, µ, θ)anz
n (1.7)

where L(n, µ, θ) = (1− µ)n+1 Γ(n+θ+2)
Γ(θ+1) and Γ is the familar Gamma function.

Definition 1.2. For 0 ≤ ω < 1, 0 < ϑ ≤ 1, 0 ≤ µ ≤ 1, 0 ≤ θ ≤ 1 and n ∈ N ,
we denote by Mn(ω, ϑ, µ, θ), the subclass of Σ∗ consisting of functions of the form
(1.1) and satisfying the analytic criterion∣∣∣∣∣ z2(Sθ

µf(z))
′ + 1

z2(Sθ
µf(z))

′ + (2ω − 1)

∣∣∣∣∣ < ϑ (z ∈ U∗) (1.8)

Unless otherwise mentioned, we assume throughout this paper that 0 ≤ ω < 1,
0 < ϑ ≤ 1, 0 ≤ µ ≤ 1, 0 ≤ θ ≤ 1, n ∈ N and z ∈ U∗

2. Coefficient Estimates

Theorem 2.1. The function f(z) ∈ Mn(ω, ϑ, µ, θ) if and only if

∞∑
n=1

[n(1 + ϑ]L(n, µ, θ)an ≤ 2ϑ(1− ω). (2.1)

Proof. Suppose (2.1) holds, so

|z2(Sθ
µf(z))

′ + 1| − ϑ|(z2(Sθ
µf(z))

′ + (2ω − 1)|

= |
∞∑

n=1
nL(n, µ, θ)anz

n+1| − ϑ

∣∣∣∣2(ω − 1) +
∞∑

n=1
nL(n, µ, θ)anz

n+1

∣∣∣∣
≤

∞∑
n=1

nL(n, µ, θ)anr
n+1| − ϑ

{
2(ω − 1) +

∞∑
n=1

nL(n, µ, θ)anr
n+1

}
=

∞∑
n=1

n(1 + ϑ)L(n, µ, θ)anr
n+1 − 2ϑ(1− ω)

Since the above inequality holds for all r, 0 < r < 1,

letting r → 1−, we have

∞∑
n=1

n(1 + ϑ)L(n, µ, θ)an − 2ϑ(1− ω) ≤ 0

by (2.1), hence f(z) ∈ Mn(ω, ϑ, µ, θ).
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ANEW SUBCLASS OF MEROMORPHIC... 3

Conversely, suppose that f(z) is in the class Mn(ω, ϑ, µ, θ), then∣∣∣∣∣ z2(Sθ
µf(z))

′ + 1

z2(Sθ
µf(z))

′ + (2ω − 1)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

∞∑
n=1

nL(n, µ, θ)anz
n+1

2(1− ω)−
∞∑

n=1
nL(n, µ, θ)anzn+1

∣∣∣∣∣∣∣∣ ≤ ϑ.

Using the fact that Re(z) ≤ |z| for all z, we have

∣∣∣∣∣ z2(Sθ
µf(z))

′ + 1

z2(Sθ
µf(z))

′ + (2ω − 1)

∣∣∣∣∣ ≤


∞∑
n=1

nL(n, µ, θ)anz
n+1

2(1− ω)−
∞∑

n=1
nL(n, µ, θ)anzn+1

 ≤ ϑ. (2.2)

If we choose z to be real so that z2(Sθ
µf(z))

′ is real. Upon cleaning the denominator

in (2.2) and letting z → 1− through positive values, we obtain
∞∑

n=1

n[1 + ϑ]L(n, µ, θ)an ≤ 2ϑ(1− ω).

This completes the proof of the theorem. �

Corollary 2.2. Let the function f(z) denoted by (1.1) be in Mn(ω, ϑ, µ, θ), then

an ≤ 2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
(n ≥ 1),

with equality for the function

f(z) =
1

z
+

2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
zn (2.3)

3. Distortion Theorems

Theorem 3.1. Let the function f(z) ∈ Mn(ω, ϑ, µ, θ), then for
0 < |z| = r < 1 , we have

1

r
− 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
r ≤ |f(z)| ≤ 1

r
− 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
r

(3.1)
with equality for the function

f(z) =
1

z
+

2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
zn (3.2)

Proof. Suppose that f is in Mn(ω, ϑ, µ, θ). In view of Theorem 2.3, we have

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
∞∑

n=1

an ≤
∞∑

n=1

n[1 + ϑ]L(n, µ, θ)an ≤ 2ϑ(1− ω)

. Then
∞∑

n=1

an ≤ 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
. (3.3)
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4 ANEW SUBCLASS OF MEROMORPHIC...

Consequently, we obtain

|f(z)| =

∣∣∣∣∣1z +

∞∑
n=1

anz
n

∣∣∣∣∣ ≤ 1

|z|
+

∞∑
n=1

an|z|n

≤ 1

r
+ r

∞∑
n=1

an

≤ 1

r
− 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
r (3.4)

Also,

|f(z)| =

∣∣∣∣∣1z +

∞∑
n=1

anz
n

∣∣∣∣∣ ≥ 1

|z|
−

∞∑
n=1

an|z|n

≥ 1

r
− r

∞∑
n=1

an

≥ 1

r
− 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
r. (3.5)

Hence, (3.1) follows. �
Theorem 3.2. Let the function f ∈ Mn(ω, ϑ, µ, θ), then for
0 < |z| = r < 1, we have

1

r2
− 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2))
≤ |f ′(z)|

≤ 1

r2
+

2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2))
(3.6)

with equality for the function f(z) given by (3.2).

Proof. From theorem (2.1) and (3.3), we have,
∞∑

n=1

nan ≤ 2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
. (3.7)

The remaining part of the proof is similar to the proof of Theorem 3.1, so we omit
the details. �

4. Closure Theorems

Let the functions fj(z) be defined for j = 1,2,...,m by

fj(z) =
1

z
+

∞∑
n=1

an,jz
n, (an,j ≥ 0) (4.1)

Theorem 4.1. Let fj(z) ∈ Mn(ω, ϑ, µ, θ), (j = 1, 2, ....m). Then the function

h(z) =
1

z
+

∞∑
n=1

 1

m

∞∑
j=1

an,j

 zn (4.2)
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ANEW SUBCLASS OF MEROMORPHIC... 5

is in Mn(ω, ϑ, µ, θ).

Proof. Sincefj(z) ∈ Mn(ω, ϑ, µ, θ), (j = 1, 2, ....m), it follows from Theorem (2.1),
that

∞∑
n=1

n[1 + ϑ]L(n, µ, θ)an,j ≤ 2ϑ(1− ω),

for every j = 1,2,....,m. Hence

∞∑
n=1

n[1 + ϑ]L(n, µ, θ)

 1

m

∞∑
j=1

an,j


=

1

m

∞∑
j=1

[ ∞∑
n=1

n[1 + ϑ]L(n, µ, θ)an,j

]
≤ 2ϑ(1− ω).

From Theorem 2.1, it follows that h(z) ∈ Mn(ω, ϑ, µ, θ)
This completes the proof. �

Theorem 4.2. The class Mn(ω, ϑ, µ, θ) is closed under convex linear combina-
tions.

Proof. Let fj(z), (j = 1, 2) defined by (4.1) be in the class Mn(ω, ϑ, µ, θ), then it
is sufficient to show that

h(z) = ξf1(z) + (1− ξ)f2(z), (0 ≤ ξ ≤ 1) (4.3)

is in the class Mn(ω, ϑ, µ, θ). Since

h(z) =
1

z
+

∞∑
n=1

[ξan,1 + (1− ξ)an,2]z
n, (4.4)

then, we have from Theorem 2.1, that

∞∑
n=1

n[1 + ϑ]L(n, µ, θ)[ξan,1 + (1− ξ)an,2]

≤ 2ξϑ(1− ω) + 2ϑ(1− ξ)(1− ω) = 2ϑ(1− ω)

So, h(z) ∈ Mn(ω, ϑ, µ, θ). �

Theorem 4.3. Let 0 ≤ ρ < 1, then

Mn(ω, ϑ, µ, θ) ⊆ Mn(ρ, ϑ, µ, θ)

where

ρ = 1− (1 + ϑ)(1− ω)

(1 + ϑ)
. (4.5)

Proof. Letf(z) ∈ Mn(ω, ϑ, µ, θ), then

∞∑
n=1

n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)
an ≤ 1. (4.6)

293



6 ANEW SUBCLASS OF MEROMORPHIC...

We need to find the value of ρ such that

∞∑
n=1

n(1 + ϑ)

2ϑ(1− ρ)
L(n, µ, θ)an ≤ 1. (4.7)

In view of equations (4.6) and (4.7), we have

n[1 + ϑ]

2ϑ(1− ρ)
L(n, µ, θ) ≤ n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)
.

That is

ρ ≤ 1− γ(1 + ϑ)(1− ω)

(1 + 2ϑγ − ϑ)

. which completes the proof of theorem. �

Theorem 4.4. Let f0(z) =
1
z and

fn(z) =
1

z
+

2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
zn, n ≥ 1. (4.8)

Then f(z) is in the class Mn(ω, ϑ, µ, θ) if and only if, it can be expressed in the
form

f(z) =
∞∑

n=0

µnfn(z) (4.9)

where µn ≥ 0 and
∞∑

n=0
µn = 1.

Proof. Assume that

f(z) =

∞∑
n=0

µnfn(z) =
1

z
+

∞∑
n=1

2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
µnz

n. (4.10)

Then it follows that

∞∑
n=1

2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
µn.

n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)

=
∞∑

n=1
µn = 1− µ0 ≤ 1,

which implies that f(z) ∈ Mn(ω, ϑ, µ, θ).

Conversely, assume that the function f(z) defined by (1.1) be in the class
Mn(ω, ϑ, µ, θ).

Then

an ≤ 2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
.

Setting

µn =
n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)
, n ≥ 1
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ANEW SUBCLASS OF MEROMORPHIC... 7

and

µ0 = 1−
∞∑

n=1

µn,

we can see that f(z) can be expressed in the form (4.9).

This completes the proof of the theorem. �

5. Integral Operators

Theorem 5.1. Let the function f(z) ∈ Mn(ω, ϑ, µ, θ). Then the integral operator

Fc(z) = c

∫ 1

0

ucf(u, z)dz, (0 < u ≤ 1; c > 0) (5.1)

is in the class M0(ξ), where

ξ = 1− 2ϑc(1− ω)

1 + ϑ)(c+ 2)
. (5.2)

The result is sharp for the function f(z) given by (3.2)

Proof. Let f(z) ∈ M0(ξ), then

Fc(z) = c

∫ 1

0

ucf(u, z)dz =
1

z
+

∞∑
n=1

c

n+ c+ 1
anz

n (5.3)

It is sufficient to show that
∞∑

n=1

nc

(n+ c+ 1)(1− ξ)
an ≤ 1 (5.4)

Since f(z) ∈ Mn(ω, ϑ, µ, θ), then

∞∑
n=1

n(1 + ϑ)L(n, µ, θ)

2ϑ(1− ω)
an ≤ 1 (5.5)

From (5.4) and (5.5), we have

nc

(n+ c+ 1)(1− ξ)
≤ n(1 + ϑ)L(n, µ, θ)

2ϑ(1− ω)
,

Then

ξ ≤ 1− 2ϑc(1− ω)

n(1 + ϑ)(n+ c+ 1)
.

Since

H(n) = 1− 2ϑc(1− ω)

n(1 + ϑ)(n+ c+ 1)

is an increasing function of n (n ≥ 1), we obtain

ξ ≤ H(1) = 1− 2ϑc(1− ω)

n(1 + ϑ)(c+ 2)

and hence the proof of theorem 5.1 is completed. �
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8 ANEW SUBCLASS OF MEROMORPHIC...

6. Radius of Convexity

Theorem 6.1. Let the function f(z) ∈ Mn(ω, ϑ, µ, θ). Then f(z) is meromorphi-
cally convex of order δ (0 ≤ δ < 1) in 0 < |z| < r, where

r ≤
{
(1 + ϑ)(1− δ)L(n, µ, θ)

2ϑ(n+ 2− δ)(1− ω)

}1/n+1

(6.1)

The result is sharp.

Proof. We must show that∣∣∣∣2 + zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1− δ for 0 < |z| < r, (6.2)

where r is given by (6.1). Indeed, we find from (6.2) that∣∣∣∣2 + zf ′′(z)

f ′(z)

∣∣∣∣ ≤ ∞∑
n=1

n(n+ 1)an|z|n+1

1−
∞∑

n=1
nan|z|n+1

This will be bounded by 1− δ, if

∞∑
n=1

n(n+ 2− δ)

1− δ
anr

n+1 ≤ 1. (6.3)

But by using Theorem 2.1, (6.3) will be true, if

n(n+ 2− δ)

1− δ
rn+1 ≤ n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)

. Then

r ≤
{
(1 + ϑ)(1− δ)L(n, µ, θ)

2ϑ(n+ 2− δ)(1− ω)

}1/n+1

This completes the proof of theorem. �

7. Modified Hadamard Product

For fj(z) (j = 1, 2) defined by (4.1), the modified Hadamard product of f1(z)
and f2(z) defined by

(f1 ∗ f2)(z) =
1

z
+

∞∑
n=1

an,1an,2z
n = (f2 ∗ f1)(z) (7.1)

Theorem 7.1. Let fj(z) ∈ Mn(ω, ϑ, µ, θ) (j = 1, 2).
Then (f1 ∗ f2)(z) ∈ Mn(ϕ, ϑ, µ, θ), where

ϕ = 1− 2ϑ(1− ω)2

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
(7.2)

The result is sharp for the functions fj(z), (j = 1, 2) given by

fj(z) =
1

z
+

2ϑ(1− ω)

(1 + ϑ)(1− µ)2(θ + 1)(θ + 2)
(7.3)
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Proof. Using the technique for Schild and Silverman [7], we need to find the largest
ϕ such that

∞∑
n=1

n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ϕ)
an,1an,2 ≤ 1 (7.4)

Since fj(z) ∈ Mn(ω, ϑ, µ, θ), (j = 1, 2), we readily see that

∞∑
n=1

n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)
an,1 ≤ 1 (7.5)

and
∞∑

n=1

n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)
an,2 ≤ 1. (7.6)

By the Cauchy Schwarz inequality, we have

∞∑
n=1

n[1 + 2ϑϑ]

2ϑ(1− ω)

√
an,1an,2 ≤ 1. (7.7)

Thus it is sufficient to show that

n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ϕ)
an,1an,2 ≤ n[1 + ϑ]L(n, µ, θ)

2ϑ(1− ω)

√
an,1an,2 (7.8)

or equivalently that

√
an,1an,2 ≤ 1− ϕ)

(1− ω)
(7.9)

Connecting with (7.7), it is sufficient to prove that

2ϑ(1− ω)

n[1 + ϑ]L(n, µ, θ)
≤ (1− ϕ)

(1− ω)
. (7.10)

It follows from (7.10) that

ϕ ≤ 1− 2ϑ(1− ω)2

n[1 + ϑ]L(n, µ, θ)
. (7.11)

Now defining the function G(n) by

G(n) = 1− 2ϑ(1− ω)2

n[1 + ϑ]L(n, µ, θ)
. (7.12)

We see that G(n) is an increasing function of n(n ≥ 1).
Therefore, we conclude that

ϕ ≤ G(1) = 1− 2ϑ(1− ω)2

[1 + ϑ](1− µ)2(θ + 1)(θ + 2)
. (7.13)

which evidently completes the proof of the theorem. �
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