A STUDY ON (ρ, ζ)-CIRCULANT POLYNOMIAL MATRICES

R. MUTHAMILSELVAM AND G. RAMESH

Abstract

Circulant polynomial matrices are defined. Its additive properties are investigated and characterizations are also given.

1. Introduction

Let $\left(a_{1}(\alpha), a_{2}(\alpha), \ldots a_{n}(\alpha)\right)$ be an ordered n-tuple of polynomials with coefficients in the field of complex numbers and let them generate the circulant polynomial matrix [1][3] [4] of order n:

$$
A(\alpha)=\left(\begin{array}{cccc}
a_{1}(\alpha) & a_{2}(\alpha) & \ldots & a_{n}(\alpha) \tag{1.1}\\
a_{n}(\alpha) & a_{1}(\alpha) & \ldots & a_{2}(\alpha) \\
\ldots & \ldots & \ldots & \ldots \\
a_{2}(\alpha) & a_{3}(\alpha) & \ldots & a_{1}(\alpha)
\end{array}\right)
$$

We shall often denote this circulant polynomial matrix as

$$
\begin{equation*}
A(\alpha)=\operatorname{Circ}\left(a_{1}(\alpha), a_{2}(\alpha), \ldots, a_{n}(\alpha)\right) \tag{1.2}
\end{equation*}
$$

In this paper, we define the (ρ, ζ)-circulant polynomial matrix and also, we examine some fundamental properties.

We found a characterization of (ρ, ζ)-circulant polynomial matrix. Let $I_{n}(\alpha)$ be the unit $\mathrm{n} \times \mathrm{n}$ polynomial matrix.

Let $A(\alpha) \in C_{n \times n}(\alpha)$, then $A^{T}(\alpha), A^{*}(\alpha)$ and $|A(\alpha)|$ be its transpose, adjoint and the determinant respectively.

2. (ρ, ζ)-Circulant Polynomial Matrices

Here we define (ρ, ζ)-circulant polynomial matrix. Also, we generalize some properties of (ρ, ζ)-circulant matrices found in [2], [5], [6], [7].

Definition 2.1. If a polynomial matrix is of the form,

$$
A(\alpha)=
$$

[^0]$\left.\left(\begin{array}{ccccc}a_{0}(\alpha) & a_{1}(\alpha) & a_{2}(\alpha) & \ldots & a_{n-2}(\alpha) \\ \rho a_{n-1}(\alpha) & a_{0}(\alpha)-\zeta a_{n-1}(\alpha) & a_{1}(\alpha) & \ldots & a_{n-3}(\alpha) \\ \rho a_{n-2}(\alpha) & \rho a_{n-1}(\alpha)-\zeta a_{n-2}(\alpha) & a_{0}(\alpha)-\zeta a_{n-1}(\alpha) & \ldots & a_{n-4}(\alpha) \\ \rho a_{n-3}(\alpha) & \rho a_{n-2}(\alpha)-\zeta a_{n-3}(\alpha) & a_{n-1}(\alpha)-\zeta a_{n-2}(\alpha) & \ldots & a_{n-5}(\alpha) \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \rho a_{2}(\alpha) & \rho a_{3}(\alpha)-\zeta a_{2}(\alpha) & \rho a_{4}(\alpha)-\zeta a_{3}(\alpha) & \ldots & a_{0}(\alpha)-\zeta a_{n-1}(\alpha) \\ \rho a_{1}(\alpha) & \rho a_{2}(\alpha)-\zeta a_{1}(\alpha) & \rho a_{3}(\alpha)-\zeta a_{2}(\alpha) & \ldots & a_{n-1}(\alpha)-\zeta a_{n-2}(\alpha) \\ a_{n-3}(\alpha) & a_{0}(\alpha)-\zeta a_{n-1}(\alpha)\end{array}\right) \right\rvert\,$
it is known as a (ρ, ζ)-circulant polynomial matrix. which is denoted by
$A(\alpha)=C_{(\rho, \zeta)}\left(a_{0}(\alpha), a_{1}(\alpha), \ldots, a_{n-1}(\alpha)\right)$.
Remark 2.2. (i) If $\zeta=0$, then $A(\alpha)$ is a ρ-circulant polynomial matrix.
(ii)The polynomial matrix $b(\alpha)=C_{(\rho, \zeta)}(0,1,0, \ldots 0)$ is referred to as fundamental (ρ, ζ) circulant matrix.
Example 2.3. A 4X4 (3,2)-circulant polynomial matrix is given below.

$$
\begin{aligned}
& A(\alpha)=\left(\begin{array}{cccc}
\alpha+\alpha^{2} & 1-\alpha & -3+\alpha-2 \alpha^{2} & 2+2 \alpha+3 \alpha^{2} \\
6+6 \alpha+9 \alpha^{2} & -4-3 \alpha-5 \alpha^{2} & 1-\alpha & -3+\alpha-2 \alpha^{2} \\
-9+3 \alpha-6 \alpha^{2} & 12+4 \alpha+13 \alpha^{2} & -4-3 \alpha-5 \alpha^{2} & 1-\alpha \\
3-3 \alpha & 11-5 \alpha-6 \alpha^{2} & 12+4 \alpha-13 \alpha^{2} & -4-3 \alpha+5 \alpha^{2}
\end{array}\right) \\
&=A_{0}+A_{1} \alpha+A_{2} \alpha^{2} \text { where } A_{0}=C_{(3,2)}(0,1,-3,2), A_{1}=C_{(3,2)}(1,-1,1,2)
\end{aligned}
$$

and $A_{2}=C_{(3,2)}(1,0,-2,3)$.
that is
$A_{0}=\left(\begin{array}{cccc}0 & 1 & -3 & 2 \\ 6 & -4 & 1 & -3 \\ -9 & 12 & -4 & 1 \\ 3 & -11 & 12 & -4\end{array}\right) A_{1}=\left(\begin{array}{cccc}1 & -1 & 1 & 2 \\ 6 & -3 & -1 & 1 \\ 3 & 4 & -3 & -1 \\ -3 & 5 & 4 & -3\end{array}\right) A_{2}=\left(\begin{array}{cccc}1 & 0 & -2 & 3 \\ 9 & -5 & 0 & -2 \\ -6 & 13 & -5 & 0 \\ 0 & -6 & 13 & -5\end{array}\right)$
Proposition 2.4. If $A(\alpha), B(\alpha)$ are (ρ, ζ)-circulant polynomial matrices, then $A(\alpha)+B(\alpha), A(\alpha)-B(\alpha), \alpha A(\alpha)$ where α is a scalar, are also (ρ, ζ)-circulant polynomial matrices.

Proposition 2.5. A polynomial matrix $A(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix if and only if $A(\alpha)=f_{A(\alpha)}(b(\alpha))=\left(\sum_{i=0}^{n-1} a_{i}(\alpha) b^{i}(\alpha)\right)$.

Theorem 2.6. A matrix with polynomial coefficients $A(\alpha) \in C^{(n \times n)}(\alpha)$ is a (ρ, ζ) circulant polynomial matrix if and only if $A(\alpha) b(\alpha)=b(\alpha) A(\alpha)$.
Proof. Assume $A(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix.
We must demonstrate our worth $A(\alpha) b(\alpha)=b(\alpha) A(\alpha)$
Let $A(\alpha) b(\alpha)=C_{(\rho, \zeta)}\left(a_{0}(\alpha), a_{1}(\alpha), \ldots a_{n-1}(\alpha)\right)$ be a (ρ, ζ)-circulant polynomial matrix. Then $A(\alpha)=\left(\sum_{i=0}^{n-1} a_{i}(\alpha) b^{i}(\alpha)\right)$.
$\Rightarrow(\alpha) b(\alpha)=b(\alpha) A(\alpha)$.
Conversely, assume that $A(\alpha) b(\alpha)=b(\alpha) A(\alpha)$. Let us prove $A(\alpha)$ is a (ρ, ζ) circulant polynomial matrix.

If $A(\alpha) b(\alpha)=b(\alpha) A(\alpha)$, then

$$
\begin{aligned}
& b^{T}(\alpha) A^{T}(\alpha)=A^{T}(\alpha) b^{T}(\alpha) \\
& \left(b^{T}\right)^{i}(\alpha) A^{T}(\alpha)=A^{T}(\alpha)\left(b^{T}\right)^{i}(\alpha), \mathrm{i}=1,2, \ldots
\end{aligned}
$$

If $e_{i}(\alpha)$ is the $i^{\text {th }}$ column of $I_{n}(\alpha)$, then

$$
b^{T}(\alpha) e_{i}(\alpha)=e_{i+1}(\alpha) \text { for } i=1,2, \ldots n-1
$$

Thus, we have $\left(b^{T}\right)^{i}(\alpha) e_{i}(\alpha)=e_{i+1}(\alpha)$ for $i=1,2, \ldots n-1$.

$$
\begin{aligned}
& \text { Now } A^{T}(\alpha)=A^{T}(\alpha) I_{n}(\alpha) \\
& \quad=A^{T}(\alpha)\left[e_{1}(\alpha), e_{2} \alpha, \ldots, e_{n}(\alpha)\right] \\
& =A^{T}(\alpha)\left[e_{1}(\alpha), b^{T}(\alpha) e_{1} \alpha, \ldots,\left(b^{T}\right)^{n-1}(\alpha) e_{1}(\alpha)\right] \\
& =\left[A^{T}(\alpha) e_{1}(\alpha), A^{T}(\alpha) b^{T}(\alpha) e_{1} \alpha, \ldots, A^{T}(\alpha)\left(b^{T}\right)^{n-1}(\alpha) e_{1}(\alpha)\right] \\
& =\left[A^{T}(\alpha) e_{1}(\alpha), b^{T}(\alpha) A^{T}(\alpha) e_{1} \alpha, \ldots,\left(b^{T}\right)^{n-1}(\alpha) A^{T}(\alpha) e_{1}(\alpha)\right] \\
& =\left[\beta(\alpha),\left(b^{T}\right)(\alpha) \beta(\lambda), \ldots,\left(b^{T}\right)^{n-1}(\alpha) \beta(\lambda)\right]
\end{aligned}
$$

where $\lambda^{T}(\alpha)$ is the first row of $A(\alpha)$.

$$
\text { Let } \lambda^{T}(\alpha)=\left(a_{0}(\alpha), a_{1}\left(\alpha, \ldots, a_{n-1}(\alpha)\right)\right)
$$

Thus $\lambda(\alpha)=\left(\sum_{i=0}^{n-1} a_{i}(\alpha) e_{i+1}(\alpha)\right)$
$A^{T}(\alpha)=\left(\sum_{i=0}^{n-1} a_{i}(\alpha) e_{i+1}(\alpha), \sum_{i=0}^{n-1} a_{i}(\alpha) b^{T}(\alpha) e_{i+1}(\alpha), \cdots \sum_{i=0}^{n-1} a_{i}(\alpha)\left(b^{T}\right)^{n-1}(\alpha) e_{i+1}(\alpha)\right)$
$=\sum_{i=0}^{n-1} a_{i}\left(e_{i+1}(\alpha), b^{T}(\alpha) e_{i+1}(\alpha), \ldots,\left(b^{T}\right)^{n-1}(\alpha) e_{i+1}(\alpha)\right)$
$\left.=\sum_{i=0}^{n-1} a_{i}\left(b^{T}\right)^{i}(\alpha) e_{1}(\alpha),\left(b^{T}\right)^{i+1}(\alpha) e_{1}(\alpha), \ldots,\left(b^{T}\right)^{n+i-1}(\alpha) e_{1}(\alpha)\right)$
$=\sum_{i=0}^{n-1} a_{i}\left(b^{T}\right)^{i}(\alpha)\left(e_{1}(\alpha), e_{2}(\alpha), \ldots, e_{n}(\alpha)\right)$
$=\sum_{i=0}^{n-1} a_{i}(\alpha)\left(b^{T}\right)^{i}(\alpha)$
$\Rightarrow A(\alpha)=\sum_{i=0}^{n-1} a_{i}(\alpha) b(\alpha)$
Hence $A(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix.
Corollary 2.7. $|A(\alpha)| \neq 0$ is a (ρ, ζ)-circulant polynomial matrix if and only if $A^{-1}(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix.

Proof. Given that $|A(\alpha)| \neq 0$ is a (ρ, ζ)-circulant polynomial matrix.
$\Longleftrightarrow A(\alpha) b(\alpha)=b(\alpha) A(\alpha)$
$\Longleftrightarrow A^{-1}(\alpha) b(\alpha)=b(\alpha) A^{-1}(\alpha)$
$\Longleftrightarrow A^{-1}(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix.
Theorem 2.8. If $A(\alpha), B(\alpha)$ are (ρ, ζ)-circulant polynomial matrices, then $A(\alpha) B(\alpha)$ and $B(\alpha) A(\alpha)$ are (ρ, ζ)-circulant polynomial matrices and $A(\alpha) B(\alpha)=B(\alpha) A(\alpha)$.
Proof. Given that $A(\alpha), B(\alpha)$ are (ρ, ζ)-circulant polynomial matrices.
From theorem (2.6), we have $A(\alpha) b(\alpha)=b(\alpha) A(\alpha)$ and $B(\alpha) b(\alpha)=b(\alpha) B(\alpha)$.
Now $[A(\alpha) B(\alpha)] b(\alpha)=A(\alpha)[B(\alpha) b(\alpha)]$

$$
\begin{aligned}
& =A(\alpha)[b(\alpha) B(\alpha)] \\
& =[A(\alpha) b(\alpha)] B(\alpha) \\
& =b(\alpha)[A(\alpha) B(\alpha)]
\end{aligned}
$$

Thus $A(\alpha) B(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix.

$$
\text { Also, } \begin{aligned}
{[B(\alpha)} & A(\alpha)] b(\alpha)=B(\alpha)[A(\alpha) b(\alpha)] \\
& =B(\alpha)[b(\alpha) A(\alpha)] \\
& =[B(\alpha) b(\alpha)] A(\alpha)] \\
& =[b(\alpha) B(\alpha)] A(\alpha)] \\
& =b(\alpha)[B(\alpha) A(\alpha)]
\end{aligned}
$$

Hence $B(\alpha) A(\alpha)$ is a (ρ, ζ)-circulant polynomial matrix.
We can deduce from proposition that (2.5), we assume that $A(\alpha)=f(b(\alpha))$ and $B(\alpha)=g(b(\alpha))$.

$$
\Rightarrow A(\alpha) B(\alpha)=B(\alpha) A(\alpha)
$$

3. Conclusion

some of the characterization of (ρ, ζ)-circulant polynomial matrices are discussed here. In the same way, the other properties can be extended.

References

1. Davis.P.J.: Circulant Matrices, New Yark, 1979.
2. Fried Man.B.: n-Commutative Matrices. Math. Ann., 136 (1958), PP. 343-347.
3. Gray,R.M.: Toeplitz and Circulant matrices: A Review. Information Systems Laboratory, Stanford University, Standard, California March 2000.
4. Horn,R.A. and C.R.Johnson: Matrix Analysis, Cambridge University press, Newyork, 2013.
5. Lele Liu: On the properties and generalized inverses of (r, s)-pair Circulant Matrices, University of Shanghai for Science and Technology, Shanghai200093, P.R. China.
6. Stallings, W.T., T.L.Boullion.: The Pseudo- inverse of an r-circulant Matrix. Proc. Am. Math. Son., 34 (1972), PP.(358-388).
7. Zhang.X and Xu.F: Advanced Algebra, 2nd ed., Tsinghna University Press, Beijing, 2008.
R. MUTHAMILSELVAM :Research Scholar,Department of Mathematics, Government| Arts College (Autonomous), Kumbakonam., Tamil Nadu,India. Affiliated to Bharathidasan University, Trichirappalli - 620024.,

E-mail address: mtamilmaths@gmail.com
G. RAMESH :Associate Professor and Head, Department of Mathematics, Government Arts College (Autonomous), Kumbakonam., Tamil Nadu,India. Affiliated to Bharathidasan University, Trichirappalli - 620024.

E-mail address: grameshgac@gmail.com

[^0]: 2000 Mathematics Subject Classification. 15A09, 15A15,15A57.
 Key words and phrases. Circulant polynomial matrices, (ρ, ζ)-Circulant polynomial matrices.

 * This research is supported by G. Ramesh.

