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ABSTRACT. The Kac-Ornstein-Uhlenbeck processes with reset are studied in detail, in-
cluding the joint distribution of the process and the corresponding counting Poisson pro-
cess. The Laplace transform of the first passage time is also presented.

1. Introduction

Stochastically resetting diffusion processes with numerous applications to quantum
mechanics, statistical physics, and financial modelling have recently become very pop-
ular in the physics literature, for a review see the special issue of Journal of Physics A:
Mathematical and Theoretical, vol.55, No.46 (2022); see also [4, 12]. This model, in-
spired by many examples from nature, assumes a system of interacting (or independent)
particles that, when reset, return to their initial position. Ornstein-Uhlenbeck processes
with reset are already beginning to be studied, [6, 13].

Recently, these results have been generalised to a resetting systems of independent
particles moving at finite velocities that change sequentially according to the underlying
finite state Markov process ε = ε(t), see [5, 2, 4]. Note that in the simplest case such
processes describing continuous one-dimensional movement with a two-state basis, the
so-called telegraph (or flip-flop, [3]) processes, are well studied, see for example [14, 7,
11].

Here, we present a model based on Ornstein-Uhlenbeck processes of bounded vari-
ation, see [9]. This process is defined as a solution to the Langevin equation based on
telegraph process instead of Brownian motion. The process is called the Kac-Ornstein-
Uhlenbeck process. In a continuous setting, the distributions of first passage times and
the invariant measures have been recently studied in [9, 10].

In this article, we are adding jumps/resetting to this model. We will focus on two as-
pects: firstly, on explicit formulae for the joint distribution of the resetting Kac-Ornstein-
Uhlenbeck process and the corresponding process N(t), which counts the number of
restarts, and, secondly, on the distribution of the time of the first crossing by this pro-
cess of a given threshold.. Both aspects have good prospects for applications in financial
modelling [11] or in mathematical physics [5, 2, 4].
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The analysis of such distributions for the Kac-Ornstein-Uhlenbeck processes turns out
to be much more meaningful and rich than when it comes to the simple diffusion case. It
essentially depends on the signs and values of the model parameters.

Section 2 contains the basic settings of the model. In Section 3, we analyse in detail
the joint distribution of X(t) and N(t), and Section 4 is devoted to the distributions of the
first crossing moments.

2. Kac-Ornstein-Uhlenbeck processes with jumps

Let ε = ε(t) be a continuous-time Markov chain with the finite state space E, ε(t) ∈
E = {0,1, . . . ,d}, driven by switching intensities λi j > 0, i, j ∈ E, on the filtered probabil-
ity space (Ω,F ,Ft ,P), t ≥ 0. By Pi we denote the conditional probability measure under
the given initial state ε(0) = i, Pi{·} := P{· | ε(0) = i}; Ei is the expectation with respect
to Pi, i∈ E. Let Φ(t) = exp(tL ) = (Φi j(t))i, j∈E , t ≥ 0, be the transition semigroup with
the infinitesimal generator L .

Let A = A(t) be a continuous piecewise linear random process (telegraph process)
based on ε:

A(t) =
∫ t

0
aε(s)ds,

where a0,a1, . . . ,ad ∈R are constants. Let G=G(t), t ≥ 0, be a piecewise linear process
with jumps, defined with the same ε,

G(t) =−Γ(t)+
N(t)

∑
n=1

Yn, Γ(t) =
∫ t

0
γε(s)ds,

where γ0,γ1, . . . ,γd ∈ R. Here, the sequence of independent r.v. {Yn}n≥1 is independent
on the driving process ε. Let Yn >−1, a.s.

We study the random process X= X(t) that defined by the stochastic equation

X(t) = x+A(t)+
∫ t

0
X(s)dG(s), t ≥ 0.

In differential form, this equation is equivalent to the Cauchy problem

dX(t) = dA(t)+X(t−)dG(t), t > 0, (2.1)

X(0) = x.

The solution can be written explicitly:

X(t) = Et(G)

[
x+

∫ t

0
Es(G)−1dA(s)

]
. (2.2)

Here Et(G) = e−Γ(t)κt , is the Doléans-Dade exponential, κt = ∏
N(t)
n=1(1+Yn), t ≥ 0.

In this paper, we study a particular case of d = 1. Therefore, Φi j(t), t > 0, is given by
2×2-matrix

Φ(t) = (Φi j(t))i, j∈{0,1} =
1

2λ

λ1 +λ0e−2λ t λ0(1− e−2λ t)

λ1(1− e−2λ t) λ0 +λ1e−2λ t

 , t ≥ 0,

2λ = λ0 +λ1, see [11].
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Note that the solution X, (2.2), can only be represented in term of the process G:

X(t) = e−Γ(t)
κt

[
x+ k ·

∫ t

0
κ
−1
s exp(Γ(s))dΓ(s)+ c ·

∫ t

0
κ
−1
s exp(Γ(s))ds

]
,

with linking coefficients

k =
a0−a1

γ0− γ1
and c =

a1γ0−a0γ1

γ0− γ1
.

The trajectories of the process X = X(t) are formed by successive exchange between
the two patterns

φ0(t,y) = ρ0 +(y−ρ0)e−γ0t , φ1(t,y) = ρ1 +(y−ρ1)e−γ1t , (2.3)

which alternate in random moments τn and are accompanied by jumps occurring at the
times of state switching. Here ρ0 = a0/γ0, ρ1 = a1/γ1.

Note that

∂φ0(t,y)
∂ t

−L0(y)[φ0(t,y)]≡ 0,
∂φ1(t,y)

∂ t
−L1(y)[φ1(t,y)]≡ 0, (2.4)

where

L0(y)[φ ] = (a0− γ0y)
∂φ

∂y
, L1(y)[φ ] = (a1− γ1y)

∂φ

∂y
. (2.5)

Theorem 2.1. The infinitesimal generator for the Markov process 〈X(t), ε(t)〉, t ≥ 0, has
a form

L =

(
−λ0 +L0 λ0Ŷ0

λ1Ŷ1 −λ1 +L1

)
, (2.6)

where the differential operators L0 and L1 are defined by (2.5), and the integral operators
Ŷ0, Ŷ1 are defined by

Ŷi[ f ](·) =
∫

∞

−1
f (·(1+ z))gi(dz), i ∈ {0,1}.

Here g0(dy) and g1(dy) denote the distribution of the jump amplitude accompanying the
switching from the state 0 and the state 1, respectively.

Proof. The distribution of X(t) can be described by the following pair

P0(t,dx | y) =P{X(t) ∈ dx | ε(0) = 0, X(0) = y},
P1(t,dx | y) =P{X(t) ∈ dx | ε(0) = 1, X(0) = y}.

By definition of the process X, conditioning on the first switching time, we obtain the
system of integral equations that obey the measures P0(t,dx | y) and P1(t,dx | y),

P0(t, · | y) =e−λ0t
δφ0(t,y)(·)+

∫ t

0
λ0e−λ0τG0(t− τ, ·;τ,y)[P1]dτ,

P1(t, · | y) =e−λ1t
δφ1(t,y)(·)+

∫ t

0
λ1e−λ1τG1(t− τ, ·; τ,y)[P0]dτ,

(2.7)
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where the first terms with Dirac’s δ -measure correspond to the ballistic movement without
switching of the state, and G0, G1 are defined by

G0(t− τ, ·;τ,y)[P1] =
∫

y∈(−1,+∞)

P1(t− τ, · | (1+ z)φ0(τ,y))g0(dz),

G1(t− τ, ·; τ,y)[P0] =
∫

y∈(−1,+∞)

P0(t− τ, · | (1+ z)φ1(τ,y))g1(dz).
(2.8)

Notice that due to (2.4), the following identities hold[
∂

∂ t
−L0(y)

]
G0(t− τ, ·;τ,y)[P1]≡−

∂

∂τ
G0(t− τ, ·;τ,y)[P1],[

∂

∂ t
−L1(y)

]
G1(t− τ, ·;τ,y)[P0]≡−

∂

∂τ
G1(t− τ, ·;τ,y)[P0].

Therefore,[
∂

∂ t
−L0(y)

]
P0(t,dx | y) =−λ0e−λ0t

δφ0(t,y)(·)+λ0e−λ0tG0(0, ·; t,y)[P1]

−
∫ t

0
λ0e−λ0τ ∂

∂τ
G0(t− τ, ·;τ,y)[P1]dτ.

After integration by parts, the latter equation turns into[
∂

∂ t
−L0(y)

]
P0(t,dx | y) =−λ0P0(t,dx | y)+λ0G0(t, ·;0,y)[P1]. (2.9)

Similarly, we obtain the equivalent form of the second equation of (2.7):[
∂

∂ t
−L1(y)

]
P1(t,dx | y) = λ1G1(t, ·;0,y)[P0]−λ1P1(t,dx | y). (2.10)

Since by definition (2.8)

G0(t,dx;0,y)[P1] =
∫

y∈(−1,+∞)

P1(t, · | (1+ z)φ0(0,y))g0(dz) = Ŷ0[P1(t,dx | ·)]

and

G1(t,dx;0,y)[P0] =
∫

y∈(−1,+∞)

P0(t, · | (1+ z)φ1(0,y))g1(dz) = Ŷ1[P0(t,dx | ·)],

integral system (2.7) due to (2.9)-(2.10) is equivalent to
∂P0

∂ t
(t, · | y) =(−λ0 +L0)P0(t, · | y)+λ0 · Ŷ0[P1](t, · | y),

∂P1

∂ t
(t, · | y) =λ1 · Ŷ1[P0](t, · | y)+(−λ1 +L0)P1(t, · | y),

which gives (2.6).

In what follows, we will assume that at each regime change, the particle returns com-
pletely to its original position, i.e., Yn ≡ −1. In this case, the solution X of the equation
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(2.1) is formed by a successive reset to the origin, occurring at times τn between the
patterns φ0 and φ1,

φ0(t) = ρ0
(
1− e−γ0t) , φ1(t) = ρ1

(
1− e−γ1t) , t > 0, (2.11)

cf (2.3). Assume for definiteness that ρ0 ≤ ρ1.
Note that the function φ = φ(t) = ρ(1− e−γt) follows a certain behaviour depending

on the signs of the parameters. For example, if γ < 0, then φ(t) monotonically increases
up to +∞ (ρ < 0) or decreases up to −∞ (ρ > 0). If γ > 0, then φ(t) tends to ρ (increases
if ρ > 0 or decreases if ρ < 0). Hence, if γ 6= 0, then there exists an inverse function φ−1,

φ
−1(x) =−γ

−1 log(1− x/ρ),

and its domain depends on the signs of ρ and γ .

3. The joint distribution of X(t) and N(t).

Let us first assume that the process X= X(t) starts at the origin, X(0) = 0.
The joint distribution of the particle’s position X(t) and the number of state switches

N(t) is defined by the probability density functions pi(t,x;n),

pi(t,x;n)dx = Pi{X(t) ∈ dx, N(t) = n}, i ∈ {0,1}, n≥ 1.

The probability density functions p0(t,x;n) and p1(t,x;n), n≥ 1, can be presented sepa-
rately for even and odd number n.

When there are no switching, the distribution is by definition singular,

p0(t,dx; 0) = P0(X(t) ∈ dx, N(t) = 0) =exp(−λ0t)δφ0(t)(dx),

p1(t,dx; 0) = P1(X(t) ∈ dx, N(t) = 0) =exp(−λ1t)δφ1(t)(dx),
(3.1)

see (2.11), and the distribution of X(t) can be written by summing up:

P0{X(t) ∈ dx}=exp(−λ0t)δφ0(t)(dx)+P0(t,x)dx,

P1{X(t) ∈ dx}=exp(−λ1t)δφ1(t)(dx)+P1(t,x)dx,

where the regular part of the distribution corresponds to the sums

P0(t,x) =
∞

∑
n=1

p0(t,x;n), P1(t,x) =
∞

∑
n=1

p1(t,x;n). (3.2)

When the process X= X(t) starts at an arbitrary point y, the starting point is lost after
the first state switch. Therefore, only the singular part changes: the distribution Pt of X(t)
is given by the probability density functions

pi(t,x | y) = Pi{X(t) ∈ dx | X(0) = y}/dx, i ∈ {0,1},
where

p0(t,x | y) =e−λ0t
δ (x−φ0(t,y)+P0(t,x),

p1(t,x | y) =e−λ1t
δ (x−φ1(t,y))+P1(t,x),

(3.3)

see (2.3).
Since the particle returns to the origin after any state switch and then continues de-

terministically until the next reset, the distribution of the point X(t) is determined by the
distribution of the time of the last switch. Exact formulae are given by the following
theorem.
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Theorem 3.1. The joint distribution of X(t) and N(t) is determined as follows.
If ε(0) = 0, then

p0(t,x;2n+1) =
λ

n+1
0 λ n

1 e−λ0t
(
t−φ

−1
1 (x)

)2n

|a1|(2n)!

[
1− x

ρ1

]−1+γ
−1
1 (λ1−λ0)

(3.4)

×Φ(n,2n+1;(λ0−λ1)(t−φ
−1
1 (x))) ·1{0<φ

−1
1 (x)<t},

p0(t,x;2n) =
λ n

0 λ n
1 e−λ0t

(
t−φ

−1
0 (x)

)2n−1

|a0|(2n−1)!

[
1− x

ρ0

]−1

(3.5)

×Φ(n,2n;(λ0−λ1)(t−φ
−1
0 (x))) ·1{0<φ

−1
0 (x)<t},

If ε(0) = 1, then

p1(t,x;2n) =
λ n

0 λ n
1 e−λ1t

(
t−φ

−1
1 (x)

)2n−1

|a1|(2n−1)!

[
1− x

ρ1

]−1

(3.6)

×Φ(n,2n;(λ1−λ0)(t−φ
−1
1 (x))) ·1{0<φ

−1
1 (x)<t},

p1(t,x;2n+1) =
λ n

0 λ
n+1
1 e−λ1t

(
t−φ

−1
0 (x)

)2n

|a0|(2n)!

[
1− x

ρ0

]−1+γ
−1
0 (λ0−λ1)

(3.7)

×Φ(n,2n+1;(λ1−λ0)(t−φ
−1
0 (x))) ·1{0<φ

−1
0 (x)<t}.

Here φ
−1
0 (x) and φ

−1
1 (x) are the inverse functions,

φ
−1
0 (x) =−γ

−1
0 log(1− x/ρ0), φ

−1
1 (x) =−γ

−1
1 log(1− x/ρ1),

and Φ is a confluent hypergeometric function.

Proof. Let {τn}n≥1 be a sequence of the successive reset times. Recall that the n-th
switching time τn has a generalised Erlang distribution given by

P0{τn ∈ dt}=λ
(×,n)
0

tn−1

(n−1)!
e−λ0t

Φ([n/2] ,n;(λ0−λ1)t)dt,

P1{τn ∈ dt}=λ
(×,n)
1

tn−1

(n−1)!
e−λ1t

Φ([n/2] ,n;(λ1−λ0)t)dt,
(3.8)

see [11, Remark 1.3] and [8]. Here λ
(×,n)
0 is the product of successively alternating λ0

and λ1 (beginning with λ0).
We present here a detailed proof of (3.4)-(3.5). The remaining formulae are proved

similarly.
By conditioning on the last switching, using (3.1), we obtain the following integral

relations,

p0(t,x;2n+1) =
∫ t

0
e−λ1(t−s)

δ (x−φ1(t− s))P0{τ2n+1 ∈ ds}, (3.9)

x > 0, n≥ 0, see Fig. 1.
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t

φ1

t
τ1

τ2n+1

FIGURE 1. To formula (3.9).

By (3.9) and (3.8), we have

p0(t,x;2n+1) =
λ

n+1
0 λ n

1
(2n)!

∫ t

0
e−λ0s−λ1(t−s)s2n

Φ(n,2n+1;(λ0−λ1)s)δ (x−φ1(t− s))ds.

(3.10)
Apply the change of variables y = x−φ1(t− s) instead of s, 0 < s < t, such that s = t−

φ
−1
1 (x−y)= t+γ

−1
1 log

(
1− x−y

ρ1

)
. Hence, e−λ0s−λ1(t−s)=

(
1− x−y

ρ1

)(λ1−λ0)γ
−1
1 e−λ0t and

ds = a−1
1

[
1− x− y

ρ1

]−1

dy. Since the integral (3.10) does not vanish only if 0 < φ
−1
1 (x)<

t, we obtain

p0(t,x;2n+1) =
λ

n+1
0 λ n

1 e−λ0t
(
t−φ

−1
1 (x)

)2n

|a1|(2n)!
×

×
[

1− x
ρ1

]−1+(λ1−λ0)γ
−1
1

Φ(n,2n+1;(λ0−λ1)(t−φ
−1
1 (x)))1{0<φ

−1
1 (x)<t},

which coincide with (3.4).
Similarly,

p0(t,x;2n) =
λ n

0 λ n
1 e−λ1t

(2n−1)!

∫ t

0
s2n−1

Φ(n,2n;(λ0−λ1)s)δ (x−φ0(t− s))ds,

which, after the same change of variable, gives (3.5). �

The regular parts P0(t,x), P1(t,x) of the distribution follow by summing up, see
(3.2). Notice that in the symmetric case these functions can be written in the closed form.
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Corollary 3.2. Let λ0 = λ1 = λ . Therefore,

P0(t,x) =
λ

2|a0|
(1− x/ρ0)

−1+λ/γ0
[
1− e−2λ t(1− x/ρ0)

−2λ/γ0
]
1{0<φ

−1
0 (x)<t}

+
λ

2|a1|
(1− x/ρ1)

−1+λ/γ1
[
1+ e−2λ t(1− x/ρ1)

−2λ/γ1
]
1{0<φ

−1
1 (x)<t},

P1(t,x) =
λ

2|a0|
(1− x/ρ0)

−1+λ/γ0
[
1+ e−2λ t(1− x/ρ0)

−2λ/γ0
]
1{0<φ

−1
0 (x)<t}

+
λ

2|a1|
(1− x/ρ1)

−1+λ/γ1
[
1− e−2λ t(1− x/ρ1)

−2λ/γ1
]
1{0<φ

−1
1 (x)<t}.

(3.11)

−0.6 −0.4 −0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

φ0(t) φ1(t)

FIGURE 2. Pure attraction: the probability density function
P0(t,x), φ0(t)< x < φ1(t), with λ = 1, γ0 = γ1 =+1; ρ0 =−1,ρ1 =
1; t = 1; see (3.11).

Formulae (3.4)-(3.6) as well as (3.11) have different meanings with different signs of
the parameters.

Namely, if both velocities γ are positive (the case of pure attraction), then (after the first
switching of state) the distribution of X(t) is supported on the compact [φ0(t), φ1(t)] ⊂
[ρ0, ρ1]. More precisely, in this case the probability density functions p0(t,x;2n + 1)
and p1(t,x;2n) are supported on the positive half-interval, [0,φ1(t)), and the functions
p0(t,x;2n) and p1(t,x;2n+1) are supported on the negative half-interval, (φ0(t),0].

Compare also Fig. 2 and Fig. 3, which presents two different cases of pure attraction.
Conversely, if both γ are negative, then the distribution of X(t) is located in the interval

[φ1(t), φ0(t)], t > 0, which increases with t logarithmically. In this case, p0(t,x;2n+
1) and p1(t,x;2n) are supported on (φ1(t),0], while p0(t,x;2n) and p1(t,x;2n+ 1) are
defined for x ∈ [0,φ0(t)), see Fig. 4.
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−0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.2

φ0(t) φ1(t)

FIGURE 3. Pure attraction: the probability density function
P0(t,x), φ0(t) < x < φ1(t), with λ = 1, γ0 = γ1 = 2; ρ0 = −1,ρ1 =
1; t = 1.

−1.5 −1 −0.5 0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

φ1(t) φ0(t)

FIGURE 4. Pure reflection: the probability density function
P0(t,x), φ0(t)< x < φ1(t), with λ = 1, γ0 = γ1 =−1; ρ0 =−1,ρ1 =
1; t = 1;

In a mixed case, say if γ0 < 0 < γ1, then suppP0 ⊂ [0,∞) and suppP1 ⊂ [0,∞); if
γ0 > 0 > γ1, then the distribution is supported on negative semi-line. Fig. 5 and Fig. 6
correspond to two different probability density functions in the mixed case.
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1

φ1(t) φ0(t)

FIGURE 5. The probability density function P0(t,x), 0 < x < φ0(t),
with λ = 1, ρ0 =−1,ρ1 = 1; t = 1, in the mixed case γ0 =−1,γ1 = 1;
see (3.11).

The integration in (3.11) confirms that the distribution of X(t) is proper. Indeed,∫
∞

−∞

p0(t,x | y)dx = e−λ t +
∫

∞

−∞

P0(t,x)dx

= e−λ t +
λ

2|a0|

∫
x: 0<φ

−1
0 (x)<t

[
(1− x/ρ0)

−1+λ/γ0 − e−2λ t(1− x/ρ0)
−1−λ/γ0

]
dx

+
λ

2|a1|

∫
x: 0<φ

−1
1 (x)<t

[
(1− x/ρ1)

−1+λ/γ1 + e−2λ t(1− x/ρ1)
−1−λ/γ1

]
dx.

By applying the changes of variables, τ = φ
−1
0 (x) (in the first integral) and τ = φ

−1
1 (x)

(in the second integral), we obtain∫
∞

−∞

p0(t,x | y)dx

= e−λ t +
1
2

[
(1− e−λ t)− (e−λ t − e−2λ t)

]
+

1
2

[
(1− e−λ t)+(e−λ t − e−2λ t)

]
≡ 1.

Similarly,
∫

∞

−∞
p1(t,x | y)dx≡ 1.

In the case of pure attraction, i.e. if γ0,γ1 > 0, the support of the distribution of X(t)
leis in the compact interval [ρ0, ρ1], and X(t) converges in distribution as t → ∞. Let us
give a detailed proof in the symmetric case.

Theorem 3.3. Let γ0,γ1 > 0.
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FIGURE 6. The probability density function P0(t,x), φ1(t) < x < 0,
with λ = 1, ρ0 =−1,ρ1 = 1; t = 0.5, in the mixed case γ0 = 1,γ1 =−1;
see (3.11).

In the symmetric case, λ0 = λ1 = λ , the process X(t) weakly converges,

X(t) D→ X∗, t→ ∞,

where the distribution of X∗ is determined by the probability density function P∗(x) =
P{X∗ ∈ dx}/dx, which is given by

P∗(x) =
λ

2|a1|
(1− x/ρ1)

−1+λ/γ11{φ−1
1 (x)>0}+

λ

2|a0|
(1− x/ρ0)

−1+λ/γ01{φ−1
0 (x)>0}.

(3.12)

Proof. Note that the pointwise convergence to the distribution (3.12) follows directly
from (3.11) and (3.3). We need to check if the family of measures {Pt}t≥0 is tight.

As before, the sense and the proofs are different for different combinations of parame-
ter signs. Let first ρ0 < 0 < ρ1. Hence a0 < 0 < a1. Note that due to (2.3), in this case we
have

lim
t→∞

φ0(t) = ρ0, lim
t→∞

φ1(t) = ρ1.

In this case, by (3.11) the distribution {Pt} are supported on the interval [φ0(t),φ1(t)] ⊂
(ρ0, ρ1), see Fig. 2 and Fig. 3, and the probability density functions Pi(t,x) converge:

P∗(x) = lim
t→∞

P0(t,x) = lim
t→∞

P1(t,x)

=
λ

2a1
(1− x/ρ1)

−1+λ/γ11{0<x<ρ1}−
λ

2a0
(1− x/ρ0)

−1+λ/γ01{ρ0<x<0},

a0 < 0 < a1.
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Further, for any δ > 0, δ < 1, by virtue of explicit representation (3.11) for t ≥
−max(1/γ0, 1/γ1) · logδ , we have:

Pi{ρ0(1+δ )< X(t)< ρ1(1−δ )}

=
λ

2a1

∫
ρ1(1−δ )

0
(1− x/ρ1)

−1+λ/ρ1dx− λ

2a0

∫ 0

ρ0(1−δ )
(1− x/ρ0)

−1+λ/ρ0dx

=
1
2

[
(1−δ

λ/γ1)+(1−δ
λ/γ0)

]
= 1− 1

2
(δ λ/γ0 +δ

λ/γ1).

Therefore, the family of distributions of X(t), t > 0 is compact on D [ρ0, ρ1] that is, for
any ε > 0, exists δ = δ (ε) such that for t ≥−max(1/γ0, 1/γ1) · logδ

P0{ρ0 +δ < X(t)< ρ1−δ}> 1− ε

uniformly in t, t ≥−max(1/γ0, 1/γ1) · logδ .
The result follows from Prohorov’s theorem, see [1, Theorem 13.3]. �

4. First crossing time

Let

T (x) = inf{t > 0 : X(t) = x}

be the moment when the process X =X(t) first crosses the threshold x. Define the Laplace
transforms (moment generating functions of T (x)) as

`0(q,x) = E0[exp(−qT (x))], `1(q,x) = E1[exp(−qT (x))]

We represent `0(q,x) and `1(q,x) explicitly using the following notations. Let

κ = κ(q) =
λ0λ1

(q+λ0)(q+λ1)

and

G0(q,w0,w1) =
w0 +

λ0
q+λ0

(1−w0)w1

1−κ(q)(1−w0)(1−w1)
,

G1(q,w0,w1) =
w1 +

λ1
q+λ1

w0(1−w1)

1−κ(q)(1−w0)(1−w1)
,

F(q,w) =
w

1−κ(q)(1−w)
=

(q+λ0)(q+λ1)w
q(q+λ0 +λ1)+λ0λ1w

,

0 < w0,w1,w < 1.

(4.1)

Everywhere below we use the following expressions instead of w:

w0 = w0(q,x) =exp
(
−(q+λ0)φ

−1
0 (x)

)
= (1− x/ρ0)

(q+λ0)/γ0 1{x/ρ0<1},

w1 = w1(q,x) =exp
(
−(q+λ1)φ

−1
1 (x)

)
= (1− x/ρ1)

(q+λ1)/γ1 1{x/ρ1<1}.
(4.2)
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4.1. Only attraction or only reflection: γ0 · γ1 > 0. Let both γ be positive first.

Theorem 4.1. Let γ0,γ1 > 0.
Functions `0(q,x) and `1(q,x) are given explicitly.
• Let X(0) = 0 ∈ [ρ0, ρ1].

The following formulae hold:

`0(q,x) =F(q,w0)1{ρ0<x<0}+
λ0

q+λ0
F(q,w1)1{0<x<ρ1}

and

`1(q,x) =
λ1

q+λ1
F(q,w0)1{ρ0<x<0}+F(q,w1)1{0<x<ρ1}.

(4.3)

• Let X(0) = 0 < ρ0 < ρ1.The following formulae hold:

`0(q,x) =G0(q,w0,w1)1{0<x<ρ0}+
λ0

q+λ0
F(q,w1)1{ρ0<x<ρ1}

and

`1(q,x) =G1(q,w0,w1)1{0<x<ρ0}+F(q,w1)1{ρ0<x<ρ1}.

(4.4)

• Let ρ0 < ρ1 < 0 = X(0). The following formulae hold:

`0(q,x) =G0(q,w0,w1)1{ρ1<x<0}+F(q,w1)1{ρ0<x<ρ1}

and

`1(q,x) =G1(q,w0,w1)1{ρ1<x<0}+
λ1

q+λ1
F(q,w1)1{ρ0<x<ρ1}.

(4.5)

Here w0 = w0(q,x) and w1 = w1(q,x) are defined by (4.2).

Proof. The proof is based on coupled integral equations which are derived by condition-
ing on the first switching of the underlying process ε = ε(t).

Let first 0 ∈ (ρ0,ρ1). In this case, if x /∈ (ρ0, ρ1), then the threshold x is never reached.
Let ρ0 <X(0) = 0 < x < ρ1. Starting with the state 0 (the downwards movement), the

path of X(t) does not reach the threshold x,x > 0, without resetting. Hence

`0(q,x) =
∫

∞

0
λ0e−(q+λ0)s`1(q,x)ds =

λ0

q+λ0
`1(q,x).

Otherwise, if the initial state is 1, then the threshold x can be reached without a reset, or,
alternatively, after a switch that occurred before. Therefore,

`1(q,x) = e−(q+λ1)φ
−1
1 (x)+

∫
φ
−1
1 (x)

0
λ1e−(q+λ1)s`0(q,x)ds

= w1(q,x)+
λ1

q+λ1
`0(q,x)(1−w1(q,x)),

where w1(q,x) = exp(−(q+λ1)φ
−1
1 (x)) = (1− x/ρ1)

(q+λ1)/γ1 . Hence,

`0(q,x) =
λ0

q+λ0
w1(q,x)

1−κ(q)(1−w1(q,x))
, `1(q,x) =

w1(q,x)
1−κ(q)(1−w1(q,x))

,

which coincide with formulae (4.3) (with 0 < x < ρ1). The variant when the threshold is
located below the starting point, ρ0 < x < 0 = X(0)< ρ1, is analysed similarly.
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Let the process X start below the interval [ρ0, ρ1], and let the threshold x be between
the initial point and both attracting levels: 0 = X(0) < x < ρ0 < ρ1. In this case, in the
same manner as before, we obtain coupled equations of the form

`0(q,x) =w0(q,x)+
λ0

q+λ0
`1(q,x)(1−w0(q,x)),

`1(q,x) =w1(q,x)+
λ1

q+λ1
`0(q,x)(1−w1(q,x)),

which gives the first option of (4.4).
Other variants of (4.4) and (4.5) are proved in a similar way. �

The expected first crossing time, E[T (x)], can be obtained differentiating in (4.3),
(4.4) and (4.5). Since κ(0) = 1, by virtue of (4.1) we obtain

G0(q,w0(q,x),w1(q,x))|q=0 ≡1, G1(q,w0(q,x),w1(q,x))|q=0 ≡ 1,

F(q,w(q,x))|q=0 ≡1, w(q,x)|q=0 = (1− x/ρ)λ/γ ;

d
dq

F(q,w(q,x))|q=0 =−
λ0 +λ1

λ0λ1

[
w(0,x)−1−1

]
,

d
dq

G0(q,w0(q,x),w1(q,x))|q=0 =−Z−1(1−w0(0,x))
[
λ
−1
0 +λ

−1
1 (1−w1(0,x))

]
,

d
dq

G1(q,w0(q,x),w1(q,x))|q=0 =−Z−1(1−w1(0,x))
[
λ
−1
1 +λ

−1
0 (1−w0(0,x))

]
(4.6)

with w(q,x) = (1− x/ρ)(q+λ )/γ and Z = w0(0,x)+w1(0,x)−w0(0,x)w1(0,x).
The explicit formulae for the expected crossing time, E[T (x)], are given below.

Corollary 4.2. Let γ0,γ1 > 0 and λ0,λ1 > 0.
The expected values of T (x) are given by the following explicit formulae.

• Let X(0) = 0 ∈ [ρ0,ρ1]. In this case:

E[T (x) | ε(0) = 0]

=
λ0 +λ1

λ0λ1

[(
(1− x/ρ0)

−λ0/γ0 −1
)
1{ρ0<x<0}

+

(
(1− x/ρ1)

−λ1/γ1 +
λ0

λ0 +λ1

)
1{0<x<ρ1}

]
and

E[T (x) | ε(0) = 1]

=
λ0 +λ1

λ0λ1

[(
(1− x/ρ0)

−λ0/γ0 +
λ1

λ0 +λ1

)
1{ρ0<x<0}

+
(
(1− x/ρ1)

−λ1/γ1 −1
)
1{0<x<ρ1}

]
.

(4.7)
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• Let X(0) = 0 < ρ0 < ρ1. In this case:

E[T (x) | ε(0) = 0]

=Z−1(1−w0(0,x))
(
λ
−1
0 +λ

−1
1 (1−w1(0,x))

)
1{0<x<ρ0}

+λ
−1
0
(
1+(1+λ0/λ1)(w1(0,x)−1−1)

)
1{ρ0<x<ρ1}

and

E[T (x) | ε(0) = 1]

=Z−1(1−w1(0,x))
(
λ
−1
1 +λ

−1
0 (1−w0(0,x))

)
1{0<x<ρ0}

+
λ0 +λ1

λ0λ1

[
w1(0,x)−1−1

]
1{ρ0<x<ρ1}.

(4.8)

• Let ρ0 < ρ1 < 0 = X(0). In this case:

E[T (x) | ε(0) = 0]

=Z−1(1−w0(0,x))
(
λ
−1
0 +λ

−1
1 (1−w1(0,x))

)
1{ρ1<x<0}

+
λ0 +λ1

λ0λ1

[
w1(0,x)−1−1

]
1{ρ0<x<ρ1}

and

E[T (x) | ε(0) = 1]

=Z−1(1−w1(0,x))
(
λ
−1
1 +λ

−1
0 (1−w0(0,x))

)
1{ρ1<x<0}

+λ
−1
1
(
1+(1+λ0/λ1)(w1(0,x)−1−1)

)
1{ρ0<x<ρ1}.

(4.9)

Proof. To find E[T (x) | ε(0) = 0] and E[T (x) | ε(0) = 1] in the case ρ0 < 0 < ρ1 we
use (4.3),

E[T (x) | ε(0) = 0]

=− d
dq

F(q,w0(q))|q=01{ρ0<x<0}+

(
λ
−1
0 −

d
dq

F(q,w1(q))|q=0

)
1{0<x<ρ1}.

By virtue of (4.6), this gives the formula (4.3) for E[T (x) | ε(0) = 0].
Next, by virtue of (4.4)

E[T (x) | ε(0) = 0]

=− d
dq

G0(q,w0(q,x),w1(q,x))|q=01{0<x<ρ0}

+

(
λ
−1
0 −

d
dq

F(q,w1(q,x))|q=0

)
1{ρ0<x<ρ1},

which gives the first option of (4.8).
Other variants are proved similarly. �

Remark 4.3. Formulae (4.6) are verified with λ0,λ1 > 0.
If λ0 = 0, then, by definition (4.1), G0(q,w0,w1) = w0. Therefore

d
dq

G0(q,w0(q,x),w1(q,x))|q=0 =
d

dq
w0(q,x)|q=0 = log(1− x/ρ0)1{x/ρ0<1}. (4.10)
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FIGURE 7. The expectation with E[T (x) | ε(0) = 0], ρ0 < x < ρ1,
with λ = 1, ρ0 = −1,ρ1 = 1 in the attractive case γ0 = 1,γ1 = 1; see
(4.7).

Similarly, if λ1 = 0, then G1(q,w0,w1)|q=0 = w1, and

d
dq

G1(q,w0(q,x),w1(q,x))|q=0 =
d

dq
w1(q,x)|q=0 = log(1− x/ρ1)1{x/ρ1<1}. (4.11)

Further, if λ0 ·λ1 = 0, then κ = 0, F(q,w(q,x)) = w(q,x) and

d
dq

F(q,w(q,x))|q=0 =
d

dq
w(q,x)|q=0 = w(0,x) log(1− x/ρ). (4.12)

Formulae (4.10)-(4.12) can be used to simplify previous results for the case of zero
switching intensities.

The case of both negative γ looks simpler.

Theorem 4.4. Let γ0,γ1 < 0. In this case functions `0 and `1 are defined as follows.
• Let ρ0 < 0 = X(0)< ρ1. Then

`0(q,x) =
λ0

q+λ0
F(q,w1)1{x<0}+F(q,w0)1{x>0},

and

`1(q,x) =F(q,w1)1{x<0}+
λ1

q+λ1
F(q,w0)1{x>0}.

(4.13)

• Let X(0) = 0 < ρ0 < ρ1. Therefore,

`0(q,x) = G0(q,w0,w1)1{x<0} and `1(q,x) = G1(q,w0,w1)1{x<0}. (4.14)
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FIGURE 8. The expectation with E[T (x) | ε(0) = 0], 0 < x < ρ1, with
λ = 1, ρ0 = 1,ρ1 = 2, in the attractive case γ0 = 1,γ1 = 1; see (4.8).

• Let ρ0 < ρ1 < 0 = X(0). Therefore,

`0(q,x) = G0(q,w0,w1)1{x>0} and `1(q,x) = G1(q,w0,w1)1{x>0}. (4.15)

Here w0 = w0(q,x) and w1 = w1(q,x) are defined by (4.2).

Proof. To prove (4.13)-(4.15) it is sufficient to repeat main steps of the proof of Theorem
4.1. �

The expectations E[T (x)] can be written explicitly in the following form.

Corollary 4.5. • Let ρ0 < 0 = X(0)< ρ1. Then

E[T (x) | ε(0) = 0]

=

[
λ
−1
0 +

λ0 +λ1

λ0λ1

(
w1(0,x)−1−1

)]
1{x<0}+

λ0 +λ1

λ0λ1

(
w0(0,x)−1−1

)
1{x>0}

and

E[T (x) | ε(0) = 1]

=
λ0 +λ1

λ0λ1

(
w1(0,x)−1−1

)
1{x<0}+

[
λ
−1
1 +

λ0 +λ1

λ0λ1

(
w0(0,x)−1−1

)]
1{x>0}.

(4.16)
• Let X(0) = 0 < ρ0 < ρ1. Therefore,

E[T (x) | ε(0) = 0] = Z−1(1−w0(0,x))
(
λ
−1
0 +λ

−1
1 (1−w1(0,x))

)
1{x<0},

E[T (x) | ε(0) = 1] = Z−1(1−w1(0,x))
(
λ
−1
1 +λ

−1
0 (1−w0(0,x))

)
1{x<0}.

(4.17)
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• Let ρ0 < ρ1 < 0 = X(0). Therefore,

E[T (x) | ε(0) = 0] = Z−1(1−w0(0,x))
(
λ
−1
0 +λ

−1
1 (1−w1(0,x))

)
1{x>0},

E[T (x) | ε(0) = 1] = Z−1(1−w1(0,x))
(
λ
−1
1 +λ

−1
0 (1−w0(0,x))

)
1{x>0}.

(4.18)

4.2. Mixed case: attraction/reflection, γ0 · γ1 < 0. Let γ0 and γ1 be of opposite signs.
Assume for definiteness that γ0 > 0 > γ1.

Theorem 4.6. Let γ0 > 0 > γ1. We have the following formulae.
• Let ρ0 < 0 < ρ1.

`0(q,x) =
λ0

q+λ0
F(w1)1{x<ρ0}+G0(w0,w1)1{ρ0<x<0},

and

`1(q,x) =F(w1)1{x<ρ0}+G1(w0,w1)1{ρ0<x<0}.

(4.19)

• Let 0 < ρ0 < ρ1. Therefore,

`0(q,x) = G0(w0,w1)1{x<0} and `1(q,x) = G1(w0,w1)1{x<0}. (4.20)

• Let ρ0 < ρ1 < 0. Therefore,

`0(q,x) = G0(w0,w1)1{x>0} and `1(q,x) = G1(w0,w1)1{x>0}. (4.21)

Here w0 = w0(q,x) and w1 = w1(q,x) are defined by (4.2).

The proof of this theorem is similar to previous proofs.
In the case γ0 < 0 < γ1 the formulae for `0 and `1 are symmetric to (4.19)-(4.21).
The case of zero switching intensities can be analysed using corresponding simplifica-

tion, see Remark 4.3.
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[3] Brémaud, P.: Markov Chains. Gibbs Fields, Monte-Carlo Simulation, and Queues. Springer, 1999.
[4] Di Bello, C., Hartmann, A. K., Majumdar, S. N. Mori, F., Rosso, A., Schehr, G.: Current fluctuations in

stochastically resetting particle systems. arXiv: 2302.06696 (2023)
[5] Evans, M.R., Majumdar, S.N.: Run and tumble particle under resetting: a renewal approach, Journal of

Physics A: Mathematical and Theoretical, 51, (2018) 475003.
[6] Dubey, A., Pal, A.: First-passage functionals for Ornstein Uhlenbeck process with stochastic resetting.

arXiv]textup:2304.05226 (2023).
[7] Kolesnik, A.D.: Markov Random Flights. CRC Press, 2021.
[8] Ratanov, N.: Hypo-exponential distributions and compound Poisson processes with alternating parameters.

Stat. Probab. Lett. 107 (2015) 71–78.
[9] Ratanov, N.: Ornstein-Uhlenbeck processes of bounded variation. Methodol. Comp. Appl. Probab., (2021)

23, 925–946.
[10] Ratanov, N.: Kac-Ornstein-Uhlenbeck processes: stationary distributions and exponential functionals.

Methodol. Comput. Appl. Probab. 24, (2022) 2703–2721.
[11] Ratanov, N., Kolesnik, A.D.: Telegraph Processes and Option Pricing. Springer, Heidelberg, 2d Ed, 2022.
[12] Tal-Friedman, O., Roichman Y., Reuveni, S. Diffusion with partial resetting. Phys. Rev. E 106, (2022)

054116.
[13] Trajanovski, P., Jolakoski, P., Zelenkovski, K., Iomin, A., Kocarev, L., Sandev, T.: Ornstein-Uhlenbeck

process and generalizations: particle’s dynamics under comb constraints and stochastic resetting.
arXiv:2301.12304 (2023).

110



STOCHASTICALLY RESETTING KAC-ORNSTEIN-UHLENBECK PROCESSES

[14] Zacks, S.: Sample Path Analysis and Distributions of Boundary Crossing Times. Lect. Notes in Mathe-
matics 2203. Springer, 2017.

LABORATORY OF FINANCIAL MODELLING, CHELYABINSK STATE UNIVERSITY, RUSSIAN FEDERA-
TION

Email address: rtnnkt@gmail.com

111


