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Abstract. This paper is dedicated to the initial value problem for a system
of nonlinear differential equations of fractional deterministic and stochastic
epidemic models. These types of problems arise when we analyze the spread
of the COVID-19 pandemic. In future work, we will focus on some properties

of stochastic epidemic models that do not take place in deterministic cases.
Important properties of fractional stochastic models are the probability of
a pandemic outbreak, quasi-stationary probability distributions, the finite

dimension of the spread and the expected duration of the epidemic. The
properties listed here are dependent on the stochastic nature of the process.
Better understanding and evaluation of the presence, stability and manage-
ment of infectious diseases can be achieved through mathematical epidemic

models. Unfortunately, the classic models mentioned above are not accurate
enough to model such diseases. In this regard, it is important to involve
fractional differential equations..

1. Introduction

An article published in 1927 by W. O. Kermack, A.G. McKendrick [9] served
as a theoretical basis for further research in the field of mathematical modeling
of epidemics. In that article, for the first time in the field of epidemiology, the
so-called law of mass action”, according to which the quantity of newly infected
in a population is directly proportional to the product of current numbers of
susceptible and infected individuals was applied. This law induced the widespread
use of deterministic SIR models (Susceptible - Infected - Recovered) for which,
with the help of a system of differential equations, we can describe the dynamics
of groups of susceptible, infected and recovered individuals.

Research on the stochastic SIR model under the environmental conditions in
Bartlett [2] and Bailey [3] laid the foundation for stochastic models of epidemic
processes.

Elveback T. et al. [6] published results on the first individual-oriented model of
the spread of disease. This new direction, considering the development of comput-
ing technologies and the predictive power of stochastic models, played a decisive
role in the development of mathematical epidemiology.
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Over the last few years, the study of the problem has become more real due to
the COVID-19 pandemic.

The SARS-COV-2 virus has led to COVID-19 infection. The first cases were
documented in Wuhan, China [5], and the virus subsequently spread to all con-
tinents and led to the outbreak of the pandemic. The total number of countries
affected by this global challenge is 212. The antiviral drugs and vaccines avail-
able in the initial period of the pandemic were not effective against the new virus.
Through the efforts of scientists in various countries in subsequent stages of the
pandemic, new vaccines were developed, and large populations were vaccinated.

Better understanding and evaluation of the presence, stability and management
of infectious diseases can be achieved through mathematical models of epidemics
[10]. Unfortunately, the classic models mentioned above are not accurate enough
to model such diseases. In this regard, it is important to involve fractional differen-
tial equations. The adaptation of Caputo fractional derivatives to the description
of infectious diseases in biological communities is a new step in the analysis of
the epidemic model. It is worth noting that the efficiency of fractional analysis
methods has already been noted by scientistsspecialists in other fields, such as
acoustics, rheology, and polymer chemistry [1]. In [7], considering positive vac-
cination factor v as a vaccine parameter of a susceptible population, a system of
differential equations with a Caputo fractional derivative of order α, 0 < α < 1,
was introduced in the form of


cDα

t S(t) = −vS(t)− β J(t)S(t)
N0

,
cDα

t J(t) = β J(t)S(t)
N0

− (γ + k)J(t),
cDα

t R(t) = vS(t) + γJ(t),
cDα

t D(t) = kJ(t),

(1.1)

with the positive initial conditions

S(0) = S0, J(0) = J0, R(0) = R0, D(0) = D0. (1.2)

Here, the total populationN is divided into the following epidemiological classes:
S - susceptible class, J - infected class, R - recovering class, D - deceased class.
The parameters in system (1.1) are described as follows:
β the average number of contacts of one person during time t; γ - the level of

recovery; k the mortality rate.
This work is devoted to the analysis of a system of stochastic differential equa-

tions and SIRD stochastic models.

2. Fractional Integrals and Derivatives

There are many definitions of fractional integration and differentiation. Here,
we need definitions of the Riemann-Liouville fractional integral and Caputo frac-
tional derivative, first introduced in [13], [8].

Let L([0, T ], R) be the space of the Lebesgue integrable scalar functions in
[0, T ], T < ∞.
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Definition 2.1. Fractional Riemann - Liouville integral of order α, 0 < α < 1, of
a function f ∈ L([0, T ], R) is given by the equation

Iαt f(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds. (2.1)

.

The Gamma function is defined as

Γ(α) =

∞∫
0

e−ttα−1dt, α > 0.

Let C1([0, T ], R) be the space of continuously differentiable scalar functions
defined on [0, T ].

Definition 2.2. The Caputo fractional derivative of order α, 0 < α < 1, is given
by

cDα
t f(t) = I1−α

t (
d

ds
f)(t) =

1

Γ(1− α)

t∫
0

(t− s)−αf ′(s)ds, (2.2)

where I1−α
t - fractional integral from (2.1), f ∈ C1([0, T ], R).

The decomposition formula for the Caputo derivative of order α, 0 < α < 1
follows directly from (2.1) and (2.2)

(Iαct Dα
t f)(t) = φ(t)− φ(0), for φ ∈ C([0, T ], R) (2.3)

3. Deterministic Fractional Epidemic Model (SIRD)

It is well known that the Caputo fractional differential operator (2.2) is widely
used in the analysis of infectious diseases of various biological models, particularly
in time-continuous model environments [11]. Based on [11] and considering the
positive vaccination factor, v, as a parameter of susceptible populations, we pass
to the system of differential equations (1.1) with Caputo fractional derivatives of
order α, 0 < α < 1 

cDα
t S(t) = −vS(t)− β J(t)S(t)

N0
,

cDα
t J(t) = β J(t)S(t)

N0
− (γ + k)J(t),

cDα
t R(t) = vS(t) + γJ(t),

cDα
t D(t) = kJ(t), t ≥ 0

(3.1)

The transition between populations S, J , R, and D during the transmission
process for COVID-19 is described by a digraph (see Figure 1).

In this section, taking into account the results of [4], we present a qualitative
analysis of solutions to systems (3.1) and (3.2), find the stability criteria, describe
the boundedness of solutions and calculate the equilibrium points of the nonlinear
system (3.1), the so-called disease-free states. Next, we set the necessary conditions
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Figure 1. Model SIRD - transmission diagram for COVID - 19

for the existence of at least one solution of systems (3.1) - (3.2) and their uniqueness
on the basis of well-known theorems on the fixed points of a nonlinear operator.

Lemma 3.1. The solutions for systems (3.1) and (3.2) are bounded in a feasible
domain of the form

U = {(S, J,R,D) ∈ R4
+, 0 ≤ N(t) ≤ N0}.

The pandemic happens when

S0 >
γ + k

β
N0,

where γ+k
β is said to be the threshold or critical size of a pandemic in a community.

Lemma 3.2. The disease-free equilibrium point of the system (3.1) is

U∗ = (
γ + k

β
N0, 0, R0, 0).

By definition, U∗ = (S∗, J∗, R∗, D∗) is a solution to a system of fractional
differential equations 

(cDα
t S)(t) = 0,

(cDα
t J)(t) = 0,

(cDα
t R)(t) = 0,

(cDα
t D)(t) = 0

(3.2)

Considering the elements of fractional differential calculus, from the second
equation of system (3.1), we obtain

βS(t)− (γ + k)N0

N0
· J(t) = 0.

and further, we obtain

S(t) = S∗ =
γ + k

β
N0.
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At the equilibrium point U∗, COVID-19 does not spread, and the mortality
class decreases to zero in the absence of new infections.

Definition 3.3. An equilibrium point U∗, free from a pandemic, is locally asymp-
totically stable if the class of infected population S(t) satisfies the inequality
S(t) ≤ S∗, and it is unstable if S(t) > S∗.

Furthermore, in this section, using the fixed point theorem, we formulate a
result on the existence of at least one solution of the system (3.1). Let U =
(S, J,R,D) ∈ E, where E = [C([0, T ], R+)]

4 is a Banach space with norm

∥u∥E = ∥S∥c + ∥J∥c + ∥R∥c + ∥D∥c
and let 

f1(t, u(t)) = −vS(t)− β J(t)S(t)
N0

f2(t, u(t)) = β J(t)S(t)
N0

− (γ + k)J(t)

f3(t, u(t)) = vS(t) + γJ(t)

f3(t, u(t)) = KJ(t).

It is obvious that the function f = (f1, f2, f3, f4) ∈ ([0, T ]× E)4 is continuous.
Applying the fractional integral (2.2) to both parts of the system (3.1) and

using (2.3), we obtain

S(t) = S0 +
1

Γ(α)

t∫
0

(t− τ)α−1f1(τ, u(τ))dτ

J(t) = J0 +
1

Γ(α)

t∫
0

(t− τ)α−1f2(τ, u(τ))dτ

R(t) = R0 +
1

Γ(α)

t∫
0

(t− τ)α−1f3(τ, u(τ))dτ

D(t) = D0 +
1

Γ(α)

t∫
0

(t− τ)α−1f4(τ, u(τ))dτ

Choosing u0 = (u1, u2, u3, u4) = (S0, J0, R0, D0) we obtain

u(t) = u0 +
1

Γ(α)

t∫
0

(t− τ)α−1f(τ, u(τ))dτ. (3.3)

The following statements are true.

Theorem 3.4. Let β, v, γ, k, α, t ∈ R+, α ∈ (0, 1) and

T < (
Γ(α+ 1)

4(β + v + γ + k + 3)
)1/α.
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Then, there exists at least one solution of the systems (3.1) - (3.2) defined on
[0, T ].

Theorem 3.5. Let α ∈ (0, 1) and β, v, γ, k, µ ∈ R+, such that

µ = max{β + v + 2, β + γ + k + 2, v + γ + 3, k + 3}.

If

4µTα

Γ(α+ 1)
< 1

then the systems (3.1), (3.2) have unique solutions.

4. Stochastic integral and stochastic differential equation

Markov processes play an important role in the various classes of stochastic
processes. A Markov process should be understood as a process whose value at
time t0 completely determines its future behavior, regardless of the past. The
Wiener process is an example of a Markov process. We can assume that the so-
lution of the ordinary deterministic differential equation is also a Markov process.
Markov processes play an important role in the various classes of stochastic pro-
cesses. A Markov process should be understood as a process whose value at time
t0 completely determines its future behavior, regardless of the past. The Wiener
process is an example of a Markov process. We can assume that the solution of
the ordinary deterministic differential equation is also a Markov process. Using
the Wiener process W (t), one can construct a wide class of Markov processes with
continuous trajectories, defined as solutions of the stochastic differential equation

dX(t) = a(t,X(t))dt+ σ(t,X(t))dW (t), t > 0,

X(0) = x,X ∈ Rn, ξ ∈ Rm.
(4.1)

Here, x is a deterministic or random vector of initial conditions, vector function
a(t,X) ∈ Rn and matrix σ(t,X) ∈ Rn×Rm are given, and W is a standard Wiener
process. Equation (4.1) is a symbolic representation of the following integral iden-
tity:

X(t) = x+

t∫
0

α(s,X(s))ds+

t∫
0

σ(s,X(s))dW (s). (4.2)

The last integral on the right side of equality (4.2) is the It stochastic integral.
Let us recall a number of properties of Ito stochastic integrals. Let us define on

the main probability space (Ω,F, P ), a family of σ - algebras Ft generated by the
Wiener process W (t) satisfying the conditions:

a) for any t and s, t < s, the inclusion Ft ⊂ Fs holds;
b) the Wiener process W (t) is measurable with respect to Ft; The latter means

that for any Borel set A ∈ Rn, the event {ω : W (t) ∈ A} belongs to Ft;
c) For any nonnegative t and s, the process W (t+ s)−W (t) does not depend

on any of the events of the σ - algebra Ft.
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The stochastic Ito integral

ξ(t) =

t∫
0

α(s)dW (s) (4.3)

is defined for any random processes α(t) satisfying the requirements:
1) the process α(t) is measurable with respect to Ft for any t;
2) the probability that the following integral is finite equal to one.

J(α) =

T∫
0

E(|α(t)|2/F0)dt.

Considered as a function of the upper limit, the stochastic integral (4.3) defines
some random process ξ(t) with zero mathematical expectation and correlation
matrix

Eξ(t) = E

t∫
0

α(s)dW (s)
∣∣F0

= 0

Eξ(t1)ξ
1(t2) =

min(t1,t2)∫
0

E(α(s)α
′
(s)

∣∣F0)ds

The solution of equation (4.1) is a Markov process whose transition probability
P (t, x, t, A), t1 > t,A ∈ Rn, is defined by the equality

P (t, x, t, A) = P (Xt,x(t1) ∈ A). (4.4)

In (4.4), the process Xt,x(s) is a solution of equation (4.1) for s > t with the
initial condition Xt,x(t) = x.

In mathematical epidemiology modeling, it becomes necessary to calculate the
average values of several functionals of solutions of equation (4.1). Sometimes this
issue can be reduced to solving a boundary value problem for partial differential
equations. Let, for example, calculate the expected value

EF (Xt,x(s)), s ≥ t. (4.5)

Here, F (x) is a given continuous and bounded scalar function. The value of
functional (4.5) depends on the initial moment t and the initial vector x. Let

u(t, x) = EF (Xt,x(s)), s ≥ t, (4.6)

where s is fixed.
Let us assume that the coefficients a(t, x) and σ(t, x) of equation (4.1) are

defined for 0 ≤ t ≤ T, x ∈ Rn and have continuous, bounded second derivatives
with respect to x in this region. Then, the function u(t, x) from (4.6) satisfies the
equation

∂u

∂t
+ a

′ ∂u

∂x
+

1

2
Trσσ

′ ∂2u

∂x2
= 0, t ≤ s, x ∈ Rn. (4.7)

The initial condition for u(t, x) follows from (4.6)
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lim
t→s

u(t, x) = F (x), x ∈ Rn. (4.8)

After solving equations (4.7) and (4.8), we obtain the value of functional (4.5)
for arbitrary (t, x). Equation (4.7) is called the inverse Kolmogorov equation.

5. Stochastic fractional SIRD model

The results presented in Sections 3 and 4 allow us to state that the stochastic
fractional SIRD model follows from the subdiffusion process. This conclusion is
based on the nature of the time-fractional processes presented in system (4.1).
Random variables S(t), J(t) are continuous and bounded, i.e.,

0 ≤ S(t) ≤ N, 0 ≤ J(t) ≤ N.

We will consider a heuristic derivation of fractional stochastic differential equa-
tions for the fractional SIRD epidemic model. As noted in the introduction, SIRD
gives a good description of the spread of COVID-19.

Let us present a high-resolution finite-difference approximation of the fractional
Caputo derivative based on the expansion of the integrand in a Taylor series with
subsequent replacement of derivatives by finite difference relations.

Following [10], we introduce a finite difference grid Ω△t = {tj = j△t, j =
0, ..., N}, on which approximations of the fractional derivative function of one
variable X will be written as

c△α
t X(tj) =

△t−α
j

Γ(1− α)

j=1∑
i=0

[W1,j − e(Xl+1 −Xl−1)+

+W2, j − l(Xi+l − 2Xl +Xl+1)] + 0(△t3−α) (5.1)

where △ - is time step , Xl+1 = X(tl+1), and j = 1, ..., N, 0 < α < 1.
The weight functions in (5.1) are defined as follows:

W1,j−l =
2− α

2
[(j − l)1−α − (j − l − 1)1−α]

W2,j−l = (j − l)2−α − (j − l − 1)2−α − (2− α)(j − l − 1)1−α,

for j = 1, ..., N, 1 = 0, ..., j − 1.
Let

n∑
j=1

△t−α
j = △tα,△αX(t) =

n∑
j=1

△αX(tj),

and

△αX(t) = (△αS(t),△αJ(t))T .

For small enough △ti, it is reasonable to assume that the random variables
{△αX(ti)} are independent and identically distributed on the interval △αt. For
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large enough n, it follows from the central limit theorem that △αX(t) has an ap-
proximate normal distribution with mean value E(△αX(t)) and covariance matrix
V ar(△αX(t)) (see, e.g., L.J.S. Allen [1], [12]).

Thus,

△αX(t)− E(X(t)) = N(0, V ar(△αX(t))),

where 0 is the null vector. The expected value △X of order △t is the change in
the probability time (+1 or -1) i.e.,

E(△αX) =

(
−βSJ/N

BSJ/N − γt

)
△t = f△t

and covariance matrix

V ar(△αX) = E(△α(△α)T ) =

= E
(

(△αS)2 △αS△αJ
△αS△αS (△αJ)2

)
=

(
βSJ/N −βSJ/N
−βSJ/N βSJ/N + γJ

)
△t = V ar△tα.

To write a stochastic differential equation for the SIRD stochastic process, either
the square root of the covariance matrix V ar or a matrix G such that GGT = V ar
is needed. The matrix G given below has the required property

G =

(
−
√
βSJ/N 0√
βSJ/N −

√
γJ

)
.

Then

△X(t) = f(X(t))△t+G(X(t))△W (t),

where △W (t) = (△W1(t),△W2(t))
2 and △W (t) = N(0,△t).

When △t → 0 we obtain the system of stochastic differential equations

DX(t) = f(X(t))dt+G(X(t)dW (t)), (5.2)

Let us rewrite (5.2) in terms of the random variables S(t) and I(t) and obtain
the following system of fractional stochastic differential equations:

cDα
t S(t) = − β

N
SJ +B11

dW1

dt
+B12

dW2

dt

cDα
t J(t) =

β

N
SJ − γJ +B21

dW1

dt
+B22

dW2

dt

where W1,W2 - are independent Wiener processes, and elements of the matrix
B = (Bij), i, j = 1, 2 may be dependent on S and I.

83



ILOLOV, KUCHAKSHOEV, MIRSHAHI, RAHMATOV

References

[1] Allen, L.J.S.: An introduction to stochastic epidemic models, In P.Brauer, P.V. Van den

Driessohe, J,Wu (Eds.) Lecture notes in mathematics: Mathematical Epidemiology, Ch.3,
Springer, Berlin (1945), 81-130.

[2] Bartlett, M.S: An Introduction to Stochastic Process, with special reference to methods and
applications. Third Edition, Cambridge Univ. Press, Cambridge, 1978.

[3] Bailey, N.: Mathematics in Biology and Medicine, Mir, Moscow, 1970.
[4] Basti, B. at all.: Stability Analysis and Existence of Solutions for a Modi-

fied SIRD Model of Covid-19 with Fractional Derivatives, Symmetry, 13, (2021),
https://doi.org/10.3390/sym13081431

[5] Editorial Bourd.: Is the World Ready for the Coronavirus?. The New York Times, 29
January 2020.

[6] Elveback T., Ackerman E., Gatewood L., Fox J.: Stochastic two-agent epidemic simulation
models for a community of families, American Journal of Epidemiology, no. 93 (1971),

267-280.
[7] Hasan at all: A new estimation method for the COVID-19 time-varying reproduction number

active cases. medArxiv, 2020.
[8] Ilolov, M., Kuchakshoev, K., Rahmatov, J.Sh.: Lyapunov function and stability of solutions

of stochastic differential equations with fractional-like derivatives. Global and Stochastic
Analysis, 8, no. 2, (2021), 87-99.

[9] Kermak, W.O., McKendrick: A contribution to the theory of epidemics, Proc. R. Soc. Lond.

A, 115, (1927), 200-272.
[10] Li, C., Wu, R., Ding, H.: High-order approximation to Caputo derivative and Caputo-tipe

advection-diffusion equation, Communications in Applied and Industrial mathematics, bf 6,
no. 2 (2015), 1-33.

[11] Luchko, J., Rivero, M., Trujillo, J., Velasco, M.P.: Fractional models, non-locality and
complex systems. Comp. Math. Appli., 59, (2010), 1048-1056.

[12] Rafii, A., Mirshahi, P., Poupot, M., Faussat, A.M., Simon, A., Ducros, E., Mery, E., et
al.: Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian

tumours. PloS one., 3, no. 12, (2008) e3894 99.
[13] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivatives (Theory and

Application). Corden and Beach, Lousanne, Switzerland, 1993.
[14] Ilolov, M., Kuchakshoev, K.S., Rahmatov, J.Sh.: Fractional stochastic evolution equations:

Whitenoise model. Communications on Stochastic Analysis, 14, no. 3-4 (2020), 55-69.
[15] Ilolov, M., Lashkarbekov, S., Rahmatov, J.Sh. Fractional stochastic evolution equations with

Balakrishnans white noise. Global and Stochastic Analysis, 9, no. 3 2022), 53-70.

Mamadsho Ilolov: Center of Innovative Development of Science and New Tech-
nologies of NAST, Dushanbe, Tajikistan

E-mail address: ilolov.mamadsho@gmail.com

Kholiknazar Kuchakshoev: University of Central Asia, Dushanbe, Tajikistan

E-mail address: kholiknazar.kuchakshoev@ucentralasia.org

Massoud Mirshahi: Universite de Paris CAP- Paris Tech., INSERM U1275, Paris,

France
E-mail address: massoud.mirshahi@inserm.fr

Jamshed Sh. Rahmatov: Center of Innovative Development of Science and New

Technologies of NAST, Dushanbe, Tajikistan
E-mail address: jamesd007@rambler.ru

84


