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Abstract. For a stochastic differential inclusion given in terms of backward
mean derivatives, we prove the existence of optimal solution minimizing a

certain cost criterion.

Introduction

The notion of mean derivatives (forward, backward, symmetric and antisym-
metric) was introduced by E. Nelson in [1, 2, 3]. In [4] (see also [5] where all
preliminaries about mean derivatives are given) an additional mean derivative,
called quadratic, was introduced so that form some Nelson’s mean derivative and
the quadratic one it became in principle possible to find a stochastic process having
those derivatives.

In this paper we investigate stochastic differential inclusion given in terms of
backward mean derivatives. The case of stochastic differential inclusion with for-
ward mean derivatives was investigated in [6]. We prove the existence of optimal
solution minimizing a certain cost criterion. The preliminaries about set-valued
mappings can de found in [7].

Some remarks on notations. In this paper we deal with equations and inclusions
in the linear space Rn, for which we always use coordinate presentation of vectors
and linear operators. Vectors in Rn are considered as columns. If X is such a
vector, the transposed row vector is denoted by X∗. Linear operators from Rn

to Rn are represented as n × n matrices, the symbol ∗ means transposition of a
matrix (pass to the matrix of conjugate operator). The space of n× n matrices is
denoted by L(Rn,Rn).

By S(n) we denote the linear space of symmetric n × n matrices that is a
subspace in L(Rn,Rn). The symbol S+(n) denotes the set of positive definite
symmetric n × n matrices that is a convex open set in S(n). Its closure, i.e., the
set of positive semi-definite symmetric n× n matrices, is denoted by S̄+(n).

Everywhere below for a set B in Rn or in L(Rn,Rn) we use the norm introduced
by usual formula ∥B∥ = sup

y∈B
∥y∥.

For the sake of simplicity we consider equations, their solutions and other ob-
jects on a finite time interval t ∈ [0, T ].
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1. Mean derivatives

In this section we briefly describe preliminary facts about mean derivatives. See
details in [1, 2, 3, 5].

Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ], given on a certain probability
space (Ω,F ,P) and such that ξ(t) is an L1 random element for all t. It is known
that such a process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) ”the past” Pξ
t generated by preimages of Borel sets from Rn under all

mappings ξ(s) : Ω → Rn for 0 ≤ s ≤ t;

(ii) ”the future” Fξ
t generated by preimages of Borel sets from Rn under all

mappings ξ(s) : Ω → Rn for t ≤ s ≤ T ;

(iii) ”the present” (”now”) N ξ
t generated by preimages of Borel sets from Rn

under the mapping ξ(t) : Ω → Rn.
All the above families we suppose to be complete, i.e., containing all sets of

probability zero.

For the sake of convenience we denote byEξ
t the conditional expectation E(·|N ξ

t )

with respect to the ”present” N ξ
t for ξ(t).

Following [1, 2, 3], introduce the following notions of forward and backward
mean derivatives.

Definition 1.1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant
t is an L1 random element of the form

Dξ(t) = lim
△t→+0

Eξ
t (

ξ(t+△t)− ξ(t)

△t
), (1.1)

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t
tends to 0 and △t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

D∗ξ(t) = lim
∆t→+0

Eξ
t (

ξ(t)− ξ(t−∆t)

∆t
) (1.2)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and ∆t → +0
means that ∆t → 0 and ∆t > 0.

Remark 1.2. If ξ(t) is a Markov process then evidently Eξ
t can be replaced by

E(·|Pξ
t ) in (1.1) and by E(·|Fξ

t ) in (1.2). In initial Nelson’s works there were
two versions of definition of mean derivatives: as in our Definition 1.1 and with
conditional expectations with respect to ”past” and ”future” as above that coincide
for Markov processes. We shall not suppose ξ(t) to be a Markov process and give
the definition with conditional expectation with respect to ”present” taking into
account the physical principle of locality: the derivative should be determined by
the present state of the system, not by its past or future.

Following [4] (see also [5]) we introduce the differential operator D2 that differ-
entiates an L1 random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

Eξ
t (

(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
), (1.3)
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where (ξ(t + △t) − ξ(t)) is considered as a column vector (vector in Rn), (ξ(t +
△t) − ξ(t))∗ is a row vector (transposed, or conjugate vector) and the limit is
supposed to exists in L1(Ω,F ,P). We emphasize that the matrix product of a
column on the left and a row on the right is a matrix. It is shown that D2ξ(t)
takes values in S̄+(n), the set of symmetric semi-positive definite matrices. We
call D2 the quadratic mean derivative.

Remark 1.3. From the properties of conditional expectation (see, e.g., [8]) it follows
that there exist Borel mappings a(t, x), a∗(t, x) and α(t, x) from R × Rn to Rn

and to S̄+, respectively, such that Dξ(t) = a(t, ξ(t)), D∗ξ(t) = a∗(t, ξ(t)) and
D2ξ(t) = α(t, ξ(t)). Following [8] we call a(t, x), a∗(t, x) and α(t, x) the regressions.

Let Borel measurable mappings a(t, x) and α(t, x) from [0, T ] × Rn to Rn and
to S̄+(n), respectively, be given. We call the system of the form{

Dξ(t) = a(t, ξ(t)),
D2ξ(t) = α(t, ξ(t)),

(1.4)

a first order differential equation with forward mean derivatives.

Definition 1.4. We say that (1.4) has a solution on [0, T ] with initial condition
ξ(0) = x0, if there exist a probability space (Ω,F ,P) and a process ξ(t) given on
(Ω,F ,P) and taking values in Rn such that P-a.s. and for almost all t (1.4) is
satisfied.

Several existence of solution theorems for (1.4) can be found in [4].

Definition 1.5. The smooth function φ : X → R sending the topological space
X to R is called proper if the preimage of every relatively compact set in R is
relatively compact in X.

Denote by L the generator of Markov process generated by equation (1.4).

Theorem 1.6. Let on Rn there exist a smooth proper positive function φ : Rn → R
such that Lφ < C for all t ∈ [0,+∞) and x ∈ Rn where C > 0 is a certain real
constant. Then the flow generated by equation (1.4) is complete, i.e. all solutions
of (1.4) with deterministic initial values exist for t ∈ [0,+∞).

Theorem 1.6 is a reformulation of [9, Theorem IX. 6A].

2. Auxiliary facts about inclusions with forward mean derivatives and
upper semi-continuous right-hand sides

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to
S̄+(n), respectively. The system of the form{

Dξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(2.1)

is called a first order differential inclusion with forward mean derivatives.

Definition 2.1. We say that (2.1) has a solution on [0, T ] with initial condition
ξ(0) = x0, if there exist a probability space (Ω,F ,P) and a process ξ(t) given on
(Ω,F ,P) and taking values in Rn such that P-a.s. and for almost all t (2.1) is
satisfied.
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Note that for simplicity here we consider only deterministic initial conditions,
i.e., ξ0 in Definition 2.1 is a point in Rn.

Recall that for a mapping F : X → Y of a metric space X to a metric space
Y its graph is the set of pairs {(x, F (x)) | x ∈ X} in X × Y . Note that for a
set-valued F the value F (x) is a set in Y .

For considering upper semicontinuous mean forward differential inclusions we
need to recall the following

Definition 2.2. Let X and Y be metric spaces. For given ε > 0 a continuous
single-valued mapping fε : X → Y is called an ε-approximation of the set-valued
mapping F : X → Y , if the graph of f belongs to ε-neighbourhood of the graph
of F .

It is known (see, e.g., [7]), that for upper semicontinuous set-valued mappings
with convex closed images in normed linear spaces the ε-approximations exist for
each ε > 0.

Denote by Ω the Banach space C0([0, T ],Rn) of continuous curves in Rn given
on [0, T ], with usual uniform norm. Introduce in Ω the σ-algebra F generated by
cylinder sets. Everywhere below we use this notation. Recall that F is the Borel
σ-algebra in Ω. Note that the elementary event in Ω is a curve that we denote by
x(·). Its value at t ∈ [0, T ] is denoted by x(t).

It is a well-known fact that every stochastic process η with continuous sample
paths in Rn, given on a certain probability space (Ω̃, F̃ ,P) for t ∈ [0, T ], is a

measurable mapping from (Ω̃, F̃) to (Ω,F). Thus it determines a measure µη on
(Ω,F) by the standard formula µη(A) = P(η−1(A)) for every A ∈ F .

There is a standard process c(t, x(·)) in Rn given on (Ω,F). It is the so-called
“coordinate process” defined by the formula c(t, x(·)) = x(t). The coordinate pro-
cess on the probability space (Ω,F , µη) is the standard description of the process
η(t) on this probability space. See details, e.g., in [10, 5].

We shall look for solutions of (2.1) with continuous sample paths and mainly the
solution will be described as a coordinate process on Ω where the corresponding
measure will be constructed.

Definition 2.3. The perfect solution of (2.1) is a stochastic process with contin-
uous sample paths such that it is a solution in the sense of Definition 2.1 and the
measure corresponding to it on the space of continuous curves, is a weak limit of
measures generated by solutions of a sequence of diffusion-type Itô equations with
continuous coefficients.

Remark 2.4. Note that perfect solutions, approximated by solutions of diffusion
type equation, naturally arise in applications. But there is an open question
whether any solution is perfect or non-perfect solutions also may exist.

Lemma 2.5. Let α(t, x) be a jointly continuous (measurable, smooth) mapping
from [0, T ] × Rn to S+(n). Then there exists a jointly continuous (measurable,
smooth, respectively) mapping A(t, x) from [0, T ]×Rn to L(Rn,Rn) such that for
all t ∈ R, x ∈ Rn the equality A(t, x)A∗(t, x) = α(t, x) holds.

The proof is available in [4, Lemma 2.2].
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Theorem 2.6 ([6]). Specify an arbitrary initial value ξ0 ∈ Rn. Let a(t, x) be an
upper semicontinuous set-valued mapping with closed convex images from [0, T ]×
Rn to Rn and let it satisfy the estimate

∥a(t, x)∥2 < K(1 + ∥x∥2) (2.2)

for some K > 0.
Let α(t, x) be an upper semicontinuous set-valued mapping with closed convex

images from [0, T ]×Rn to S̄+(n) such that for each α(t, x) ∈ α(t, x) the estimate

|trα(t, x)| < K(1 + ∥x∥2) (2.3)

takes place for some K > 0.
Then for every sequence εi → 0, εi > 0, each pair of sequence ai(t, x) and

αi(t, x) of εi-approximations of a(t, x) and α(t, x), respectively, generates a perfect
solution of (2.1) with initial condition ξ0.

3. Differential inclusions with backward mean derivatives

The system {
D∗ξ(t) = a(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

(3.1)

is called a first order differential equation with backward mean derivatives.
Notice that we do not introduce the notion of backward analog of operator

D2 since, applying the properties of Itô integral, one can easily prove that for a
diffusion process ξ(t) the result of application of that analog coincides with D2ξ(t)
(for the case of diffusion processes this follows from the results of [2, 3]).

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to
S̄+(n), respectively. The system of the form{

D∗ξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(3.2)

is called a first order differential inclusion with backward mean derivatives.

Definition 3.1. We say that (3.2) has a solution on [0, T ] with “inverse” Cauchy
condition ξ(T ) = ξ0, if there exist a probability space (Ω,F ,P) and a process ξ(t)
given on (Ω,F ,P) and taking values in Rn such that ξ(T ) = ξ0 and P-a.s. and for
almost all t inclusion (3.2) is satisfied.

Consider a solution η(t), given on t ∈ [0, T ], with initial condition η(0) = ξ0 of
the following differential inclusion with forward mean derivatives{

Dη(t) ∈ −a(T − t, η(t)),
D2η(t) ∈ α(T − t, η(t)).

(3.3)

Theorem 3.2. The process ξ(t) = ξ0 − η(T ) + η(T − t) is a solution of (3.2)
with condition ξ(T ) = ξ0 where η(t) is a solution of (3.3) with initial condition
η(0) = ξ0.

Indeed, D∗ξ(t) = −Dη(T − t) ∈ a(t, η(T − t)) = a(t, ξ(t)). For D2ξ(t) the
arguments are analogous.
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Theorem 3.3. Specify an arbitrary final value ξ0 ∈ Rn. Let the set-valued map-
pings a(t, x) and α(t, x) satisfy the conditions of Theorem 2.6. Then for ev-
ery sequence εi → 0, εi > 0, each pair of sequence ai(t, x) and αi(t, x) of εi-
approximations of a(t, x) and α(t, x), respectively, generates a perfect solution of
(3.2) with inverse initial condition ξ0.

Indeed, under the hypothesis of Theorem 3.3 inclusion (3.3) satisfies the con-
dition of Theorem 2.6. Thus the assertion of Theorem 3.3 follows from Theorm
3.2.

Remark 3.4. Note that all sequences of ε-approximations for all sequences of εi →
0, used in the proof of Theorem 2.6, satisfy (2.2) and (2.3) with the same K so
that by corollary in Section III.2 [10] the set of measures {µi} (corresponding to
all sequences and all i is weakly compact.

Let f be a continuous bounded real-valued function on R × Rn. For solutions
of (2.1) consider the cost criterion in the form

J(ξ(·)) = E

∫ T

0

f(t, ξ(t))dt (3.4)

We are looking for solutions, for which the value of the criterion is minimal.

Theorem 3.5. Among the perfect solutions of (3.2) constructed in the proof of
Theorem 3.3, there is a solution ξ(t) on which the value of J is minimal.

Proof. Since all the measures on (Ω,F), constructed in the proof of Theorem
3.3 for perfect solutions of (3.2), are probabilistic and the function f in (3.4) is
bounded, the set of values of J on those solutions is bounded. If that set of values
has a minimum, then the corresponding measure µ is the one we are looking for:
the coordinate process on the space (Ω,F , µ) is an optimal solution.

Suppose that the above-mentioned set of values has no minimum, but then
it has a greatest lower bound ℵ that is a limit point in that set. Let µ∗

i be a
sequence of measures such that for the corresponding solutions ξ∗i (t) the values
J(ξ∗i (t)) converge to ℵ. Every µ∗

i is a weak limit of a sequence of measures µij

corresponding to some sequence of εj-approximations as j → ∞. One can easily
see that it is possible to select from the sequence a subsequence (for simplicity
we denote it by the same symbol µij) such that for the corresponding solutions
ξij(t) and for all i we obtain the uniform convergence of J(ξij(·)) to J(ξ∗i (·)) as
j → ∞. Then J(ξii(·)) → ℵ as i → ∞. Since the set of all measures corresponding
to all approximations, is weakly compact (see above), we can select from µii a
subsequence (denote it by the same symbol µii) that weakly converges to a certain
measure µ∗. By the construction, for the coordinate process ξ∗(t) on (Ω,F , µ∗)
we get J(ξ∗(·)) = ℵ, i.e., the value is minimal. Since µ∗ is a limit of µii, ξ

∗(t) is a
perfect solution of (2.1) that we are looking for. �
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