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Abstract. We present preliminary investigative work into alternative ap-

proximations to model of production and service systems. Exact Markovian
formulations of production and service systems are known to yield unimag-

inably large state spaces. The literature is ripe with various decomposition

approximations for the evaluation of the various performance measures, e.g.,
the production rate. Almost universally, approximations are validated by

simulation. This practice has been entrenched in the dominant paradigms of

operations research. It is well known that simulation runs yield acceptable es-
timates in spite of visiting only a very small subset of the system states. Our

investigation seeks to test analytical approximations that mimic simulation

by truncating exact state-space models in order to reduce the computational
difficulties. The work presented here should not be taken as an approxima-

tion technique, but rather as an early investigative effort to see if such an
approach exhibits enough promise to develop and refine practical techniques.

1. Synopsis

We take a rather phenomenological approach to reviewing a fundamental com-
ponent of the various stochastic models developed within the operations research
community over the past half century ([5]). We dwell on the essence of simulation
studies, which are ubiquitously employed as verification tools in most of the related
research. Due to the sheer size of the accompanying state-space-based stochastic
models (e.g. Markovian models), studies reported in the literature offer many ap-
proximation techniques. The ontological aspects of very large state-space-based
stochastic models are questioned ([18]) in the recent literature. For instance, pro-
duction line models may easily have state spaces with cardinalities in the order
of 10100 or more. Since seeking exact solutions is practically prohibitive, in case
of serial production lines, one finds the literature ripe with many decomposition
approaches ([7], [4], [20]). The validation of these approximation techniques are
usually done through simulation studies. One is content with approximations that
agree with simulation results within a few percentage points.

In this paper, we intentionally take a rather uncomplicated system, namely a
tightly coupled serial production line with station breakdown. Past work by one of
the authors at an automotive plant ([11]) involves serial assembly lines with over
160 workstations. The line consists of a series of segments separated by buffers.
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There are no inter-station buffers within the segments. As an approximation, first
the segments were replaced by a single equivalent station, and then a decompo-
sition method ([20]) was implemented. The equivalent station representing the
tightly coupled (bufferless) line segment was developed from the initial principles,
and its validity was shown by simulation.

Philosophically speaking, there is no a priori watertight evidence that simula-
tion would provide unbiased and accurate estimates of the performance measures
of the line segments. That is, before one employs simulation as a validation tool,
simulation itself should be validated. How is it possible that simulation is a justi-
fiable validation tool, when it is obvious that a regular simulation run could never
visit all of the states of the Markovian model with, say 10100 states? This conun-
drum is rarely addressed in the literature. Moreover, as simulation constitutes a
fundamental component of the dominant paradigm, it behooves us to scrutinize
its role and its limitations, both qualitatively and quantitatively. A recent study
([6]) along these lines of thought provide the inspiration of our approximation
framework.

1.1. Production Lines. In almost all cases, focus is on the evaluation of two
primary performance measures: the production rate, and the expected number
of items in the buffers. The studies of [9], [14], [15], and [10] are early examples
of discrete -time Markovian models. Studies conducted by [19], and [20] provide
examples of continuous-time models. There are many extensions to these basic
models. For instance, [13] present closed-loop systems. These may be considered
as queueing networks. Such closed-loop systems are seen in industries where hot
pallets are used to hold the workpiece while it progresses through the manufac-
turing system. Once the workpiece is completed, the hot pallets are returned to
the beginning of the line. Thus, the models track the hot pallet. There are several
textbooks on the subject, to which the reader is referred for detailed information
([1], [2], [3], [8], [12], [16], [17]).

Our work does not focus on a particular new extension to the production line
models. We take a uncomplicated model based on a well-known set of assumptions
(MY81 [15]) and investigate if a truncation approximation holds promise.

2. Motivation

Simulation is most often used as a tool of verification. We do not question
the basic premise that simulation may be used in this capacity. However, many
models are developed in such a brute-force manner that the meaning of the very
premise of a model becomes vulnerable to criticism. A recent report by Yeralan
and Buyukdagli [18] mentions an automotive plant with 168 robotic workstations
arranged in a serial manner ([11]). Even without inter-station buffers, given that
each workstation is subject to breakdown, the system modeled as a discrete-time
discrete-space Markov chain has over 1050 states. If we were to visit a different
state every nanosecond, a complete tour of all the states would take 1027 times
the age of the universe. This is an incomprehensible number so incomprehensible
that Yeralan and Buyukdagli calls into question the ontology of such a model.
Given that there are an inordinate number of system states in typical Markovian
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models, how is it the case that simulation gives us answers which would take total
enumeration a practically endless amount of time?

As an attempt to clarify, consider a system with the number of states even
greater than the 1050 mentioned for the automotive plant model. The continuous-
time M/M/1 queue with given arrival (λ) and service (µ) rates. The number of
customers in the system uniquely determines the state of the system. It is clear
that the number of customers in the system is unbounded. Thus, the system state
space is unbounded, with an infinite number of elements. A complete tour of all
the states of the system is, by definition, impossible in a finite amount of time,
irrespective of how quickly we visit each state. The system is stable as long as the
traffic intensity ρ = λ/µ is less than unity. We often investigate two performance
measures: the expected number of customers in the system, and the utilization
of the server. The expected number of customers in a stable queue is 1/(1-ρ).
Similarly, the server is busy with probability ρ and idle with probability (1-ρ)
(Hillier and Lieberman, 2010).

A simple simulation (written in SciLab) of the M/M/1 queue quickly provides
the two performance measures, as shown below. Figure 1 plots the average number
of customers in the system, and server utilization for the case λ=9 and µ=10,
(ρ=0.9).

Figure 1. The Average Number of Customers in the System as
a Function of the Simulation Runtime.
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Figure 2. Server Utilization as a Function of the Simulation Runtime.

Now, the question remains, as to how is it possible for a simulation run of only a
few thousand transaction to yield performance measures so close to the theoretical
values (relative errors in the range of a few percent), given that a total enumeration
of the states is impossible. After all, the M/M/1 queue has an infinite number of
states. It is clear that the simulation does not visit all possible states.

Clearly, the M/M/1 queue may only make a transition to an adjacent state.
That is, if there are N > 0 customers in the system, the next transition would
be to either state N+1 or to state N-1. Hence, the number of customers in the
system throughout the simulation run is bounded by a maximum and a minimum.
It is customary to start the system at state 0 (empty system). Then the maximum
number of customers in the system, Nmax, during the simulation run is a finite
number. Again, it is quite clear that Nmax is a function of the simulation run. As
the simulation run time increases, we may expect Nmax to also grow, as there is
more time for visiting states with a higher number of customers.

We modify the simulation code keep track of Nmax. It is then plotted as a
function of the runtime.
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Figure 3. Nmax as a Function of Runtime, as Obtained by Simulation.

Figure 3 shows the results of the simulation runs. Each simulation run has a
service rate of 10, and a runtime between 100 and 5000 time units. Five different
arrival rates are used: 1, 3, 5, 7, and 9. The simulation was run and the maximum
number of customers in the system (Nmax) throughout the runs were recorded.
Each point on the graph is actually an average of 50 runs with identical parameters.
It is interesting to observe that, in each case, Nmax is an increasing function,
although its growth slows down considerably.

It is possible to analytically compute the expected value of Nmax as a function
of the system parameters and the length of time the system is observed. Such
computation falls into the domain of transient analysis. The Appendix 1 gives
the transient analysis for an M/M/1 queue which starts with an idle server and
runs for a given period of time. The analytical work shows how Nmax may be
computed. Here we will suffice with simply graphing the theoretical values of
Nmax and comparing them to the figure above.
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Figure 4. Nmax as a Function of Runtime, as Computed Theoretically.

With a simulation runtime of 5000 time units, theoretically, the expected max-
imum number of customers in the system is about 65.

2.1. Observations. In effect, the simulation runs successfully evaluate the two
performance measures, the utilization probability and the expected number of
customers in the system, by only visiting a handful (say 100) of states out of the
possible infinite number of states. The implications of this observation are quite
significant in many ways.

First, it shows that the value of simulation as an investigative tool is not only
in its utility to collect data and obtain statistics, but also in delineating and con-
centrating on the more likely states and ignoring (completely) the states which
have negligible effect on the performance measures. In effect, the simulation only
considers a truncated system, where among the infinite number of states, only a
few hundred states are dealt with. In other words, if we were to build a simula-
tion model of the M/M/1 queue and another for a modified M/M/1 queue where
arrivals to the system with 100 customers in it were lost (M/M/1/100), the two
models would give us exactly identical numerical results.

In a related observation, we see that simulation initial conditions are of impor-
tance. For example, if we were to start the given M/M/1 queue simulation with
1,000,000 customers in the system and ran it for a few thousand time units, we
would always get the utilization to be 100%, since the simulation run would not
be long enough for the system to reach a steady-state.

A similar case could be made for different performance measures. Suppose the
probability that there are 1000 customers or more in the system is taken as a
performance measure. For the system discussed above, our simulation runs would
always return this value to be zero, since there will never be enough time for the
runs to observe such states with 1000 or more customers. Theoretically, however,
these performance measures are readily available.
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Finally, our observations point to some insights concerning the modeling of
production lines. Inspired by the discussions above, one may attempt to build a
truncated model of the system and solve it. Of the 168 stations of the automotive
line, how many of the stations could be down at any given time? Clearly, the state
where all 168 stations are down is very very unlikely. If the probability of breaking
down is in the range [0, 0. 01], then in the worst case, the probability that all 168
stations break down is about 10−336. Granted there are more ways to enter the
state where all 168 stations are down, but still, the argument is quite strong that
the state with all 168 stations down will almost certainly never be observed.

We entertain the idea of truncated state space approximations next.

3. A Three Station Line with No Buffers

Consider a three-station production line with no buffers. The line is assumed
to operate in discrete time, as explained in [15]. There are five station states: up
and operating (U), up but blocked (B), up but starved (S), down and under repair
(D), down, blocked and under repair (X). With three stations and no buffers, the
Markov chain has 32 states. These states are listed below.

Table 1. System States of the Production Line.

Index
Station

States

Index
Station

States

Index
Station

States

Index
Station

States

0 DDD 8 DSS 16 UUS 24 BDS

1 DDU 9 DBD 17 USD 25 BBD

2 DDS 10 DXD 18 USU 26 BXD

3 DUD 11 UDD 19 USS 27 XDD

4 DUU 12 UDU 20 UBD 28 XDU

5 DUS 13 UDS 21 UXD 29 XDS

6 DSD 14 UUD 22 BDD 30 XBD

7 DSU 15 UUU 23 BDU 31 XXD

Having only 32 states, the Markov chain can be solved exactly. Given the station
breakdown repair probabilities, we easily compute the steady-state probabilities.
The production rate is obtained as the steady-state probability that the last station
is in the state up and operating (the production rate is also available as functions of
the other station probabilities, however, such details are not the focus of our study.
The reader is referred to the literature (see for instance [8]) for these details). In
this case, there are eight such states, marked in bold in Table 1.

An illustrative simple case is when we have identical stations, each with a
breakdown probability of q and a repair probability of r. The production rate for
such a production line is illustrated by the graphic below.
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Figure 5. Production Rate as a Function of Breakdown and Re-
pair Probabilities.

The insights into the why simulation works well for the M/M/1 queue led us to
conclude that certain states are never visited. Those states which are pertinent to
the performance measures are mostly visited. The performance of simulation, of
course, also depends on the initial state. We next list explicitly the steady-state
probabilities of each of the system states to see if there are any states with neg-
ligible effects on the performance measure. We select rather realistic parameters.
A breakdown probability of 0.01 means that the mean time between failures is
100 cycles. The repair probability is selected to be an order of magnitude larger,
corresponding to a mean time to repair of 10 cycles.
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Table 2. Steady-State Probabilities of the Production Line
Model (q=0. 01, r=0. 1).

Index
Station

States

Steady-State

Probability
Index

Station

States

Steady-State

Probability

15 UUU 0.74867172 2 DDS 0.00028882

25 BBD 0.07514296 5 DUS 0.00011103

24 BDS 0.06805575 14 UUD 0.00007917

8 DSS 0.06089789 28 XDU 0.00007585

16 UUS 0.015000090 1 DDU 0.00006823

4 DUU 0.00752210 20 UBD 0.00003962

23 BDU 0.00752203 17 USD 0.00003574

19 USS 0.00676627 13 UDS 0.00003209

7 DSU 0.00676627 12 UDU 0.00000758

18 USU 0.00075181 31 XXD 0.00000280

30 XBD 0.00039688 10 DXD 0.00000252

26 BXD 0.00039618 27 XDD 0.00000228

22 BDD 0.00035895 0 DDD 0.00000204

9 DBD 0.00035656 3 DUD 0.00000065

29 XDS 0.00032296 21 UXD 0.00000028

6 DSD 0.00032170 11 UDD 0.00000023

The states are arranged so that their steady-state probabilities are in decreasing
order. Again, we mark in bold those states where the last machine is productive. It
is seen that the steady-state probabilities display a great range of values. The state
with the largest probability is UUU with a probability of almost 0.75. The state
with the least probability is UDD with a probability of 2.3x10−7. The difference
between the largest and smallest steady-state probability is over six orders of
magnitude. That is, the ratio is on the order of a million to one. Clearly, if a
simulation runs shorter than a few million cycles, the state UDD with the smallest
probability is likely never be visited. This is analogous to not visiting states with
more than, say, 100 customers during the simulation of an M/M/1 queue with a
traffic intensity of 0.9.

3.1. A Truncated Model of the Three Station Production Line with
No Buffers. Inspired by our findings in regarding the M/M/1 queue, now we
consider a truncated model of the bufferless three-station line. We truncate the
model by disregarding the states in which more than a single station is under
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repair. In effect, we are making the seemingly unrealistic assumption that once a
station breaks down, the breakdown probability of the other stations drops down
to zero. This may seem unreasonable, but it does follow the truncated M/M/1
queue case. There, we make the assumption that once there are some K customers
in the system, the arrival rate drops down to zero.

The three-station case can easily be modified to find the production rate of the
truncated model. One approach is to start with the steady-state probabilities as
computed above. Then, we may remove those states with more than one station
under repair, and re-normalize the steady-state vector. Afterwards, we re-compute
the production rate.

The systems states with at most one station under repair are listed below.

Table 3. States with at Most One Station Under Repair.

Number of

Stations Under

Repair

Index
Station

States

Number of

Stations Under

Repair

Index
Station

States

0

15 UUU

1

4 DUU

16 UUS 5 DUS

18 USU 7 DSU

19 USS 8 DSS

12 UDU

13 UDS

14 UUD

17 USD

20 UBD

22 BDD

23 BDU

24 BDS

25 BBD

The state transition diagram illustrates the transitions among the systems states
of the truncated model.
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Figure 6. The State Transition Diagram of the Truncated
Bufferless Three Station Model.

The states where the last station is operational are marked by bold letters.
Note that of the eight such states, we now have only six. The normalization of
the steady-state probabilities means we add the steady-state probabilities of the
seventeen states shown in Table 3 and then normalize the vector by multiplying
it with the reciprocal of the sum of its elements. The production rate is then
computed as the sum of the normalized steady-state probabilities of the states
shown in bold in Table 3.

The production rate of the truncated model will of course differ from that of the
complete model. The question is by how much. We computed the difference for a
series of parameters of a three-station bufferless line with identical stations. The
differences are given as absolute percentage errors (APE). The absolute percentage
error is computed as:

APE = 100 ·
∣∣∣∣ (production rate) − (production rate of truncated model)

(production rate)

∣∣∣∣
The absolute percentage errors are plotted below.
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Figure 7. Absolute Percentage Errors as Functions of Model Pa-
rameters.

Figure 7 is rather remarkable. First, observe that the maximum error is about
5.5%. This is actually an extreme case, where both the breakdown and the re-
pair probabilities are 0.1. In this extreme case, the stand-alone availability of a
station is 50%. Clearly, in actual implementations, a station would be expected
to be operational more than 50% of the time. For realistic cases, that is, where
the stand-alone availability is around 90%, the error less than 1%. This is a re-
markable phenomenon, that serves not only as an eye-opener, but as motivation to
develop practical approximate production line models which are then to be solved
algebraically.

3.2. A More Detailed Truncated Models of Production Lines with No
Buffers. Once again, inspired by the results of the preceding section, we now
proceed to construct models of production lines where the number of down ma-
chines are limited. Analogous to the truncated M/M/1 queue (the M/M/1/K
queue), we make the auxiliary assumption that once K of the N stations are down,
the remaining stations become perfectly reliable. Agreeably, this seems like an
unjustifiable and quite counter-intuitive assumption. The justification lies in the
insights hitherto developed and it is these insights which constitute the contri-
bution of this thesis. In short, we want to remove some of the system states that
have probabilities orders of magnitude smaller than others. Obviously, there are
many ways to do this pruning. The assumption made here is one approach. It
does have the advantage, however, that it is relatively straightforward to model
this truncated system, just as it was relatively straightforward to implement the
truncated M/M/1 queue.

It should be noted that, by its nature, the topic required dealing with larger sets
of data, whose exact solutions are needed for the conceptual analysis. Accordingly,
much effort was involved in code development. In particular, it is noteworthy that
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some source code are in the order of 1 gigabyte. Clearly, a gigabyte of code is
not to be written manually. The approach here was to write code that in turn
generates source code, later to be incorporated into downstream compiling and
linking. The code development itself may also be considered as a contribution, as
it provides a template or framework to the generation of multi-echelon software. It
should also be noted that code development was done in open-source environments
using only open-source tools.

Software was written to automatically generate the states and the transition
probability matrix of bufferless production lines with N stations, but where at
most K of the N stations are allowed to be down. The algorithm is explained
in Appendix 2. We call this the N/K-Truncated-Model. Effectively, once K of
the stations are down, the remaining N-K stations are assumed to be perfectly
reliable. The states were explicitly obtained by the developed software. The
software is explained in [6].

Table 4. Number of System States (N/K models, N stations, at
most K down).

N/K 1 2 3 4 5 6 7 8 9 10

3 15 26 32

4 40 92 116 128

5 103 314 435 488 512

6 257 1027 1594 1882 2000 2048

7 623 3218 5665 7133 7833 8096 8192

8 1476 9656 19454 26389 30267 31992 32576 32768

9 3435 27858 64555 95041 114780 125140 129399 130688 131072

10 7882 77694 524288

As seen in Table 4, the number of system states drop considerably when the
maximum allowed number of down stations (K) is small. In the extreme case of
K=1, we allow only one station to be down at a time. In case of a bufferless
production line with 10 stations (N=10), the number of system states goes from
524288 to 7882. This is a 66-fold reduction in the number of system states.

The next investigative question, of course, is ”how well does the truncated model
approximate the original model?”. Here, once again, we develop software to com-
pute not only the transition probability matrices for the N/K truncated models,
but also the production rates. The N/N model gives the production rate of the
original models where the number of system states are several orders of magnitude
larger. The N/1 truncated models are the approximations. Numerical results are
given in the table below.
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Table 5. Average Percentage Error of the N/1 Truncated Models.

N
Production Rate (q=0.01, r=0.1)

APE
N/1 (truncated) N/N (full model)

3 0.5166273929 0.5142570532 0.46

4 0.5431647628 0.5388719616 0.80

5 0.5451422158 0.5387804217 1.18

6 0.5375021638 0.5290534472 1.60

As seen from Table 5 the N/1 truncated models provide good approximations
to the production rate. The truncated models seem to always over-estimate the
production rate. Moreover, the error term seems to increase almost linearly with
the number of stations. This can also be used to fine tune the estimates, if our
focus were to develop computational methods for the estimation of the production
rate. However, our interest in this thesis is more on the conceptual side of the
methodologies, as we investigate the ramifications of the models and their use.

4. Conclusions and Future Research

It was mentioned at the outset that our work is a preliminary investigation
into the feasibility of approximations based on truncated state spaces. The inspi-
ration comes from the apparent success of simulation. It seems that simulation
naturally focuses on the system states that have a greater influence on the perfor-
mance measures. Removing the system states which have negligible effects on the
performance measures, we were able to duplicate the results of simulation.

Our work shows that very good approximations of the performance measures
are possible with significant pruning of state spaces (66 fold reduction for a 10-
station line). Thus, the current investigation provides the necessary justification
to continue with the development of approximations based on truncated state
spaces.

References

1. T. Altiok, Performance analysis of manufacturing systems, Springer, Science & Business
Media, 2012.

2. R. G. Askin and C. R. Standridge, Modeling and analysis of manufacturing systems, Wiley,

John & Sons Inc, 1993.
3. J. A. Buzacott and J. G. Shanthikumar, Stochastic models of manufacturing systems (vol.

4), Prentice Hall, Englewood Cliffs, NJ, 1993.

4. Y. Dallery, R. David, and X. L. Xie, An efficient algorithm for analysis of transfer lines with
unreliable machines and finite buffers, IIE Transactions 20 (1988), no. 3, 280–283.

5. Y. Dallery and S. B. Gershwin, Manufacturing flow line systems: A review of models and

analytical results, Queueing Systems 12 (1992), no. 1-2, 3–94.
6. D. Durmus, On the applicability of simulation as a verification tool for markovian models

of production systems, Master’s thesis, Yaar University, Izmir, Turkey, 2016.

7. S. B. Gershwin, An efficient decomposition method for the approximate evaluation of tandem
queues with finite storage space and blocking, Operations Research 35 (1987), no. 2, 291–305.

8. , Manufacturing systems engineering, Prentice Hall, 1994.

104



APPROXIMATION TECHNIQUE FOR PRODUCTION LINES 15

9. S. B. Gershwin and I. C. Schick, Analysis of transfer lines consisting of three unreliable stages

and finite storage buffers, Complex Materials Handling and Assembly-Systems 9 (1978).

10. , Modeling and analysis of three-stage transfer lines with unreliable machines and
finite buffers, Operations Research 31 (1983), no. 2, 354–380.

11. S. Kayaligil, S. Yeralan, and K. Demirta, Approximate performance analysis of a closed

line with random failures by aggregation of segments, Annals of the Faculty of Engineering
Hunedoara-International Journal of Engineering 10 (2012), no. 1.

12. J. Li and S. M. Meerkov, Production systems engineering, Springer, Science & Business

Media, 2008.
13. N. Maggio, A. Matta, S. B. Gershwin, and T. Tolio, A decomposition approximation for

three-machine closed-loop production systems with unreliable machines, finite buffers and a

fixed population, IIE Transactions 41 (2009), no. 6, 562–574.
14. E. J. Muth, The reversibility property of production lines, Management Science 25 (1979),

no. 2, 152–158.
15. E. J. Muth and S. Yeralan, Effect of buffer size on productivity of work stations that are

subject to breakdown, Decision and Control including the Symposium on Adaptive Processes,

1981 20th IEEE Conference on . IEEE, 1981, pp. 643–648.
16. H. T. Papadopolous, C. Heavey, and J. Browne, Queueing theory in manufacturing systems

analysis and design, Springer, Science & Business Media, 1993.

17. H. Tempelmeier and H. Kuhn, Flexible manufacturing systems: Decision support for design
and operation (vol. 12), John Wiley & Sons, 1993.

18. S. Yeralan and O. Buyukdagli, The ontology of large-scale Markovian models, SSMO 2015

(2015), 287.
19. S. Yeralan, W. E. Franck, and M. A. Quasem, A continuous materials flow production line

model with station breakdown, European Journal of Operational Research 27 (1986), no. 3,

289–300.
20. S. Yeralan and B. Tan, Analysis of multistation production systems with limited buffer capac-

ity part 1: The subsystem model, Mathematical and Computer Modelling 25 (1997), no. 7,
109–122.

105



16 DENIZ DURMUS, SENCER YERALAN, AND AYBEK KORUGAN

Appendix 1 – The Maximum Length of the M/M/1 Queue

We consider the M/M/1 queue which starts from state 0 (empty system) at
time 0 and runs for a given duration T. The number of customers in the system in
the time interval [0, T] will vary as a function of the system parameters. We are
interested in the distribution and the expected value of Nmax(T ), the maximum
number of customers in the M/M/1 queue during the time interval [0, T], given
that the system is empty at time 0.

The transition rate matrix of the M/M/1 queue with an arrival rate of λ and a
service rate of µ is given below.

Λ =


−λ λ
µ −(λ+ µ) λ

µ −(λ+ µ) λ
. . .


Note that Λ is a square matrix of infinite size. The element (j, k) of Λ is the

transition rate from state j to state k, where j differs from k. The diagonal elements
of Λ are set to -(λ+µ) so that the rows sum to zero. The steady state probability
row vector Π is computed as the normalized solution to the linear equation

ΛΠ = [0, 0, 0, ...]

Normalization refers to setting the length of the vector Π so that its elements
sum to unity. In vector notation, we may write,

Πu = 1

where u is a column vector consisting of all ones as shown below.

u =


1
1
1
.
.
.


The transient solution is easily obtained for the general Markov process. Let

Π(t) be the state row probability vector at time t. Then,

Π(t) = Π(0)eλt

Given that the process starts in a state between 0 and N, the probability that
the process stays with this range ([0, N]) is easily computed using the truncated
state transition matrix. Let,
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ΛN =



−λ λ
µ −(λ+ µ) λ

µ −(λ+ µ) λ
. . .

µ− (λ+ µ)


be a square matrix corresponding to the states 0 to N. Hence ΛN has dimension

N+1. Now the probability that the system is in state k where k is in the range [0,
N] at time t is given as,

ΠN (t) = ΠN (0)eλN t

Here, the subscript N, as in ΛN indicates that this is a truncated vector, con-
taining N+1 elements, corresponding to states from 0 to N. Let us assume that,

Π(0) = Θ = [1, 0, 0, ...]

Then, the probability that the system is still in the range [0, N] at time t, given
that it started in state 0 at time 0 is given by,

ΘeλN tu

where u is the column vector of ones as described above. This probability is
the same as the probability that the state with the maximum index visited, Nmax
is in the range [0, N]. In other words,

P [Nmax(t) ≤ N ] = ΘeλN tu

which is the probability distribution function of the random variableNmax. Suc-
cessive differences of the distribution function yields the probability mass function
of Nmax. We compute the probability distribution and probability mass functions
of Nmax(t) using the built-in matrix exponentiation functions in Scilab. Below are
the graphs showing the probability distribution and mass functions for the case
λ=9, µ=10, t=1000.
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Figure 8. The Probability Distribution Function of Nmax (λ=9,
µ=10, t=1000).

Figure 9. The Probability Mass Function of Nmax (λ=9, µ=10,
t=1000).

As expected, the probability mass function of Nmax is skewed to the right, since
the maximum has a lower bound of 0, but no upper bound.

The expected value of Nmax is easily computed, as the probability distribution
function is evaluated. Since Nmax is a non-negative random variable, its expected
value is simply the integral of its reliability function. Thus, keeping a tally of
successive values of
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P [Nmax(t) > N ] = 1 − ΘeλN tu

for N=1, 2, until the value reaches a threshold (say, 10−10) gives the first
moment of the random variable.

Appendix 2 – The Algorithm

The algorithm to generate the states and the state transitions is rather straight-
forward. It relies on the notion of what we call ”intrinsic” or ”direct” state tran-
sitions and ”indirect” station transitions. Station state changes due to breakdown
or repair constitute direct transitions. State transitions due to state changes of
neighbouring stations are called indirect transitions. As an example, consider a
two station line, where the system state makes a transition from UU to DU. Here,
the transition of the first station is a direct transition, since the station experiences
a breakdown. Note that the second station does not change its state. However,
the system state transition from US to UU displays a indirect station transition
of station 2. Here, the state of station 1 does not change. The state of station 2
changes because a part is now available. This is an example of indirect transitions.

At an step of the algorithm, we keep a set of possible system states. We step
through these system states, considering breakdowns and repairs. These give rise
to new system states. If the new system state is not already in our list, it is
appended to the list we step through. As expected, the list initially grows quite
rapidly, but then settles into its final set. Since there are a finite number of
stations and station states, there are a finite number of system states. When we
step through all of the system states and there are no new system states to append
to the list the algorithm terminates.

The algorithm is modified for the truncated systems. Here we put an artificial
limit on the total number of stations that are allowed to be down at any given
time. This additional constraint, although complicates bookkeeping, does not pose
any further intellectual challenges.

A summary of the algorithm steps is available in [6].
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