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ABSTRACT: X1,X2,...,Xn,... is a sequence of i.i.d random variables in the 
Imbedded Markov chain analysis of the M/G/1 queue.In particular ,the 
common random variable has the Poisson distribution with mean  ,the 

traffic intensity for the M/D/1 queue .Utilizing this the Bayes estimator of 
traffic intensity relative to LINEX loss and conjugate prior are 
derived.Comparison of estimators relative to LINEX loss and Squared Error 
Loss(SEL) have been obtained in order to check the inadmissibility of the 
estimators. 

1. Introduction and Preliminaries 
Many applications of queueing theory are discussed in articles on operations research, 
industrial engineering, probability, and management science. Queuing analysis is primarily 
investigated as a branch of operations research, since the outcomes are frequently utilised to 
make decisions. Waiting lines in hospitals, coffee shops, banks, airports, and other places 
are exemplars of the queuing theory. Queuing theory is used to analyze computers, 
telecommunications systems, logistics and manufacturing systems. Clarke (1957) was one 
among the early researchers on classical inference in queues, followed by research work in 
Bayesian approach and in this field was carried out by Armero and Bayyari 
(1999),Choudhury and Borthakur (2008). In M/M/1 queues, Chowdhury and Mukherjee 
(2013) investigated Bayesian inference for traffic intensity. A study of M/D/1 queuing 
system related to UMVUE and Maximum likelihood estimation is discussed by Srinivas and 
Kale (2016), followed by Chandrasekhar, et.al. (2020). 
                  In M/D/1 queue, X1,X2,…Xn be a  random sample of n observations from well-
known Poisson distribution with  pmfas defined  by  
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where Xj is the number of entity arrivals during the jth client's service time. 
The positive and negative errors of estimation are given equal weight in the symmetrical 
standard squared error loss function (SEL), which is frequently used in Bayesian analysis and 

is given by 2)ˆ(),ˆ(  L (1.2)  

and is inappropriate in many situations. Underestimation is more dangerous than 
overestimation in estimation problems, and conversely. A dam which is built with an 
underestimation of peak water level is considerably more dangerous than one that is built 
with an overestimation. (Zellner (1986)). Overestimation is more dangerous than 
underestimation when determining the average life of the space shuttle. (Harris (1992)). 
Varian (1975) proposed the LINEX loss function to deal with situations when either 
overestimation or underestimation is more serious than the other. The LINEX loss function 
is represented as follows, 

0,0),1()(   abaebL a  where   ˆ (1.3) 

where the constant 'a’ is the shape parameter. The direction of asymmetry is indicated by 
sign of the constant, whereas the shape parameter's magnitude represents the degree of 
asymmetry. Underestimation is much dangerous than overestimation when a>0, and vice 
versa. When ǀaǀis small, LINEX behaves like SEL. Hence SEL is an  
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approximation to LINEX when ǀaǀis small. Since )(L rises linearly or 

exponentially it is called LINEX loss function. 
The application of the LINEX loss function has been justified by Basu and 
Ebrahimi (1991) in the perspective of exponential distribution reliability. The Linex 
loss function was used by Pandey and Rai (1992) to estimate the mean of a normal 
distribution, Jaising (1993) and several authors have considered this loss in variety 
of situations of interest. 
The article summary is as follows. In second section, Bayes estimator of traffic 
intensity is derived relative to LINEX loss by minimization of risk. In Section 3 and 
4,comparison of estimators relative to SEL and LINEX loss is made.  
 

2. Bayes  Estimator of traffic intensity based on LINEX loss function. 
Theorem 2.1:   
Assuming LINEX loss, the Bayesian estimator of traffic intensity, is of form  
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Proof : 
The prior density of 𝜌 is conjugate prior which is given as  

Gamma prior: 𝑔1 (𝜌) =  
1

𝛤 𝛽
∝𝛽 𝑒−∝𝜌𝜌𝛽−1, 0 < 𝜌 <  ∞; ∝, 𝛽 > 0                                                                 

(2.2) 
The Bayes theorem is utilized to combine the likelihood function of pmfin (1.1) 
with the conjugate prior to generate the so called posterior density, 
 

 













xi

en
x

ixnxi 1)(

2

)(
)/( (2.3) 

 
Based on LINEX loss, the frequentist risk is given by the formula, 











 de
x

n
aeR ixn

i

xi
a 













1)(

0

)ˆ( )(
).1)ˆ((),ˆ(

 

 








 




  

 







0 0

1)()(

0

)(1ˆ ˆ
)(

),ˆ( 









dedeadee
x

n
R iii xnxnnaxa

i

xi
 

 
 

 


















1)(ˆ),ˆ( ˆ





 



i
a

x

xaae
na

n
R

i

                                                              

(2.4) 
  

60



3 
 

The optimal estimator is one that minimizes the risk with respect to ̂ and is 

given as  
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Theorem 2.2:   
 Assuming SEL, the Bayesian estimator of traffic intensity, is of form 
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Proof: 
 
By using the posterior density (2.3) and Squared Error Loss(SEL), the frequentist 
risk is obtained as 
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The optimal estimator is one that minimizes the risk with respect to ̂ and is 

given as 
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3. Comparison of estimators relative to SEL function. 

The frequentist risk of the estimator s̂  relative to SEL is given by  
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Substituting the value of s̂ in (3.1) gives  )ˆ,( ssR     as 
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The risk function of the estimator L̂ relative to SEL  is given by  
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and the risk function is obtained as  
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The difference of risk is obtained as  
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>0 for a> 0 and α+n>0 

 

Therefore  ,ˆ(),ˆ( Lsss RR  ) 

 

s̂  is R better decision rule (estimator) compared to LINEX̂  

Thus LINEX̂ in terms of Squared Error Loss is inadmissible. 

4. Comparison of competing estimators under LINEX loss function. 

 The frequentist risk  of the estimator s̂   relative to LINEX  loss is  
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(4.1) 

The frequentist risk of the estimator L̂ based on  LINEX  loss is 

obtained as  
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Substituting L̂  in (4.2),we get 
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Now consider the risk difference, 
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<0 for a>0 and (α+n) not equal to–a  

That is sLLL RR  ˆ,()ˆ,(  ) L̂  is R better decision rule (estimator) 

compared to S̂ . Thus S̂ in terms of LINEX loss is inadmissible. 

      
5. CONCLUSION 

 The Bayesian analysis of   in M/D/1 queue using LINEX loss is 

presented in this article. Comparison of estimators relative to SEL and LINEX loss 

is done in order to examine the inadmissibility. It is observed that LINEX̂ in terms 

of squared error loss is inadmissible and S̂  in terms of LINEX loss is 

inadmissible. Bayes estimation in relation to other queuing systems is being 
considered and may be included in a future communication. 
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