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Abstract 

 
In this paper, the model and forecast lung cancer incidence in Taminadu using dynamic regression 
models with finite and infinite lags. These models involve autoregressive models (ARs), distributed 
lag models (DLMs), polynomial distributed lag models (PDLs) and autoregressive polynomial 
distributed lag models (ARPDLs) and outline the implementation and forecasting issues with DLM 
and PDL models respectively and additional to present one-step ahead forecast for the various 
models. Finally, the lung cancer data in Tamilnadu to evaluate the robustness of the results, we 
explore ARPDL models and present our summaries of best models and their forecasts  
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1. Introduction 

Cancer is a basic term for large group of diseases characterised by the increase of 
abnormal cells past their ordinary boundaries which could then occupy adjoining elements of the 
body and spread to other organs. Other common phrases used are malignant tumors and 
neoplasms. Cancer can have an effect on nearly any a part of the body and has many anatomic and 
molecular subtypes that each requires specific management techniques. Cancer is the second main 
reason of dying globally and is estimated to account for 9.6 million deaths in 2018. Lung, prostate, 
colorectal, belly and liver cancer are the most commonplace forms of most cancers in guys, whilst 
breast, colorectal, lung, cervix and thyroid most cancers are the maximum commonplace among 
women. 

Worldwide, tobacco use is the single best preventable threat aspect for cancer mortality 
and kills about 6 million human beings every year, from most cancers and other sicknesses. 
Tobacco smoke has more than 7000 chemicals, at least 250 are known to be dangerous and greater 
than 50 are regarded to motive cancer. Tobacco smoking reasons many forms of most cancers, such 
as cancers of the lung, oesophagus, larynx (voice field), mouth, throat, kidney, bladder, pancreas, 
stomach and cervix. Second-hand smoke, additionally known as environmental tobacco smoke, has 
been verified to motive lung most cancers in non-smoking adults. Smokeless tobacco reasons oral, 
oesophageal and pancreatic most cancers. Nearly 80% of the 1 billion people who smoke within 
the world live in low- and middle-income countries. 
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2.  Model Description 
2.1. Linear Model of First-order Autoregressive AR(1) 

In simple terms, autocorrelation means that current values depend on past values. A 
common starting point of analysis is a simple model of positive first-order AR(1) autocorrelated 
error-process associated with a regression equation that can be represented by the following two 
equations 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡                                                                                                                          ⋯ (1) 
and   𝑋𝑡 = 𝑆𝑡 × 𝑃𝑡   

 Where 𝑌𝑡  is the incidence at time 𝑡 (number of cases in month t), 𝑋𝑡  is the smoking 
population in 10,000, 𝑆𝑡 is the smoking prevalence and 𝑃𝑡  is the population size, 
and    𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝜗𝑡                                                                                                                          ⋯ (2) 
 The consequences when ordinary least squares (OLS) is used to estimate 𝛽0 and 
𝛽1 Because (OLS) reported Standard Errors are misleading and the OLS estimators are 
inconsistent if autocorrelation exists, we need to investigate if the errors are auto correlated 
(Barretto and Howland, 2006). 

2.2.  Generalized Least Squares 

 A 
transformation of and can be such that the resulting linear model has an independent error 
structure and transform the model so that we get rid of the errors that the errors that are 
independent and normally distributed. This transformation is defined as followed by substituting 
the error-forecasting equation is obtain a model in which the error term is a pure, independently 
and identically distributed error, 𝜗𝑡  

𝑌𝑡 − 𝜌𝑌𝑡−1 = 𝛽0(1 − 𝜌) + 𝛽1𝑋𝑡 + 𝜌𝛽1𝑋𝑡−1 + 𝜗𝑡                                                                      ⋯ (3) 
If defined new variable is 𝑌𝑡

∗ = 𝑌𝑡 − 𝜌𝑌𝑡−1 𝑎𝑛𝑑 𝑋𝑡
∗ = 𝑋𝑡 − 𝜌𝑋𝑡−1 , 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 

 𝑌𝑡
∗ = 𝛽0(1 − 𝜌) + 𝛽1𝑋𝑡

∗  + 𝜗𝑡                                                                                                        ⋯ (4) 
 Equation (4) is known as the transformed model with a well-behaved error term. 
OLS may be applied to this equation. However is unknown, so it must be estimated from the 
regression of residuals on lagged residuals. We then use it to transform the original data to obtain 
the original parameter values of the model. Running OLS on the transformed model is called 
generalized least squares (GLS). It generates the right SEs as it is the best linear unbiased estimator. 
Notice as well that when =0, the transformation reduces to the familiar OLS model. Several 
procedures have been developed, but the most popular ones are Cochrane-Orcutt iterative 
procedure, Prais-Winsten (1954) in order to transform the variables in the first observation we 
need to apply the following formula to the first observation as follows 

𝑌1
∗ = √(1 − 𝜌2)𝑌1     and   𝑋1

∗ = √(1 − 𝜌2)𝑋1 

2.3.  Distributed Lag Models (DLMs) 

 Distributed lag models are useful because they allow a dependent variable to depend 
on past values of an explanatory variable at various lags. When the population is increasing, this 
means that the age distribution will increase over time.  Algebraically, we can demonstrate this lag 
effect by saying that a change in a policy variable  𝑋𝑡  has an effect on the dependent or response 
variables 𝑌𝑡 , 𝑌𝑡−1, ⋯ If we turn this around slightly, then we can say that is affected by the values of 
𝑋𝑡 , 𝑋𝑡−1, or  

𝑌𝑡 = 𝑓(𝑋𝑡 , 𝑋𝑡−1, 𝑋𝑡−2,𝑋𝑡−3,𝑋𝑡−4,, ⋯ 𝑋𝑡−𝑘 )                                                                                  ⋯ (5) 
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This distributed lag model is finite as the duration of the effects is a finite period of time, namely k 
periods. This model is said to be dynamic because it describes the reaction over time. In order to 
convert Equation (5) into a distributed lag model we need a functional form with an error term 
and then make assumptions about the properties of the error term. 

2.4.  Finite Distributed Lag Models 

 To model the finite distributed lag, the functional form is assumed to be linear, so 
that the finite lag model, with an additive error term, is  

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + ⋯ + 𝛽1𝑋𝑡−𝑘  + 𝜀𝑡  

                              = 𝛼 + ∑ 𝛽𝑖𝑋𝑡−𝑖

𝑘

𝑖=0

+ 𝜀𝑡                                                                                               ⋯ (6) 

Where, assume that 𝐸(𝜀𝑡) = 0, 𝑉𝑎𝑟(𝜀𝑡) = 𝜎2, 𝑎𝑛𝑑  𝐶𝑜𝑣(𝜀𝑡,𝜀𝑠) = 0  

 In this model the parameter 𝛼 is the intercept and 𝛽𝑖  is the distributed lag weight to 
reflect the fact that it measures the effect of changes in past values of X on the expected current 
value of Y, all other things being equal in equ (6). There are many consequences of collinearity. 
Firstly, the estimates of least squares are imprecise, meaning that a wide interval estimates will be 
detected. Secondly, high levels of correlation among the regressors imply multicollinearity, which 
leads to unreliable and inconsistent coefficient estimates with large variances and standard errors. 
 If we assume that the residuals are also uncorrelated with all future values of X this 
is called strict exogeneity ⎸𝐸(𝜀𝑡 𝑋𝑡+𝑘+𝑠⁄  ⋯ 𝑋𝑡 ⋯ 𝑋𝑡+𝑘+𝑠) = 0 and there may be estimation 
techniques other than OLS that can be used to estimate dynamic causal effects ( Hill et al, 2000). 
From empirical studies using real data, it has been shown that short-term forecasts are more 
reliable than long-term forecasts because the forecast relies more on immediate past observations 
than long-term observations. The evaluate to finding  the relationship between the dependent 
variables and one current value of the independent variables to get the short and long-run 
multiplier of lung cancer incidence in Tamilnadu. 
 
 Koyck (1954) proposed a geometrically declining scheme for the β s. Therefore, 
rather than estimate the model with a large number of lags we can transform the data into a more 
parsimonious form by using the Koyck Transformation procedure. 
Begin with a model of Y as a function of X and k lags of X is, 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + ⋯ + 𝛽1𝑋𝑡−𝑘  + 𝜀𝑡  
  The distributed lagged model (DLM) the effect of variable 𝑋𝑡  diminishes as the lag 
gets larger by an amount 𝜆 each period. This is reflected in the size of coefficients such that 𝛽1 =

𝛽0𝜆𝑖 and 0 < 𝜆 < 1, 
Where, 𝜆 is a fraction, so the larger the value of λ the slower the speed of adjustment Substituting 
into the DLM in Equation we get, 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝜆𝑋𝑡−1 + 𝛽2𝜆2𝑋𝑡−2 + 𝛽3𝜆3𝑋𝑡−3 + ⋯ + 𝛽1𝜆𝑘𝑋𝑡−𝑘  + 𝜀𝑡                          ⋯ (7) 
  = 𝛼 + 𝛽0(𝑋𝑡 + 𝜆𝑋𝑡−1 + 𝜆2𝑋𝑡−2 + 𝜆3𝑋𝑡−3 + ⋯ + 𝜆𝑘𝑋𝑡−𝑘  + 𝜀𝑡                                            ⋯ (8) 

If (8) is true at time t it is also true at time t-1, so if we lag Equation (8) one time period, 
𝑌𝑡 = 𝛼 + 𝛽0(+𝜆𝑋𝑡−1 + 𝜆2𝑋𝑡−2 + 𝜆3𝑋𝑡−3 + ⋯ + 𝜆𝑘𝑋𝑡−𝑘  + 𝜀𝑡−1                                           ⋯ (9) 

Multiplying Equation (9) by 𝜆 gives 
𝜆𝑌𝑡 = 𝜆𝛼 + 𝛽0(+𝜆𝑋𝑡−1 + 𝜆2𝑋𝑡−2 + 𝜆3𝑋𝑡−3 + ⋯ + 𝜆𝑘+1𝑋𝑡−𝑘+1  ) + 𝜆𝜀𝑡−1                      ⋯ (10) 

Subtracting Equation (10) from Equation (9), we obtain 
 𝑌𝑡 − 𝜆𝑌𝑡 = {𝛼 + 𝛽0(+𝜆𝑋𝑡−1 + 𝜆2𝑋𝑡−2 + 𝜆3𝑋𝑡−3 + ⋯ + 𝜆𝑘𝑋𝑡−𝑘  + 𝜀𝑡−1 } − {𝜆𝛼 +

𝛽0(+𝜆𝑋𝑡−1 + 𝜆2𝑋𝑡−2 + 𝜆3𝑋𝑡−3 + ⋯ + 𝜆𝑘+1𝑋𝑡−𝑘+1  ) + 𝜆𝜀𝑡−1 } 
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Simplifying (all lags cancel out) gives 
𝑌𝑡 − 𝜆𝑌𝑡−1 = (1 − 𝜆)𝛼 + 𝛽0𝑋𝑡 + 𝜀𝑡 − 𝜆𝜀𝑡−1  

Hence, 
𝑌𝑡 = (1 − 𝜆)𝛼 + 𝛽0𝑋𝑡 + 𝜆𝑋𝑡−1 + (𝜀𝑡 − 𝜆𝜀𝑡−1 )                                                                 ⋯ (11) 

Using Equation (11), regress on and to generate estimates of and  use these estimates to compute 
the coefficients at each lag as well as the original intercept This transformation is known as the 
Koyck transformation. Forecasting with the AR (1) Models are, 
Given data (𝑌1, 𝑌2, 𝑌3, 𝑌4, ⋯ 𝑌𝜏)the one period ahead optimal forecast is, 

�̂�𝜏+1,𝜏 = 𝐸 (
𝑌𝜏+1

Ω𝜏
⁄ ) 

                                                                                 = 𝛼0 + 𝐸 (
𝛼1𝑌𝜏

Ω𝜏
⁄ ) + 𝐸 (

𝑌𝜏+1
Ω𝜏

⁄ ) 

                                                                        = 𝛼0 + 𝛼1𝑌𝜏 
In compute �̂�𝜏+1,𝜏 = �̂�0 + �̂�1𝑌𝜏 using the estimates. The one-step ahead optimal forecast error of 

AR (1) is   �̂�𝜏+1 − �̂�𝜏+1,𝜏 = 𝜖𝜏+1, 

 The forecast error variance is,  

                                                                        𝑉𝑎𝑟(�̂�𝜏+1 − �̂�𝜏+1,𝜏) = 𝑉𝑎𝑟(𝜖𝜏+1) = 𝜎2  

Construct the prediction interval (PI) using the following equation 

                                                                             �̂�𝜏+1 ± 𝑍𝛼
2⁄  √�̂�𝜏+1𝑉𝑎�̂�(�̂�𝜏+1)  

Therefore, the 95% PI is computed in 

 �̂�𝜏+1 ± 1.96√�̂�𝜏+1𝑉𝑎�̂�(�̂�𝜏+1)  
And the estimated AR(1) model is 

𝑌𝑡 = 14.788 + 0.5462𝑌𝑡−1 +  𝜀𝑡 
The AR (1) with T observations has the mean 𝜇 = 32.584, 𝛼1= 0.5462, 𝑌𝜏= 49, 𝜎2= 61.2. The AR 
(1) process is   𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝜀𝑡  
 Where, 𝛼0 = 𝜇(1 − 𝛼1 ) so that  𝛼0 = 𝜇(1 − 𝛼1= 32.584 (1-0.5462) = 14.788. The 
one period ahead forecast is 14.788+ 0.5462× 49 = 41 cases of lung cancer. Thus, the one-step 
ahead forecast is a fixed amount 𝛼0 + 𝛼1𝑌𝑡−1 plus the stochastic term  𝜀𝑡  . The fixed amount has a 
variance of zero, so the variance of the one-step ahead forecast is �̂�2 = 61.2. The plots for one-step 
ahead forecasts and the residuals are shown in Figure 5.4 and Figure 5.5respectively. 
Forecasting with the Linear Regression Model with Lagged Covariate 

3.  Results and Discussion 
 Forecasting of the best ARPDL model of the total cases of lung cancer on total 
smoking population. The one-step-ahead forecast is 50 with 95% of adjusted R-squared for the 
estimated relation is 55.4 and the overall F-test value is 14.68 with p-value 0.00. Thus, the long run 
effect suggests that there will be on average 50 cases of lung cancer per month for the next 24 
months. The estimated yearly lung cancer cases in 2020 and 2021 are 606 and 581 respectively. In 
a main aim of regressing the total cases of lung cancer on smoking population separately for males 
and females is that we want to identify the effect of changes in past values of smoking population 
separately for males and females on the current expected value of total cases of lung cancer. 
Particularly, we want to see where the effect of smoking is greater among males or females. In 
addition, we aim to minimize the error as much as possible since there are available data on 
smoking population for males and females separately in order to obtain reliable residual plots  
figure-1 for the best PDL model of lung cancer cases per month from 2006 to 2020 in Tamilnadu 
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Fig-1:Fitted and residual plots for the best PDLmodel of lung cancer cases 

 per month from 2006 to 2020 in Tamilnadu 
               

 
 The estimated model the short and long-run multipliers are the same i.e. = 0.116 
(see Table- 1). Therefore, 1% increase in smoking population suggests an approximately immediate 
and permanent 12% (43) individual cases increase in lung cancer per month. The value of the 
Durbin-Watson test indicates that there seems to be first order autocorrelation in the data so 
standard errors are wrongly estimated, but coefficients are unbiased. 

Table -1: Regression for result in total cases of Lung Cancer 
 against smoking population 

The regression equation is 
Yt = - 0.03 + 0.116 Xt 

Predictor    Coef     SE Coef      T       P 
Constant     -0.034   2.849      -0.01   0.990 
Xt           0.11623  0.01007    11.55   0.000 

S = 7.11722    R-Sq = 41.2%    R-Sq(adj) = 40.9% 

Analysis of Variance 

Source           DF     SS        MS       F      P 
Regression       1     6753.9    6753.9   133.33  0.000 
Residual Error   190   9624.4    50.7 
Total            191   16378.3 
Durbin-Watson statistic = 1.55538 

 
 
In a Apply for the Koyck transformation to the total cases of Lung Cancer against smoking 
population, the results are shown in Table-2. From the estimated equation we can find the 
coefficient parameters as follows: 
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Table -2: Results of Koyck transformation estimated  

Coefficient parameters. 

The regression equation is 
 Yt = - 1.18 + 0.0994 Xt + 0.176 Yt-1 
 191 cases used, 1 cases contain missing values 

Predictor  Coef     SE Coef      T      P 
Constant  -1.182     2.682     -0.44    0.660 
Xt         0.09939   0.01221    8.14    0.000 
Yt-1        0.17621   0.06786    2.60    0.010 

S = 6.67419     R-Sq = 46.9%     R-Sq(adj) = 46.3% 

Analysis of Variance 
Source         DF     SS       MS     F    P 
Regression      2    7392.0   3696.0 82.97 0.000 
Residual Error 188   8374.4   44.5 
Total          190   15766.4 
Durbin-Watson statistic = 2.01369 

 

Using the estimates  �̂�𝜏+1,𝜏 = �̂�0 + �̂�1𝑋𝜏  and the estimated regression equation is as follows 

𝑌𝑡 =  −1.448 + 0.1211𝑋𝑡−1 + 𝜀𝑡 
Therefore the one-step ahead forecast when 𝑋𝜏= 377.540 is 

𝑌𝜏+1 = 𝛽0 + 𝛽1𝑋𝜏 
                                             𝑌𝜏+1 = −1.448 + 0.1211 × 337.540 = 44  𝑐𝑎𝑠𝑒𝑠 𝑜𝑓 𝑙𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟. 

Forecast Error in Prediction Interval The 95% PI is computed as follows: 

�̂�𝜏+1 ± 1.96 √𝑉𝑎�̂�(�̂�𝜏+1) 

44 ± 1.96 √45.42 
Fig-1: Fitted and residual plots for Ordinary Least Square model of 

Lung cancer cases per month from 2006 to 2020. 
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Series Residuals 

Sample  
Observations  
Mean  
Median  
Maximum  
Minimum  
Std. Dev.  
Skewness  
Kurtosis  
Jarque-Bera  
Probability  

2006M03 2020M12 
166 
-9.23e-03 
-0.140391 
16.78445 
-16.24439 
6.538573 
0.098044 
2.859645 
0.328625 
0.892730 

 

Table-3: Results of restricted least squared PDL model 

Varible Coe fficient t –Statistic p-value 

𝑍0𝑡 
𝑍1𝑡 
𝑍2𝑡 
𝑍3𝑡 
𝑍4𝑡 
𝑍5𝑡 
𝑍6𝑡 
𝑍7𝑡 
𝑍8𝑡 
𝑍9𝑡 
𝑍10𝑡 
𝑍11𝑡 
𝑍12𝑡 
𝑍13𝑡 
𝑍14𝑡 
𝑍15𝑡 
𝑍16𝑡 
𝑍17𝑡 
𝑍18𝑡 

3.93  
-0.32  
-0.12  
0.03  
0.02  
-0.00 
-0.02  
0.01  
0.01  
-0.02  
0.68  
-0.38  
0.01 
0.12 
 -0.00  
-0.00  
0.02  
0.01  
-0.00  

0.29  
-1.88  
-0.39  
1.36  
0.24  
-0.67  
-0.26  
0.29 
0.20  
-0.09  
1.26 
-1.32  
0.04 
1.42  
-1.03  
-1.52  
1.60 
1.51  
-1.80  

0.86 
0.04 
0.64 
0.28 
0.84 
0.55 
0.74 
0.70 
0.68 
0.83 
0.24 
0.29 
0.77 
0.34 
0.38 
0.02 
0.21 
0.32 
0.17 
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R-squared,                                     
Mean dependent variance.  
Adjusted R-squared.                               
S.D. dependent variance.  
S.E. of regression.  
Akaike information criterion.  
Sum squared residual.                                  

0.5 57354 
32.67108  
0.523602  
9.402990 
6.639154  
6.528192  
6260.012                                       

Schwarz criterion  
 Log likelihood -                                       
Hannan-Quinn criteria.  
F-statistic                                                 
Durbin-Watson stat                                                                        
Probability(F-statistic)  

7.284383 
439.4399 
5.872172 
13.29769 
2.832135 
0.000000 

 
 
 The created variables from  𝑍0𝑡 to 𝑍8𝑡 refer to the lag of 𝑥1𝑡 − 𝑖 where as the 
variables from  𝑍9𝑡  to 𝑍17𝑡   refer to the lag of  𝑥0𝑡 − 𝑖. What the polynomial approximation has 
done is to reduce the number of parameters that have to be estimated restricted equation.  

Table- 4: Summary of Polynomial Models result. 
Models �̅�2 DW 𝜎2 One step head and 5%CI Forecast 

Error value 

OLS 
PDL 
ARPDL 
 
Model- II 
OLS  
PDL 
ARPDL 
 

0.48  
0.49 
 0.56  
 
 
0.48  
0.52  
0.64  

1.52  
1.74  
1.92  
 
 
1.51 
1.84  
2.14  

6347  
7441  
5818  
 
 
5142 
7450 
4631  

52.8(72.8, 45.7) 
43.5 (68.1, 42.0)  
52.0 (52.6, 35.5) 
 
 
63.5 (69.4, 33.5)  
66.7 (41.0, 54.5)  
54.1 (75.6, 52.6)  

18.2 
13.4 
12.6 
 
 
19.1 
12.2 
13.5   

 
 The fitted model is shown in Figure-2 together with residual diagnostic plots. This is 
followed by the distribution of the series in the histogram with a complement of standard 
descriptive statistics displayed along with the histogram. The p-value  of the Jarque-Bera test is not 
less than for 5% significance level and hence we do not reject the null hypothesis that the model is 
normally distributed level.  

4. Conclusion 
 Finally a fit of new ARPDL model in data used are monthly incidence cases of lung 
cancer and smoking population in Tamilnadu by gender from 2006-2020.The empirical results 
suggest that Lung Cancer cases are strongly affected by smoking, and most of the cases are among 
males. However the value of the sum of t-ratios of the best model ARPDL suggest that the smoking 
effect is greater for females than for males. The one-step-ahead forecasts for each different 
Forecasting AR(1) model. The one-step-ahead forecast is 41 with 95% PI. The mean square error is 
69.5. The one-step-ahead forecast is 44 with 95% adjusted R-squared for the estimated relation is 
45.3 and the mean square error for linear regression model with lagged covariate and AR(1) errors. 
Estimated relation is 36.4 and the mean square error distributed lagged variable model (DLM). 
However, when it comes to time series forecasting, because of the inherent serial correlation and 
potential non stationarity of the data, its application is not straightforward and often omitted by 
practitioners in favour of an out-of-sample evaluation. Hence we generated our forecasts 
accordingly using the seasonal ARIMA model. 
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It is important to mention that cross correlation methods in the time domain and impulse 
response functions in frequency domain which are generated through cross spectral analysis are 
other potential methods that can be used for modelling bivariate time series. Consideration of 
these approaches may lead to models that can be derived more efficiently than using lagged 
regression models with their many parameters. However, due to time constraints, we have not 
considered these approaches. 
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