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Abstract 

Outlier can occur due to the chance error for any distribution. Test statistic for 
detection of outlier for Johnson SB distribution is rarely available. An attempt has 
been made to develop a test statistic for the detection of a pair of upper outliers 
for a sample from a Johnson SB distribution under the assumption that 
parameters are known. A simulation technique is carried out for obtaining the 
critical value of the test statistic. Some examples have also been constructed for 
highlighting the utility of the statistic.  

Keywords: Johnson SB distribution, Outliers, Slippage alternative, Critical region, 
Simulation technique. 

1. Introduction 

Johnson SB distribution is a four-parameter distribution first described by N. L. 
Johnson in his classic paper Johnson (1949). In this paper, he considered 
transformations on random variables using method of translation that led to 
Normal distributions. This is popularly known as Johnson family of distributions 
with flexibleness of extensive coverage of distributional shapes.  

Because of pliable character, SB distribution is applied extensively e.g.  model for 
human exposure data as described by Flynn (2004). Similarly, Mage (1980), 
Kotteguda (1987), Zang et.al. (2003) and Konduru et.al. (2013) used this 
distribution for air pollution, rainfall distribution, forestry study and for Infrared 
brightness study of the convective clouds respectively. Further, this distribution 
can be used in microarray data analysis as studied by Florence George (2007). 
Hafley and Schreuder (1977), Von Gadow (1983), Kiviste et al. (2003) and 
Parresol (2003) supported the use of this distribution to describe diameter 
distributions. Similarly, Hafley and Schreuder (1977) used SB distribution for the 
description of height distributions. 

Any observation which deviates from the rest of the data set in some sense is 
called an outlier. In the line of Sriwastava (2018), a test statistic is evolved for 
identification of an upper outlier pair assuming that all parameters are known. It 
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is done by considering a test statistic as given by Irwin (1925) using a sample from 
a Standard Normal distribution. 

2. Johnson SB Distribution and Test Statistics 

Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛  be the n observations from a Johnson SB distribution. 
Let𝑋(1), 𝑋(2), ⋯ , 𝑋(𝑛) be the order statistics of these observations.  

Therefore, for Johnson SB distribution  

𝑓(𝑥) =
𝛿

√2𝜋

𝜆

{𝜆−(𝑥−𝜉)}(𝑥−𝜉)
𝑒𝑥𝑝 [−

1

2
{𝛾 + 𝛿 ln (

𝑥−𝜉

𝜆−(𝑥−𝜉)
)}

2

],  (2.1) 

   (2.1) 

  𝜉 ≤ 𝑥 ≤ 𝜉 + 𝜆, 𝛿 > 0, −∞ < 𝛾 < ∞, 𝜆 > 0, −∞ < 𝜉 < ∞ 

where,𝜉 and 𝜆 are location and scale parameters respectively; 𝛿 and 𝛾 are shape 
parameters. 

By making a transformation 

z =𝛾 + 𝛿 ln (
𝑥−𝜉

𝜆−(𝑥−𝜉)
) ,    (2.2) 

the probability density function (2.1) transforms to a Standard Normal 
distribution 

𝑓(𝑧) =
1

√2𝜋
exp [−

1

2
𝑧2] , −∞ < 𝑧 < ∞.    

   

Let  𝑧1, 𝑧2, ⋯ , 𝑧𝑛  ben observations of Normal distribution corresponding to the 

n observations 𝑋1, 𝑋2, ⋯ , 𝑋𝑛. Further, let𝑧(1), 𝑧(2), 𝑧(3) ⋯ , 𝑧(𝑛)is the order 

statistics of the n transformed observations. Note that, transformation (2.2) is 
order preserving. 

Let 𝐻0  (null hypothesis): there is no outlying observations in the sample.                                                 
𝐻1 (alternative hypothesis): there is a pair of outlying observations on the right 
side. The test statistic for testing the presence of an upper outlier pair of a sample 
(from Normal distribution with 𝜎known) is given by Irwin (1925) as 

𝑇= 
𝑧(𝑛−1)−𝑧(𝑛−2)

𝜎
.       (2.3) 

𝑇 > 𝑇𝛼 is the 𝛼 level critical region for𝑇𝛼, where 𝑇𝛼is the critical value of statistic 
𝑇 and its tabulated value is given in Barnett and Lewis (1994) at 5% and 1% level 
of significance. 

When the transformed values of Johnson SB distribution using transformation 
(2.2) was used in (2.3), it becomes, 

𝑇 = 𝑧(𝑛−1) − 𝑧(𝑛−2), as𝜎 = 1.     (2.4) 
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As the transformation (2.2) is order preserving, we have 

𝑧(𝑛−1)= 𝛾 + 𝛿 ln (
𝑥(𝑛−1)−𝜉

𝜆−(𝑥(𝑛−1)−𝜉)
)        and    𝑧(𝑛−2)= 𝛾 + 𝛿 ln (

𝑥(𝑛−2)−𝜉

𝜆−(𝑥(𝑛−2)−𝜉)
). 

Thus,   𝑇=𝛾 + 𝛿 ln (
𝑥(𝑛−1)−𝜉

𝜆−(𝑥(𝑛−1)−𝜉)
) –𝛾 − 𝛿 ln (

𝑥(𝑛−2)−𝜉

𝜆−(𝑥(𝑛−2)−𝜉)
) 

 =𝛿 [ln (
𝑥(𝑛−1)−𝜉

𝜆−(𝑥(𝑛−1)−𝜉)
) − ln (

𝑥(𝑛−2)−𝜉

𝜆−(𝑥(𝑛−2)−𝜉)
)]. 

or, T=  [ln {(
𝑥(𝑛−1)−𝜉

𝑥(𝑛−2)−𝜉
) (

𝜆−(𝑥(𝑛−2)−𝜉)

𝜆−(𝑥(𝑛−1)−𝜉)
)}]. 

Let,  𝑥(𝑛−1) − 𝜉 = 𝑦(𝑛−1),   then T can be rewritten as 

𝑇= 𝛿 [ln {
𝑦(𝑛−1)

𝑦(𝑛−2)
(

𝜆−𝑦(𝑛−2)

𝜆−𝑦(𝑛−1)
)}]= [ln {

𝑦(𝑛−1)

𝑦(𝑛−2)
(

𝜆−𝑦(𝑛−2)

𝜆−𝑦(𝑛−1)
)}

𝛿

]. 

Then on taking exponential on both the sides, a statistic W which is suitable for 
variables from a Johnson SB distribution can be obtained as 

𝑊=𝑒𝑇= {
𝑦(𝑛−1)

𝑦(𝑛−2)
(

𝜆−𝑦(𝑛−2)

𝜆−𝑦(𝑛−1)
)}

𝛿

,   {0 < 𝑇 < ∞}. 

or, 𝑊={(
𝑥(𝑛−1)−𝜉

𝑥(𝑛−2)−𝜉
) (

𝜆−(𝑥(𝑛−2)−𝜉)

𝜆−(𝑥(𝑛−1)−𝜉)
)}

𝛿

, 1 < 𝑊 < ∞.   (2.5) 

Corresponding to 𝛼 size critical region 𝑇 > 𝑇𝛼 of the test statistic T, 𝑊 > 𝑊𝛼 will 

be the 𝛼 size critical region of the test statistic W. 

The critical values 𝑊𝛼  are tabulated in Table 2.1 at 5% and 1% levels of 

significance and for different values of n between 10 and 1000. As the critical 
values 𝑊𝛼were derived from the critical values 𝑇𝛼, they are independent of the 
parameters (𝜉, 𝜆, 𝛾, 𝛿). Thereby, they can be used for any Johnson SB distribution.  

 
Table 2.1 

  Critical Value of 𝑊𝛼 for Different Sample Sizes 
 

Wα 

N α=0.05 α=0.01 n α=0.05 α=0.01 

10 2.6117 3.9749 80 1.8404 2.4596 

20 2.2034 3.1268 100 1.786 2.3632 

30 2.0751 2.8577 200 1.716 2.2479 

40 1.9739 2.7183 500 1.616 2.0751 

60 1.8776 2.5345 1000 1.5683 1.9542 

It can be inferred from the table that the critical values of the test statistic W 
decreases with increase in sample size. This is because, higher the number of 
observations, closer will be the distance between them. 
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3. Examples 

The utility of the statistic developed were verified with the following real-life data 
taken from Govt. of India census data 2011 and outlying observations were 
planted. 

1028610, 1045547, 1062388, 1095722, 1112186, 1128521, 1160813, 1176742, 
1192506, 1223581, 1238887, 1254019, 1283600, 1298041, 1312240, 1339741, 
1352695, 1365302, 1388994, 1399838.  

This is used in the following examples. An outlying observation was introduced by 
deviating each of the parameters as follows. 

Example.3.1: For the purpose of introduction of an outlier, another sample with 

different location parameter𝜉 + 𝑎𝜆, where 0 <a < 1 with a as 0.5 of Johnson 
𝑆𝐵distribution was generated (This is because the generated observations may lie 
beyond the range of the original variable). The largest observation of the first 
sample was replaced with the largest observation of the second sample. Similarly, 
the second largest observation of the first sample was replaced by the second 

largest sample of the second sample. Test statistic W was calculated, and it is equal 
to 3.30715, hence the null hypothesis is rejected at 5 percent level of significance. 
So, we conclude that the two replaced observations (largest and second largest) are 
the contaminant observations present in the sample. 

Example.3.2: Again, for introduction of an outlier, a sample of Johnson 𝑆𝐵 

distribution was generated by shifting the scale parameter𝑏𝜆, where 𝜉
𝜆

⁄ <b< 

1+𝜉
𝜆

⁄ with b=1.5, (This is because the generated observations may lie outside the 

range of the original variable). The highest valued and the next highest valued 
observations of the first sample were replaced with these two observations of the 

second sample. Test statistic W was calculated and found to be equal to12.3665 
and lying in the critical region at 5 percent level of significance. It shows that 
there are some outlying observations in the sample. 

Example.3.3: As per previous examples, for introducing an outlying unit a sample 

from Johnson SB distribution by shifting the shape parameter c𝛾, where – (𝜉 +

𝜆) < 𝑐 < (𝜉 + 𝜆) with 𝑐 = 0.75 was generated (This is because beyond this 
range, it becomes infinity). The observation with highest value and the next 
largest observation of the sample one was replaced with these two observations of 

the sample two. Test statistic W was calculated and found to be equal 

to7.816926at 5% level of significance. On comparing with the critical value for a 
sample of size 20, the null hypothesis gets rejected. This shows that suspected 
observations are the outlying observations. 

Example.3.4: After introduction of an outlying observation a new sample was 

generated with a shift in the shape parameter d𝛿, d> 0; for this example, d was 
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taken as 0.5. The largest unit of the sample one was replaced with the largest unit 
of sample two. Similar exchange was done for the next largest value of the sample 

one with the corresponding unit of the second sample. Calculated value W was 
obtained as 2.635318 and the null hypothesis gets rejected at 5 percent 
significance level. This infers that the outlying observations are present in the 
sample. 

Example.3.5: Now, for an outlying observation with a shift in all the four 
parameters, again for introducing an outlier, another sample of a Johnson SB 
distribution having parameters𝜉 + 𝑎𝜆 (location parameter), 𝑏𝜆 (scale parameter) 

with shape parameters c𝛾 and d𝛿, where 0 <a < 1,𝜉 𝜆
⁄ <b< 1+𝜉

𝜆
⁄ , – (𝜉 + 𝜆) < 𝑐 <

(𝜉 + 𝜆), d> 0 with a=0.5,b=1.5, c=0.75 and d=0.5 was generated. The greatest 
valued unit of sample 1 was replaced with the greatest valued unit and the sample 
2. The similar replacement was done for second greatest valued unit of the first 

sample with the second sample. Test statistic W was calculated and obtained 
as5.29684 and found to be lying in the critical region, which infers the presence 
of outlying observations in the sample. 

4. Performance Study 
For a slippage alternative of the location parameter, using R software a random 

sample of size n was generated from Johnson SB distribution with location 
parameter 𝜉(=20), scale parameter 𝜆(=10), with two shape parameters 𝛾(=1) and 
𝛿(=2) (known). For introduction of a contaminant observation, a new sample was 

generated with a shift in the location parameter,𝑎𝜆, where 0 <a < 1. There by, 
there is no need of outlier detection tests for identification of contaminant 
observations. The largest and the second largest observations of the first sample 
were replaced with the corresponding observations of the second sample and 
hence, a new sample was formed.  

 

Table 4.1 
  Probability of Identification of the Contaminant Observation with a Shift in 

Location Parameter 
 

a 
n 0.2 0.3 0.4 0.5 0.6 0.8 1 

10 0.9481 0.9984 1.0000 1.0000 0.9997 0.9995 0.9995 

20 0.9883 0.9980 1.0000 1.0000 0.9995 0.9991 0.9980 

30 0.9946 0.9970 1.0000 1.0000 0.9990 0.9987 0.9964 

60 0.9991 0.9985 1.0000 1.0000 0.9991 0.9993 0.9710 

100 0.9998 0.9999 1.0000 1.0000 0.9992 0.9994 0.9025 

200 1.0000 1.0000 1.0000 1.0000 0.9995 0.9713 0.6154 

500 1.0000 1.0000 1.0000 1.0000 0.9992 0.7498 0.0895 

1000 1.0000 1.0000 1.0000 1.0000 0.9878 0.3000 0.0011 
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Then, the test statistic W was calculated at 𝛼 level of significance and compared 
with the corresponding critical value. The probability of rejection (the ratio of 
total number of times the planted observations were detected to be outlying to the 
total number of repetitions) of the null hypothesis was calculated. 

This study was carried out for different sample sizes and the simulation was done 
10,000 times. The calculated value of the probability of identification of 
contaminant observation is shown in the Table 4.1. 

The findings of Table 4.1 shows that the test statistic is reasonably performing 

well for different sample sizes up to a=0.5, beyond that it starts declining. This is 
due to the fact that larger values of the location parameter leading to a smaller 

value of the statistic W, as observed from (2.5). 

Similarly, for slippage alternative in the scale parameter a sample was 
generated. After introduction of an outlying observation a new sample was 

generated with a shift in the scale parameter 𝑏𝜆, such that𝜉 𝜆
⁄ <b< 1+𝜉

𝜆
⁄ . This is 

because the generated observations may lie outside the range of the original 
variable, therefore, it becomes evident, and no outlier detection test would be 
needed for their identification. The largest and the second largest observations of 
sample 1 was replaced with the corresponding observations of the sample 2 and a 

new sample was created. Then, W (test statistic) was obtained at an appropriate 
significance level. Using simulation technique probability of rejection of 𝐻0 was 
calculated. The Probability of rejectionwhich is the probability of identification of 
the outlying observation is then the ratio of number of outcomes to number of 
trials. This process was simulated 10,000 times for different sample sizes. The 
probability of identification of outlying observation is shown in Table 4.2. 

Table 4.2  
Probability of Identification of the Contaminant Observation with a Shift in Scale 

Parameter 
 

b 
n 1.2 1.3 1.4 1.5 1.6 1.8 2 

10 0.6083 0.7956 0.9088 0.9624 0.9874 0.9988 0.9999 

20 0.7495 0.9235 0.9819 0.9964 0.9998 1.0000 0.9999 

30 0.8148 0.9570 0.9947 0.9992 0.9999 1.0000 0.9999 

60 0.9146 0.9916 0.9996 0.9998 1.0000 1.0000 0.9999 

100 0.9598 0.9982 1.0000 0.9997 1.0000 1.0000 0.9999 

200 0.9878 0.9999 1.0000 1.0000 1.0000 1.0000 0.9515 

500 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9390 

1000 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 0.6557 

As per Table 4.2, it can be inferred that the test statistic is performing well for 

different sample sizes up to b= 1.8; beyond that it starts declining slightly. 
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5. Comparison with other existing procedures 

There exist several outlier detection methods, such as Box plot, Histogram, 
Scatter diagram and Normal probability plots. These methods graphically 
represent the outliers. In this paper, a mathematical approach was considered. It 
seems desirable to mention one criterion to compare the result. Here, Box plot 
method is considered. Considering the same data set as that was taken in earlier 
examples and using identify command of R software draw a box plot without 
introducing an outlier. This is shown in Figure 1 as given below: 

 
Fig.5.1. Box Plot 

After introducing a pair of upper outliers i.e. the largest and the second largest 
observations with a shift in all the four parameters, the box plot comes out to be 
as follows. 

 
Fig.5.2. Box Plot after introducing outliers 

Figure 2 shows that box plot did not identify any outlier. It indicates that the 
proposed method is more reliable than the earlier existing procedures. 

6. Conclusion 

For different sample sizes the proposed test statistic is performing well for 
population data as well as data coming from Johnson SB distribution. When 
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parameters are not known then the parameters may be estimated and the test 
statistic is constructed. Then, outliers are detected in a sample from a Johnson SB 

distribution. Further, its critical values may be analyzed using simulation 
technique.  
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