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ON THE INTERMEDIATE MULTIVALUED FUNCTIONS

MASLYUCHENKO V.K. AND MELNYK V.S.

ABSTRACT. For topological spaces X and Y we consider conditions, by which
for arbitrary multivalued maps G : X — Y and H : X — Y, such, that
G(z) C H(z) for each x € X and G and H are respectively upper and lower
semicontinuous, there is F' : X — Y continuous, such, that G(z) C F(z) C
H(z). We also consider conditions on topological spaces, by which the Hahn'‘s
theorem on the intermediate function has a multivalued analog.
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1. History

Suppose X is a set, Y is a partially ordered set, g: X - Y and h: X - Y —
maps, such, that g(z) < h(z) for all z € X. Map f: X — Y is called intermediate
/ strictly intermediate / for pair (g, h) if g(z) < f(z) < h(z) on X /g(z) < f(x) <
h(z), if g(x) < h(z), and g(x) = f(z) = h(x), if g(z) = h(z)/. If X is a topological
space, Y = R, then we say that maps g : X — R and h : X — R form a Hahn’s
pair / strict Hahn’s pair/, if ¢ is upper semicontinuous, h — lower semicontinuous
and g(x) < h(z) /g(x)ih(x)/ on X. H. Hahn [5] proved, that every Hahn’s pair
(g9,h) on metric space X has continuous intermediate function f : X — R. J.
Dieudonne [2] proved it for case of X being paracompact, H. Tong [10,11] and M.
Katetov [6,7] compiled Hahn’s theorem for the normal spaces, noting, that the
existance of intermediate continuous function f for every Hahn’s pair on Ti-space
X implies normality of X.

These results were developed in papers by K. Dowker [3] and E. Michael [8].
First one together with M. Katetow [6] established, that in class of Tj-spaces X
existance of strictly intermediate continuous function f : X — R for each strict
Hahn pair (g,h) is equivalent to normality and paracompactness of X, second
one established, that in class of Tj-spaces X existance of strictly intermediate
continuous function f : X — R for each Hahn pair (g, h) is equivalent to perfect
normality of X. New approach to the proof of these results has been presented by C.
Good and I. Stars [4]. K. Yamazaki [13], developing his previous investigations [14]
and results by J.M. Borwein, M. Thera [1], proved theorems about the intermediate
map f: X — R for Hahn’s pairs analogies (g, h) with values in Banach lattices.

Recently there have appeared new versions of Hahn theorem. In paper [15] it
was proved that for each Hahn pair (g,h) on segment [a,b], where g and h —
are increasing functions, there is an intermediate increasing continuous function
f :[a,b] = R. Then in [16] for strict Hahn pairs (g, h) on the segment X of R there
were constructed piecewise linear or infinitely differentiable functions f : X — R
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such that satisfy some additional conditions. These results were compiled in [18,19]
for the Frechet differentiable maps using partitions of unity.

2. Multivalued maps and staging of the problem

It is well known, that the concept of upper and lower semicontinuity can be
applied to the multivalued maps F' : X — Y, that correlate nonempty subset
of Y for each point z € X, i.e. are maps F' : X — P(Y) with values in set
P(Y) =2Y \ {0} of all nonempty subset of space Y. Lets recall, that multivalued
map F': X — Y from topological space X to the topological space Y is called
upper /lower/ semicontinuous in point g € X, if for each open set U in Y, such
that F(zg) C V /F(zo) NV # @/ there is such neighborhood U of the point
xo € X, that F(x) CV /F(z) NV # @/ for each x € U (here we use the
terminology from [9]). We say, that F is continuous at zg, if it is upper and lower
semicontinuous at this point. Map F': X — Y is called continuous, upper or lower
semicontinuous, if it is so at every point of the space X.

The set P(Y)is equipped with natural partial order, which is the relation of
inclusion C of Y subsets , that allows to transfer the concept of Hahn’s pair to
the case of multivalued maps. We say that a multivalued maps form the Hahn
/Hahn strict/ pair, if G is upper semicontinuous, H is lower semicontinuous and
G(z) C H(z) /G(xz) C H(z)/ for each z € X.

The following problems arise naturally:

Problem 1. In which conditions on spaces X and Y each Hahn pair (G, H) from
multivalued maps G, H : X — Y has continuous intermediate multivalued map
F:X->Y?

Problem 2. In which conditions each strict Hahn’s pair (G, H) from X to Y has
strict intermediate continuous multivalued map F : X — Y7

Problem 3. In which conditions each Hahn’s pair (G, H) from X to Y has strict
intermediate continuous multivalued map F : X — Y?

In this paper we begin to investigate this problems. Our results relate to the
problem 1. We show that for the normal T}-space X and any Hahn’s pair (G, H)
of multivalued maps G : X — Y and H : X — Y, which values are segments,
there is intermediate continuous map F' : X — Y, that has segments as values in
R. Then we show, that the existence of intermediate continuous map F': X — Y
for Hahn’s pair (G, H) of maps G : X — R, G(x) = (—o0,g(x)], and H : X — R,
H(X) = (—o0, h(x)], implies that (g,h) is Hahn’s pair on X and has continuous
intermediate function f: X — R on X.

3. Existence of continuous intermediate multivalued function.

Let X be a topological space and F': X — R a multivalued map, with values
as segments F(z) = [fi(x), f2(z)], where f; : X — R are functions, for which

fi(z) < fa(x) on X.

Lemma 3.1. Map F : X — R, F(z) = [f1(z), fa(x)], is upper semicontinuous
if and only if function f1 : X — R is lower semicontinuous, and fy : X — R is
upper semicontinuous.
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Proof. Let F be upper semicontinuous in xg and € > 0. Open set V = (f1(xo) —
g, fa(xo) + €) contains segment F'(zg). This implies that there exists U neighbor-
hood of g such that F(z) C V when x € U. Since f1(z) € F(x) and fa(z) € F(x)
for any x , then {f1(z), fa(x)} CV for each z € U, so,

fi(zo) —e < fi(z) < fa(z) < falwo) +¢

for each = € U, so f; is lower semicontinuous, and f5 is upper semicontinuous in
Zo.

Let f1 be lower semicontinuous, fo upper semicontinuous in g and € > 0. Then
there are such a neighborhoods U; and U, of point xg, that

fi(x) > fi(xo) —e on Uy and fo(x) < fa(xo) + € on Uy
Intersection U = Uy N Us is also a neighborhood of the point zy and for z € U:

Ji(zo) —€ < fi(z) < fa(z) < fo(x) + €.

Let V' be an arbitrary subset of R, that contains F'(zo) = [f1(x0), f2(z0)]. Since
fi(zo) € V for i = 1,2 there exist such ¢; > 0 for ¢ = 1,2 that:

(fi(wo) — €4, fi(xo) +€;) CV, where i = 1,2.
Lets put € = min{ey,e2}. Obviously, for this number:

Vo = (fi(zo) — €1, f2(w0) + £2) C V.
From the proven before, there exists neighborhood U of the point x( in X, such,
that
F(z) C Vo,
as soon as x € U. Then also F(z) C V for each x € U, so, multivalued function
F' is upper semicontinuous in xg. ([l

Lemma 3.2. Map F : X — R, F(z) = [fi(x), fa(x)], is lower semicontinuous
if and only if function fi : X — R is upper semicontinuous, and fo : X — R is
upper semicontinuous.

Proof. Let F be lower semicontinuous in xg and € > 0. Consider open set V =
(—o0, f1(xo) + €), for which, obviously V U F(xg) # @, that implies there is
neighborhood U of point xg in X, that V U F(z) # O, as soon as © € U Lets
take for x € U a point y1 € V U F(z). Then y; € V, so, y1 < fi(zo) + €, and
y1 € F(z), so y1 > fi(x). From that we have f1(z) < fi(zo) +e on U, and f is
upper semicontinuous in xzg.

Similarly the lower semicontinuousness of function f; in zq is proven, for this
it is only required to consider open set V = (f2(xo) — €, +00).

Vice versa, let function f; be upper semicontinuous, fo lower and point xy and
V is open set in R, for which VUF(zg) # @. Lets consider any point y € VUF (zo).
Then f1(zg) < y < fa(xg) and y € V. The fact that set V is open implies that
there is € > 0, such that (y — e,y +¢) C V. Also, the fact that f; and fo are
semicontinuous upper and lower respectively at the point zy implies that that
there is neighborhood U of point zg in X, such that for x € U:

filz) <y+eand folz) >y —e.
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Then for z € U we have: F(x) UV # . Indeed, for points y; = fi(x) and
y2 = fo(x) we have that y3 < y+ e and yo > y—e. If yo < y + ¢, then
y2€ (y—¢e,y+e)UF(z) CVUF(z), and if y; >y —¢, then y; € VUF(x). Lets
now ys > y+eand y3 <y—e. Then (y —e,y+¢) C [y1,y2] = F(x) and from
that y € VU F(z). In any case F(z) UV # Q. O

Theorem 3.3. Let X be a normal space and (G, H) be Hahn's pair such that
G(z) = [g1(x), g2(x)] and H(x) = [h1(x), ha(z)] for each x € X. Then there is
intermediate for (G, H) continuous F' : X — R such that F(x) = [f1(x), f2(z)] on
X, where functions f1 and fo are continuous.

Proof. From the condition G(z) C H(z) on X we get that
hi(z) < gi(x) < ga(x) < ha(x)

for each z € X. From lemmas 1 and 2 we obtain, that (h1,91) and (go, ha)
are Hahn’s pairs on X. The Hahn theorem implies that there exist continuous
functions f; : X — R for i = 1, 2 such,that:

hi(z) < fi(z) < g1(x) and hy(x) < fi(z) < gi(z)

for each x € X. Since g1(z) < g2(x), then fi(x) < fa(x) on X. Lemma 3 implies
that the map
F:X— R5F(I) = [fl(ﬁC),fQ(I)],

is continuous, and G(z) C F(z) C H(x) for each z € X. O

4. Hahn’s theorem as a corollary of it’s multivalued version.

Lets f : X — R be a function, defined on the topological space X and F(x) =
(=00, f(x)].The following lemmas can be proven similarly to the proofs of lemmas
1-3:

Lemma 4.1. Function f is upper semicontinuous if and only if multivalued func-
tion F' is upper semicontinuous.

Lemma 4.2. Function f is lower semicontinuous if and only if multivalued func-
tion F' is lower semicontinuous.

Lemma 4.3. Function f is continuous if and only if multivalued function F is
continuous.

Lemmas 1 and 2 immediately imply:

Lemma 4.4. Lets X be topological space, (g,h) be a Hahn’s pair on X, G(z) =
(—00,g(x)] and H(z) = (—o0,g(x)]. Then (G, H) is also Hahn’s pair on X.

Theorem 4.5. Lets X be topological space, (g, h) be a Hahn’s space on X, G(x) =
(=00, 9(x)] and H(z) = (—o0,9(x)], and Hahn’s pair (G, H) has intermediate
continuous function F : X — R. Then Hahn’s pair (g,h) also has intermediate
continuous function f: X — R
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Proof. From condition G(x) C F(x) C H(x) on X. Lets put
f(x) =sup F(x).

Since g(x) € G(z), then g(x) € F(x), and g(z) < f(x). Here, the inclusion
F(z) C H(x) implies, that

f(z) =sup F(x) < sup H(z) = h(x).

Since that, we have, that g(z) < f(z) < h(z) on X.

Lets e > 0. Consider open set V] = (—o0, f(xg)+¢). It is clear, that F(xq) C V4.
The fact that F' is upper semicontinuous at xy implies that there is neighborhood
U, of point z¢ in X, such, that F(x) C V; as soon as « € U. In that case:

f(2) = sup F(z) < sup Vi = f(wo) +=

on Uy, so, function f is upper semicontinuous at x.

For open set Vo = (f(z9) — &, +00) we have, that Vo U F(zq) # @. Indeed, since
f(zo) = sup F(zg), we have, that there is y € F(xg), such, that y > f(z¢) — €.
It is clear that y € Vo U F(zg). The fact that F' is lower semicontinuous at xg
implies, that there is neighborhood Us of the point zgm such, that F(z) UVs # O
when x € Us. Then for each x € U there is y, € F(z) U Va, for which, obviously,
f(zo) — e <y < f(z), and then:

f(x) > fzo) —¢
on Us and f is lower semicontinuous at xg.

On the neighborhood U = U; UU; of the point zg in X the following inequalities
are true:

f(xo) —e < f(z) < f(wo) +e,

and that implies the continuity of function f at point zg.
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