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Abstract. Functional Magnetic Resonance Imaging (fMRI) studies have shown
that the fusiform face area (FFA) is sensitive to both face parts and face config-

urations. In this note it is postulated that the FFA is partitioned into clusters
that respond to specific facial features, and that in each cluster the intensity

of the blood-oxygen-level dependent (BOLD) response can be measured. A
probability function supported on the clusters is then defined. Among the

properties of this function are: 1) response magnitude invariance, 2) individ-
uation of faces and an economical procedure to quantify and store the neural

representation of a face; 3) repurposing of clusters to define new probability
functions on the FFA partition; 4) dynamics between clusters in the FFA pro-

duce the emergent property that accounts for a unified face; 5) stability of
probability functions under perturbations.

1. Probability Function Model of Faces

It is well accepted that the neural correlates of face perception are in the FFA
[Kanwisher and Yovel (2006)]. As well, the FFA is implicated in ”extracting the
perceptual information used to distinguish between faces” [Kanwisher and Yovel (2006)].
In this note we assume that sensory neurons that perceive different facial features
terminate at different locations in the FFA [Liu et al. (2009)] where they begin the
process of activating the respective clusters [Wandel et al. (2005)]. Let us assume
there are n features such as eyes, nose, mouth, shape, symmetry, smoothness of
skin, expression, spacing between features etc. We label these features: F1, ...., Fn.
The clusters in the FFA corresponding to these features are labeled Ai, i = 1, ...., n.
The collection of clusters defines a partition P of the FFA as shown schematically
in Figure 1. It is reasonable to assume that P will be defined once higher resolu-
tion is achieved in the fMRI experiments. Presently each pixel in the fMRI spans
hundreds of thousands of neurons, implying that the actual selectivity in the FFA
is finer than what is being observed [Kanwisher (2001), Kanwisher (2006)].

Next we postulate that the intensity of the BOLD responses in the clusters
Ai, i = 1, ...., n, can be measured. Let us label these intensities: Mi, i = 1, ..., n. As
a first approximation, we assume that Mi is constant on the corresponding Ai, as
shown in Figure 2. We define the magnitude of the ith face feature by Si = Mi ·Ai.

If Mi is not uniform on Ai, then Mi, as a function of position inside Ai, is integrated
over Ai to determine Si. Calculation of the magnitude of the BOLD responses has
been performed in [Liu et al. (2009)]. We collect the values S1, ......, Sn. and let
S =

∑n

i=1
Si. Define Pi = Si

S
. The collection Pi, ......., Pn defines a probability
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2 A. BOYARSKY AND P. GÓRA

function on FFA since each Pi ≥ 0 and
∑n

i=1
Pi = 1. We shall refer to this as

the facial probability function, P, on the partition P of the FFA. It is in effect the
activation pattern in the FFA, as depicted in Figure 2.

It is known that ”the FFA is engaged both in detecting faces and in extracting the
necessary perceptual information to recognize them” [Kanwisher and Yovel (2006)].
We suggest that the facial probability function contains the perceptual informa-
tion (cluster shape and their respective activations) to recognize a face, that is,
P encodes face identity information. This model is consistent with the work of
[Nestor et al. (2011), Nichols et al. (2010)] which provides evidence that the FFA
“responds with distinct patterns of activation to different face identities.“

Figure 1. Partition of FFA.

Figure 2. Sketch of FFA activation.

Recall that the clusters in the FFA corresponding to facial features are Ai, i =
1, ...., n. We define transition probabilities Pij, i, j = 1, ...., n where for each i the
positive numbers Pij sum up to 1 (

∑n

j=1
Pij = 1), and are proportional to the

numbers of connections from Ai to Aj activated by sensory input.
The transition probabilities Pij form a transition probability matrix P = [{Pij}1≤i,j≤n]

(see example below). The neuronal architecture in the FFA and the initial sensory
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Figure 3. FFA dynamics initiated by sensory neurons.

input determine which clusters interact with others and the strength of these in-
teractions. This generates the transition probability matrix P.

This transition matrix generates the stationary probability function (vector) P =
[p1, p2, . . . , pn]. The vector P is the unique solution of the equation P·P = P, which
in expanded form is a system of n linear equation with n unknowns:























p1P11 + p2P12 + · · ·+ pnP1n = p1;

p1P21 + p2P22 + · · ·+ pnP2n = p2;
...

...
...

...

pnPn1 + p2Pn2 + · · ·+ pnPnn = pn.

Example: We assume the structure of the neuronal architecture in the FFA defines
the 8×8 transition probability matrix in Figure 4. The stationary probabilities are
approximately

P ≈ [0.138, 0.102, 0.115, 0.111, 0.128, 0.132, 0.137, 0.137].

P =

























0.11 0.09 0.15 0.12 0.17 0.09 0.03 0.24
0.21 0.12 0.01 0.16 0.08 0.18 0.21 0.03
0.25 0.11 0.24 0.08 0.02 0.04 0.15 0.11
0.11 0.20 0.06 0.11 0.09 0.20 0.02 0.21
0.16 0.13 0.18 0.03 0.16 0.13 0.19 0.02
0.04 0.06 0.14 0.07 0.21 0.15 0.18 0.15
0.05 0.02 0.03 0.13 0.22 0.21 0.25 0.09
0.20 0.11 0.10 0.19 0.04 0.07 0.07 0.22

























Figure 4. A Probability Transition Matrix reflecting neuronal ar-
chitecture in the FFA, for n = 8 features.

2. Properties of the Facial Probability Function

2.1. Response Magnitude Invariance. Let Mi, i = 1, ...., n be activity inten-
sities on the clusters in the FFA for a given face. Suppose the same face is now
reduced in size, resulting in weakened signal strengths. We assume that the sig-
nal strengths are reduced uniformly by a factor α < 1 Then, the new strengths
are: S′

i = αMi · Ai, and S′ =
∑n

i=1
S′

i = α
∑n

i=1
Si = αS. The new probability
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function P ′
i =

S′

i

S′
= Pi. Hence the face probability function P is invariant under a

uniform size reduction (or expansion). Face-inversion [Yovel and Kanwisher 2005]
may result in a weakening of intensities in the clusters in the FFA. The resulting re-
duction in cluster activity nonetheless preserves the probability function, resulting
in recognition of the original upright face. In [O‘Craven and Kanwisher (2000)], it
was shown that mental images of faces activate the same FFA area as the actual
visual image. The mental image, initiated entirely by interneurons, no doubt has
lower response activation than the actual visual image. Yet, both activations yield
the same probability function and hence represent the same face.

2.2. Individuation. . The information necessary to characterize a face consists of
n cluster areas and n activity intensities of these clusters. It is reasonable to assume
that the cluster regions in the FFA are fixed by the brain architecture. However,
the cluster activations vary from face to face. Thus, defining and storing a facial
probability function involves n numbers, the relative magnitudes of facial feature
activity. This information may be stored in the amygdala [Herrington et al. (2002)].
or possibly inside the FFA itself as suggested by [Liu et al. (2009)] and see the
discussion therein).

2.3. Repurposing. can be viewed as the same clusters being activated with a set
of different activations. It is noted in [Quiroga et al. (2013)] that the late neuro-
scientist Jerry Lettvin suggested that as few as 18,000 neurons could be the bases
of a conscious experience, such as seeing a face. Even so, the brain may not have
enough neurons to represent all possible concepts and faces [Quiroga et al. (2013)].
In our repurposing model, the same partition of a cortical region such as the FFA
is reused to define an infinite number of different patterns of activation, each one
representing a different face.

2.4. Stochastic Dynamics in the FFA. Just as a differential equation requires
initial conditions to start the dynamics, so the FFA requires the visual sensory in-
put. Once this occurs, as depicted in Figure 3, the FFA architecture [Klinshov et al. (2014)]
determines the connectivity probabilities and with the synaptic weights of the dif-
ferent clusters determines a flow of information, which generates the activation
pattern.

The visual sensory input gives not only the initial conditions but also defines
which parts of the interconnecting FFA architecture is activated. This defines both
the initial probability function and the transition probabilities matrix.

The transition probability function between clusters determines the stationary
probability function that characterizes a face.

The continuous sensory input gives all the time new initial conditions and new
transition probabilities matrices but this is not of an importance as close transitions
matrices have close invariant probability functions. Thus, the stationary probability
function is stable under the perturbations of transition probabilities matrix.

2.5. Stability under perturbations of facial features. Once we relate a sto-
chastic dynamical system to a face activation on a partition of the FFA, we can
discuss the stability of such a system. Consider a small perturbation of a face (say a
laughing face or even caricature) resulting in a probability function that is close to
the original one. Such properties are proved using stability of the stationary prob-
ability functions under small perturbations of the transition matrix. They hold as
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long as all entries in the matrix are strictly positive, which corresponds to all parts
of the FFA communicating between themselves [Kemeny and Snell (1976)].

To illustrate the stability of P under small perturbations of P we give an ex-
ample of a transition matrix P1 ≈ P, with perturbation ±0.01, and its stationary
probability vector P1. Let

P1 =

























0.10 0.08 0.14 0.13 0.18 0.08 0.04 0.25
0.19 0.12 0.02 0.17 0.08 0.19 0.21 0.02
0.25 0.12 0.23 0.07 0.03 0.05 0.15 0.10
0.10 0.19 0.07 0.10 0.10 0.21 0.01 0.22
0.17 0.12 0.17 0.03 0.17 0.13 0.20 0.01
0.03 0.06 0.13 0.06 0.21 0.16 0.19 0.16
0.06 0.03 0.04 0.12 0.21 0.20 0.26 0.08
0.21 0.11 0.11 0.20 0.03 0.06 0.06 0.22

























Figure 5. A Probability Transition Matrix P1, a perturbation of
P in Figure 4.

Then, the stationary probability vector is

P1 ≈ [0.135, 0.100, 0.115, 0.109, 0.131, 0.133, 0.141, 0.135].

We see that the largest difference between the components of P1 and P is 0.004
(component number 7).

3. Discussion:

This note proposes a method for encoding facial identity using probability func-
tions. To define such a function requires detailed knowledge of which clusters in the
FFA are activated by which features of a face and the relative strengths of these
activations. To define a transition probability matrix P we need to know which
clusters interact with other clusters. Once P is known, the stationary probability
function can be calculated, which characterizes a face.
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