Generalized integral guiding functions and periodic solutions for inclusions with causal multioperators

S. Kornev\(^1\), V. Obukhovskii\(^*\), P. Zecca\(^3\)

\(^1\) Sergey Kornev,
Department of Physics and Mathematics,
Voronezh State Pedagogical University,
394 043 Voronezh, Russia
e-mail: kornev_vrn@rambler.ru
\(^*\) The corresponding author,
\(^2\) Valeri Obukhovskii,
Department of Physics and Mathematics,
Voronezh State Pedagogical University,
394 043 Voronezh, Russia
and
the RUDN University, 6 Miklukho-Maklaya st.,
117 198 Moscow, Russia
e-mail: valerio-ob2000@mail.ru
\(^3\) Pietro Zecca,
Dipartimento di Matematica,
Università degli Studi di Firenze,
Firenze, Italy
e-mail: pietro.zecca@unifi.it

Abstract

In the present paper the method of generalized integral guiding functions is applied to study the periodic problem for a differential inclusion with a causal multioperator.

Key words: differential inclusion; causal multivalued map; periodic solution; guiding function; integral guiding function

2010 Mathematics Subject Classification: Primary: 34A60 Secondary: 34C25.

1 Introduction

The study of systems governed by differential and functional equations with causal operators, which is due to Tonelli [29] and Tychonov [28], attracts the attention of many researchers. The term causal arises from the engineering and the notion of a causal operator turns out to be a powerful tool for unifying problems in ordinary differential equations, integro-differential equations, functional differential equations with finite or infinite delay, Volterra integral equations, neutral functional equations et al. (see monograph [2]). Various problems for functional differential equations with causal operators were considered in recent
papers [4, 5, 8, 23, 26]. In particular, boundary and periodic problems were studied in [5] and [23]. In the present paper we apply the method of generalized integral guiding functions to the investigation of the periodic problem for a differential inclusion with a multivalued causal operator.

The main ideas of the method of guiding functions were formulated by Krasnoselskii and Perov in the fifties (see [18, 19]). Being geometrically clear, this method was originally applied to the study of periodic and bounded solutions of ordinary differential equations (see, e.g., [20, 24, 25]). Thereafter the method was extended to differential inclusions (see, e.g., [1, 7]), functional differential equations and inclusions (see, e.g., [6, 10, 13, 14, 16]) and other objects. The sphere of applications was extended to the study of qualitative behavior and bifurcations of solutions (see, e.g., [15, 21, 22]) and asymptotics of solutions (see, e.g., [11, 12, 17]). These and other aspects of the method of guiding functions and its applications, as well as the additional bibliography, may be found in the recent monograph [27].

The paper is organized in the following way. After preliminaries (Section 2), we give the notion of a multivalued causal operator (Section 3.1) and formulate the periodic problem for a differential inclusion with a causal multioperator (Section 3.2). Our main existence result (Theorem 2) is presented for the case when the right-hand side of the inclusion is convex-valued and closed.

2 Preliminaries

In what follows we will use some known notions and notation from the theory of multivalued maps (multimaps) (see, e.g., [1, 3, 7, 9]). Recall some of them.

Let \((X, d_X)\) and \((Y, d_Y)\) be metric spaces. By the symbols \(P(Y)\) and \(K(Y)\) we denote the collections of all nonempty and, respectively, nonempty and compact subsets of the space \(Y\). If \(Y\) is a normed space, \(Cv(K)\) and \(Kv(Y)\) denote the collections of all nonempty convex closed [and, respectively, compact] subsets of \(Y\).

Definition 1 A multimap \(F : X \to P(Y)\) is called upper semicontinuous (u.s.c.) at a point \(x \in X\) if for each open set \(V \subset Y\) such that \(F(x) \subset Y\) there exists \(\delta > 0\) such that \(d_X(x, x') < \delta\) implies \(F(x') \subset V\). A multimap \(F : X \to P(Y)\) is called u.s.c. if it is u.s.c. at each point \(x \in X\).

Definition 2 A multimap \(F : X \to P(Y)\) is called lower semicontinuous (l.s.c.) at a point \(x \in X\) if for each open set \(V \subset Y\) such that \(F(x) \cap V \neq \emptyset\) there exists \(\delta > 0\) such that \(d_X(x, x') < \delta\) implies \(F(x') \cap V \neq \emptyset\). A multimap \(F : X \to P(Y)\) is called l.s.c. if it is l.s.c. at each point \(x \in X\).

Definition 3 A multimap \(F : X \to P(Y)\) is called continuous if it is both u.s.c. and l.s.c.

Definition 4 A multimap \(F : X \to P(Y)\) is called closed if its graph
\[
\Gamma_F = \{(x, y) \mid (x, y) \in X \times Y, \quad y \in F(x)\}
\]
is a closed subset of the space $X \times Y$.

Definition 5 A multimap $F : X \to P(Y)$ is called compact if its range $F(X)$ is relatively compact in Y.

Remark 1 If multimap $F : X \to P(Y)$ is closed and compact, it is u.s.c.

Let I be a closed subset of \mathbb{R} endowed with the Lebesgue measure.

Definition 6 A multifunction $F : I \to K(Y)$ is called measurable if, for each open subset $W \subset Y$, its pre-image

$$F^{-1}(W) = \{t \in I : F(t) \subset W\}$$

is a measurable subset of I.

Remark 2 Each measurable multifunction $F : I \to K(Y)$ has a measurable selection, i.e., there exists such measurable function $f : I \to Y$, that $f(t) \in F(t)$ for a.e. $t \in I$.

In the sequel we will use some standard properties of the topological degree theory of single-valued and multivalued vector fields (see, e.g., [3, 7, 9, 18]).

3 Periodic problem for inclusions with causal multioperators

3.1 Causal multioperators

Let $T > 0$ and $\sigma \geq 0$ be given numbers. By the symbols $C([kT-\sigma,(k+1)T]; \mathbb{R}^n)$ and $L^1((kT,(k+1)T); \mathbb{R}^n)$, where $k \in \mathbb{Z}$, we will denote the corresponding spaces of continuous and integrable functions with usual norms.

For any subset $\mathcal{N} \subset L^1((kT,(k+1)T); \mathbb{R}^n)$ and $\tau \in (kT,(k+1)T)$ we define the restriction of \mathcal{N} on (kT,τ) as

$$\mathcal{N}|_{(kT,\tau)} = \{ f|_{(kT,\tau)} : f \in \mathcal{N} \}.$$

Definition 7 We will say that Q is a causal multioperator if for each $k \in \mathbb{Z}$ a multimap

$$Q : C([kT-\sigma,(k+1)T]; \mathbb{R}^n) \to L^1((kT,(k+1)T); \mathbb{R}^n)$$

is defined in such a way that for each $\tau \in (kT,(k+1)T)$ and for all $u(\cdot), v(\cdot) \in C([kT-\sigma,(k+1)T]; \mathbb{R}^n)$

the condition $u|_{[kT-\sigma,\tau]} = v|_{[kT-\sigma,\tau]}$ implies $Q(u)|_{(kT,\tau)} = Q(v)|_{(kT,\tau)}$.

Let us consider some examples of causal multioperators. Denote by \mathcal{C} the Banach space $C([\sigma,0]; \mathbb{R}^n)$.
Example 1 Suppose that a multimap \(F : \mathbb{R} \times \mathcal{C} \to K_v(\mathbb{R}^n) \) satisfies the following conditions:

1. \((F1)\) the multifunction \(F(\cdot, c) : \mathbb{R} \to K_v(\mathbb{R}^n) \) admits a measurable selection for every \(c \in \mathcal{C} \);
2. \((F2)\) the multimap \(F(t, \cdot) : \mathcal{C} \to K_v(\mathbb{R}^n) \) is u.s.c. for a.e. \(t \in \mathbb{R} \);
3. \((F3)\) for every \(r > 0 \) there exists a locally integrable nonnegative function \(\eta_r(\cdot) \in L^1_{loc}(\mathbb{R}) \) such that
 \[\| F(t, c) \| := \sup \{ \| y \| : y \in F(t, c) \} \leq \eta_r(t) \quad \text{a.e. } t \in \mathbb{R} , \]
 for all \(c \in \mathcal{C} \), \(\| c \| \leq r \).

It is known (see, e.g., [3, 9]) that under conditions \((F1) - (F3)\) for each \(k \in \mathbb{Z} \), the superposition multioperator

\[
\mathcal{P}_F : C([kT - \sigma, (k + 1)T]; \mathbb{R}^n) \to L^1((kT, (k + 1)T); \mathbb{R}^n),
\]

\[
\mathcal{P}_F(u) = \{ f \in L^1((kT, (k + 1)T); \mathbb{R}^n) : f(t) \in F(t, u_t) \quad \text{a.e. } t \in (kT, (k + 1)T) \} \tag{1}
\]

is well defined. Here \(u_t \in \mathcal{C} \) is defined as \(u_t(\theta) = u(t + \theta), \theta \in [-\sigma, 0] \). It is easy to see that the multioperator \(\mathcal{P}_F \) is causal.

Remark 3 We will say that a multimap \(F : \mathbb{R} \times \mathcal{C} \to K(\mathbb{R}^n) \) obeying \((F1)-(F2)\) satisfies the upper Carathéodory conditions. If \((F2)\) may be replaced with

1. \((F2')\) the multimap \(F(t, \cdot) : \mathcal{C} \to K(\mathbb{R}^n) \) is continuous for a.e. \(t \in \mathbb{R} \)
 we say that \(F \) satisfies the Carathéodory conditions.

Example 2 Let \(F : \mathbb{R} \times \mathcal{C} \to K_v(\mathbb{R}^n) \) be a multimap satisfying conditions \((F1) - (F3)\) of Example 1. Suppose that \(\{ K(t, s) : -\infty < s \leq t < +\infty \} \) is a continuous (with respect to the norm) family of linear operators in \(\mathbb{R}^n \) and \(m \in L^1_{loc}(\mathbb{R}; \mathbb{R}^n) \) is a given locally integrable function. Consider, for each \(k \in \mathbb{Z} \), the Volterra type integral multioperator \(\mathcal{G} : C([kT - \sigma, (k + 1)T]; \mathbb{R}^n) \to L^1((kT, (k + 1)T); \mathbb{R}^n) \) defined as

\[
\mathcal{G}(u)(t) = m(t) + \int_{kT}^{t} K(t, s) F(s, u_s) ds ,
\]

i.e.,

\[
\mathcal{G}(u) = \{ y \in L^1((kT, (k + 1)T); \mathbb{R}^n) : y(t) = m(t) + \int_{kT}^{t} K(t, s) f(s) ds : f \in \mathcal{P}_F(u) \} .
\tag{2}
\]

It is also obvious that the multioperator \(\mathcal{G} \) is causal.

Example 3 Suppose that a multimap \(F : \mathbb{R} \times \mathcal{C} \to K(\mathbb{R}^n) \) satisfies the following condition of almost lower semicontinuity:
There exists a sequence of disjoint closed sets \(\{ J_n \} \), \(J_n \subseteq \mathbb{R}^n \) \(n = 1, 2, \ldots \) such that: (i) \(\text{meas} \left(\mathbb{R} \setminus \bigcup_n J_n \right) = 0 \); (ii) the restriction of \(F \) on each set \(J_n \times \mathbb{C} \) is l.s.c.

Then (see, e.g., [3, 9]) under conditions (\(F_L \)), (F3), for each \(k \in \mathbb{Z} \), the superposition multioperator

\[
P_F : C \left([kT - \sigma, (k + 1)T]; \mathbb{R}^n \right) \rightarrow L^1 \left([(kT, (k + 1)T); \mathbb{R}^n] \right)
\]

is also well-defined and causal.

3.2 Periodic problem

Denote by \(C_T \) the space of continuous \(T \)-periodic functions \(x : \mathbb{R} \rightarrow \mathbb{R}^n \) with the norm \(\| x \|_C = \sup_{t \in [0, T]} \| x(t) \| \). By \(\| x \|_2 \) we denote the norm of function \(x \) in the space \(L^2 \),

\[
\| x \|_2 = \left(\int_0^T \| x(s) \|^2 \, ds \right)^{\frac{1}{2}}.
\]

To define the notion of a periodic causal multioperator, introduce, for \(k \in \mathbb{Z} \), the following shift operator \(j_k : L^1 \left([(kT, (k + 1)T); \mathbb{R}^n] \rightarrow L^1 \left([(0, T); \mathbb{R}^n] \right) \right) : \)

\[
j_k(f)(t) = f(t + kT).
\]

Definition 8 A causal multioperator \(Q \) will be called \(T \)-periodic if, for each \(x \in C_T \) and \(k \in \mathbb{Z} \),

\[
j_k(\mathcal{Q}(x \mid_{[kT - \tau, (k + 1)T]})) = \mathcal{Q}(x \mid_{[-T, T]}).
\]

It is clear that, to provide the periodicity of the causal multioperators in the above examples, it is sufficient to assume that the multimaps \(F \) are \(T \)-periodic in the first argument:

\[
F(t + T, c) = F(t, c)
\]

for all \((t, c) \in \mathbb{R} \times \mathbb{C} \) and in Example 2, additionally, that function \(m(t) \) and family \(K(t, s) \) are also \(T \)-periodic:

\[
m(t + T) = m(t), \quad \forall t \in \mathbb{R}; \]

\[
K(t + T, s + T) = K(t, s), \quad \forall -\infty < s \leq t < +\infty.
\]

It is clear that the condition of periodicity of the causal multioperator allows to consider it only on the space \(C([-\tau, T]; \mathbb{R}^n) \).

Given a \(T \)-periodic causal multioperator \(\mathcal{Q} \), we will consider the existence of solutions to the following problem:

\[
x' \in \mathcal{Q}(x), \quad (3)
\]
where \(x \in C_T \) is an absolutely continuous function.

Denote by \(L^1_T \) the space of integrable \(T \)-periodic functions \(f : \mathbb{R} \to \mathbb{R}^n \).

In this section we will assume that the \(T \)-periodic causal multioperator \(Q : C_T \to Cv(L^1_T) \) satisfies the following conditions:

\((Q1)\) for each bounded linear operator \(A : L^1_T \to E \), where \(E \) is a Banach space, the composition \(A \circ Q : C_T \to Cv(E) \) is closed;

\((Q2)\) there exists a non-negative \(T \)-periodic integrable function \(\alpha(t) \) such that
\[
\|Q(x)(t)\| \leq \alpha(t)(1 + \|x(t)\|) \quad \text{for a.e. } t \in \mathbb{R}
\]
for each \(x \in C_T \).

To provide condition \((Q1)\) in Examples 1 and 2, it is sufficient to assume, besides the above mentioned periodicity conditions, that the multimap \(F \) satisfies conditions \((F1) – (F3)\) (see, e.g. [1], Theorem 1.5.30) and to fulfil condition \((Q2)\), we can suppose, in Example 1, the following sublinear growth condition: for each \(x \in C_T \) we have, for some non-negative integrable function \(\beta(t) \):
\[
\|F(t,x_t)\| \leq \beta(t)(1 + \|x(t)\|) \quad \text{a.e. } t \in [0, T],
\]
and, in Example 2, the global boundedness condition
\[
\|F(t,c)\| \leq \gamma(t)
\]
for some non-negative integrable function \(\gamma(t) \).

To study periodic problem (3) we will need a coincidence point result for a multivalued perturbation of a linear Fredholm operator. Let us give necessary definitions.

Let \(E_1, E_2 \) be Banach spaces, \(U \subset E_1 \) an open bounded set; \(l : Dom l \subseteq E_1 \to E_2 \) a linear Fredholm operator of zero index such that \(\text{Im } l \subset E_2 \) is closed.

Consider continuous linear projection operators \(p : E_1 \to E_1 \) and \(q : E_2 \to E_2 \) such that \(\text{Im } p = \text{Ker } l, \text{Im } l = \text{Ker } q \). By the symbol \(l_p \) denote the restriction of the operator \(l \) to \(\text{Dom } l \cap \text{Ker } p \).

Further, let the continuous operator \(k_{p,q} : E_2 \to \text{Dom } l \cap \text{Ker } p \) is defined by the relation \(k_{p,q}(y) = l_p^{-1}(y - q(y)), y \in E_2 \); the canonical projection operator \(\pi : E_2 \to E_2/\text{Im } l \) has the form \(\pi(y) = y + \text{Im } l, y \in E_2 \); and \(\phi : \text{Coker } l \to \text{Ker } l \) a continuous linear isomorphism.

Let \(G : \overline{U} \to Kv(E_2) \) be a closed multimap such that

\((a)\) \(G(U) \) is a bounded subset of \(E_2 \);

\((b)\) \(k_{p,q} \circ G : \overline{U} \to Kv(E_1) \) is compact and u.s.c.

The following assertion holds true (see [3], Lemma 13.1).

Lemma 1 Suppose that:
(i) \(l(x) \notin \lambda \mathcal{G}(x) \) for all \(\lambda \in (0, 1], \ x \in \text{Dom} \ l \cap \partial U; \)

(ii) \(0 \notin \pi \mathcal{G}(x) \) for all \(x \in \text{Ker} \ l \cap \partial U; \)

(iii) \(\deg_{\text{Ker} \ l}(\phi \pi_{\mathcal{G}|U_{\text{Ker} \ l}}, U_{\text{Ker} \ l}) \neq 0, \) where the symbol \(\deg_{\text{Ker} \ l} \) denotes the topological degree of a multivalued vector field evaluating in the space \(\text{Ker} \ l, \) and \(U_{\text{Ker} \ l} = U \cap \text{Ker} \ l. \)

Then \(l \) and \(\mathcal{G} \) has a coincidence point in \(U, \) i.e., there exists \(x \in U \) such that \(l(x) \in \mathcal{G}(x). \)

Developing notions introduced in [6, 10, 18], let us give the following definition.

Definition 9 A continuously differentiable function \(V : \mathbb{R}^n \to \mathbb{R} \) is called the integral guiding function for inclusion (3) if there exists \(N > 0 \) such that

\[
\int_0^T \langle \nabla V(x(s)), f(s) \rangle \, ds > 0 \quad \text{for all} \ f \in \mathcal{Q}(x),
\]

for each absolutely continuous function \(x \in C_T \) such that \(\|x\| \geq N \) and \(\|x'(t)\| \leq \|\mathcal{Q}(x)(t)\| \) a.e. \(t \in [0, T]. \)

From the definition it immediately follows that the integral guiding function \(V \) is a non-degenerate potential in the sense that

\[\nabla V(x) \neq 0, \]

for all \(x \in \mathbb{R}^n, \|x\| \geq K = \frac{N}{\sqrt{T}}. \) Therefore, on each closed ball \(B_{\tilde{K}} \subset \mathbb{R}^n \) centered at the origin of the radius \(\tilde{K} \geq K, \) the topological degree of the gradient \(\deg(\nabla V; B_{\tilde{K}}) \) is well defined and, moreover, it does not depend on the radius \(\tilde{K} \) (see, e.g., [18, 20]). This generic value of the degree will be called the index \(\text{Ind} V \) of an integral guiding function \(V. \)

Definition 10 A non-degenerate potential \(V : \mathbb{R}^n \to \mathbb{R} \) is called the generalized integral guiding function for inclusion (3) if there exists \(N > 0 \) such that

\[
\int_0^T \langle \nabla V(x(s)), f(s) \rangle \, ds \geq 0 \quad \text{for some} \ f \in \mathcal{Q}(x),
\]

for each absolutely continuous function \(x \in C_T \) such that \(\|x\| \geq N \) and \(\|x'(t)\| \leq \|\mathcal{Q}(x)(t)\| \) a.e. \(t \in [0, T]. \)

Now we are in position to formulate the main result of this section.

Theorem 1 Let \(V : \mathbb{R}^n \to \mathbb{R} \) be an generalized integral guiding function for problem (3) such that

\[\text{Ind} V \neq 0. \]

Then problem (3) has a solution.
Remark 4 Notice that conditions of the theorem are fulfilled if, for example, the function V is even or satisfies the coercivity condition: $\lim_{\|x\| \to +\infty} V(x) = \pm \infty$.

Proof Step 1. Let us consider the case of the strict integral guiding function for inclusion (3). Let us justify the solvability of the following operator inclusion

$$lx \in Q(x), \quad (8)$$

where $l : \text{Dom } l := \{x \in C_T : x \text{ is absolutely continuous} \} \subset C_T \to L^1_T$ is the linear Fredholm operator of zero index. It is easy to see that $\ker l = \mathbb{R}^n$, projection $\pi : L^1_T \to \mathbb{R}^n$ may be given by the formula

$$\pi f = \int_0^T f(s) \, ds$$

and the multioperators πQ and $k_{p,q} Q$ are convex-valued and compact on bounded subsets.

Now, let, for some $\lambda \in (0, 1]$ a function $x \in \text{Dom } l$ is the solution of the inclusion

$$lx \in \lambda Q(x).$$

It means that $x(\cdot)$ is an absolutely continuous function such that $x'(t) = \lambda f(t)$ a.e. $t \in [0, T]$, for some $f \in Q(x)$.

Then

$$\int_0^T \langle \nabla V(x(s)), f(s) \rangle \, ds = \frac{1}{\lambda} \int_0^T \langle \nabla V(x(s)), x'(s) \rangle \, ds =$$

$$= \frac{1}{\lambda} \int_0^T V'(x(s)) \, ds = \frac{1}{\lambda} (V(x(T)) - V(x(0))) = 0,$$

yielding

$$\|x\|_2 < N.$$

From condition (Q2) it follows that $\|x'\|_2 < M'$, where $M' > 0$. But then there exists also $M > 0$ such that

$$\|x\|_C < M.$$

Now, take as U the ball $B_r \subset C_T$ of the radius $r = \max\{M, NT^{-1/2}\}$. Then we have

$$lx \notin \lambda Q(x)$$

for all $x \in \partial U$.

Take an arbitrary $u \in \partial U \cap \ker l$. We have $\|u\| \geq NT^{-1/2}$ and considering u as a constant function, from the definition of the strict integral guiding function we obtain

$$\int_0^T \langle \nabla V(u), f(s) \rangle \, ds > 0$$

for each $f \in Q(u)$. But

$$\int_0^T \langle \nabla V(u), f(s) \rangle \, ds = \langle \nabla V(u), \int_0^T f(s) \, ds \rangle = T\langle \nabla V(u), \pi f \rangle > 0,$$
and, therefore
\[\langle \nabla V(u), y \rangle > 0 \]
for each \(y \in \pi Q(u) \).

It means that \(0 \notin \pi Q(u) \) and, moreover, the multifield \(\pi Q(u) \) and the field \(\nabla V(u) \) do not admit opposite directions for \(u \in \partial U \cap \text{Ker } l \). It means that they are homotopic and, hence,
\[\text{deg}(\pi Q\mid_{\overline{U} \cap \text{Ker } l}) = \text{deg}(\nabla V, \overline{U} \cap \text{Ker } l) \neq 0, \]
where \(\overline{U} \cap \text{Ker } l = \overline{U} \cap \text{Ker } l \). Therefore, all conditions of Lemma 1 are fulfilled and problem (8), and, hence (3) have a solution.

Step 2. Now we consider the case of the generalized integral guiding function for inclusion (3). Consider a multimap \(B : C_T \to P(L^1_T) \) defined as
\[
B(x) = \left\{ \varphi : |\varphi(t)| \leq \alpha(t)(1 + \|x(t)\|) \text{ and } \gamma(x) \int_0^T \langle \nabla V(x(s)), \varphi(s) \rangle \, ds \geq 0 \right\},
\]
where the first relation holds true for a.e. \(t \in [0, T] \), \(\alpha(\cdot) \) is a function from the condition (Q2), and
\[
\gamma(x) = \begin{cases}
0, & \text{if } \|x\|_2 \leq N, \\
1, & \text{if } \|x\|_2 > N.
\end{cases}
\]
It is easy to verify that \(B \) is a closed multimap.

Let us consider a multimap \(Q_B : C_T \to P(L^1_T) \) given as
\[
Q_B(x) = Q(x) \cap B(x).
\]
Obviously, the multimap \(Q_B \) is closed and the condition (7) is satisfied for all \(f \in Q_B(x) \).

For the non-degenerate potential \(V \) we define a map \(Y_V : \mathbb{R}^n \to \mathbb{R}^n \) as follows
\[
Y_V(x) = \begin{cases}
\nabla V(x), & \text{if } \|\nabla V(x)\| \leq 1, \\
\nabla V(x) / \|\nabla V(x)\|, & \text{if } \|\nabla V(x)\| > 1.
\end{cases}
\]
It is easy to see that the map \(Y \) is continuous.

For any \(\varepsilon_m > 0 \) we define a multimap \(Q_m : C_T \to P(L^1_T) \) as following
\[
Q_m(x) = Q_B(x) + \varepsilon_m Y_V(x).
\]
The multimap \(Q_m \) is closed and for each \(\varepsilon_m > 0 \) the condition (6) is fulfilled. By applying results of Step 1 we can prove the solvability of the following operator inclusion
\[lx \in Q_m(x), \]
for each \(\varepsilon_m > 0 \). From which follows the existence of a solution for problem (3).

Acknowledgements. The work was supported by the Ministry of Education and Science of the Russian Federation, Project No. 1.3464.2017/4.6 (S. Kornev and V. Obukhovskii) and the Agreement No 02.A03.21.0008 (V. Obukhovskii). The work of P. Zecca is partially supported by INdAM and by the Universita di Firenze.
References

