
STOCHASTIC 2-D NAVIER-STOKES EQUATION WITH

ARTIFICIAL COMPRESSIBILITY

UTPAL MANNA*, J.L. MENALDI, AND S.S. SRITHARAN*

Abstract. In this paper we study the stochastic Navier-Stokes equation with

artificial compressibility. The main results of this work are the existence and

uniqueness theorem for strong solutions and the limit to incompressible flow.

These results are obtained by utilizing a local monotonicity property of the

sum of the Stokes operator and the nonlinearity.

1. Introduction

The stochastic Navier-Stokes equation is a well accepted model for atmospheric,
aero and ocean dynamics. Chandrasekhar [5] and Novikov [14] first studied the
Navier-Stokes equation with external random forces. After that several approaches
have been poposed, from the classic paper by Bensoussan and Temam [4] to some
more recent results, e.g., by Bensoussan [3], by Flandoli and Gatarek [8] and by
Menaldi and Sritharan [13].

This paper is concerned with the existence and uniqueness of strong solutions
for the Stochastic 2-D Navier-Stokes equation with artificial compressibility in
bounded domains. The concept of artificial compressibility was first introduced
by Chorin [6, 7] and Temam [17, 18], in order to overcome the computational
difficulties connected with the incompressibility constraint. Using the classical
Sobolev compactness embedding and exploiting the classical Lions [12] method of
fractional derivatives, Temam in his papers [17, 18] and in his book [19](chapter
3) proved the existence, uniqueness and convergence of the deterministic Navier-
Stokes equation with artificial compressibility in bounded domains.

In the rest of this section we formulate the abstract Navier-Stokes problem with
artificial compressibility. We describe some standard well known results including
the local monotonicity property of the Navier-Stokes operator. In Section 2 we
establish certain new a priori estimates involving exponential weight for stochas-
tic Navier-Stokes equation with artificial compressibility. These estimates play
a fundamental role in the proof of existence and uniqueness of strong solutions
proved in the second half of Section 2. The monotonicity argument used here is
the generalization of the classical Minty-Browder method for dealing with local
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monotonicity. This method was first used by Menaldi and Sritharan [13] and for
multiplicative noise by Sritharan and Sundar [16]. For similar ideas see also Barbu
and Sritharan [1, 2]. In the last part of Section 2 we discuss the convergence of the
corresponding perturbed problem. Here the use of local monotonicity avoids the
classical method based on compactness and thus the results apply to unbounded
domains and hence the existence and the uniqueness as well as convergence to
incompressible flow are new even in the deterministic case.

2. Abstract Mathematical Framework and Local Monotonicity

Let O ⊂ R
2 be a bounded domain (for the sake of simplicity) with smooth

boundary, u the velocity and p the pressure fields. The Navier-Stokes problem
(with Newtonian constitutive relationship and artificial compressible medium) can
be written as follows







∂tu − ν4u + (u · ∇)u +
1

2
(Div u)u + ∇p = f in L2(0, T ; H−1(O)),

ε∂tp+ Div u = 0 in L2(0, T ; L2(O)),
(2.1)

with the initial conditions

u(0) = u0 in L
2(O) and p(0) = p0 in L2(O), (2.2)

where ε > 0 is a vanishing parameter, u0 belong to L
2(O) = L2(O,R2), ν is the

kinematic viscosity, p denotes pressure and is a scalar-valued function and the
(force) field f is in L2(0, T ; L2(O)). A solution (u, p) should belongs to the space
L2(0, T ; H1

0(O)×L2(O)), with H
1
0(O) = H1

0(O,R2) and H
−1(O) its dual space. The

second equation in (2.1) is an artificial state equation of a slightly compressible
medium and the extra term (1/2)(Div u)u is a stabilization term to handle the
nonlinearity. The standard spaces used here are as follows:
H

1
0(O) with the norm

‖v‖
H
1
0

:=
(

∫

O

|∇v|2dx
)1/2

= ‖v‖, (2.3)

and L
2(O) with the norm

‖v‖
L2 :=

(

∫

O

|v|2dx
)1/2

= |v|. (2.4)

Using the Gelfand triple H
1
0(O) ⊂ L

2(O) ⊂ H
−1(O) we may consider 4 or ∇

as a linear map from H
1
0(O) or L2(O) into the dual of H

1
0(O) respectively. The

inner product in the L
2 or L2 is denoted by (·, ·) and the induced duality by 〈·, ·〉.

Thus, for any u = (ui), v = (vi) and w = (wi) in H
1
0(O) and p in L2(O) we have

〈−ν4u,w〉 = ν
∑

i,j

∫

O

∂iuj ∂iwjdx, (2.5)

〈−∇p,w〉 = −
∑

i

∫

O

∂ipwidx =

∫

O

p ∂iwidx = 〈p,Div w〉 (2.6)

and

〈(u · ∇)v,w〉 =
∑

i,j

∫

O

ui ∂ivj wjdx. (2.7)
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It is clear that u 7→ Div u is a linear continuous operator from H
1
0(O) into L2(O).

Next, an integration by parts and Hölder inequality yields

〈(u · ∇)v,w〉 = −〈(Div u)w,v〉 − 〈(u · ∇)w,v〉, (2.8)

|〈(u · ∇)v,w〉| ≤ C
∑

i,j

‖uiwj‖L2(O,R2)
‖∂ivj‖L2(O,R2)

, (2.9)

and in the right-hand-side we can use L
4-norms to estimate the product uivj .

Lemma 2.1. For any real-valued smooth functions ϕ and ψ with compact support
in R

2, the following hold:

‖ϕψ‖2

L2
≤ ‖ϕ∂1ϕ‖L1 ‖ψ ∂2ψ‖L1 , (2.10)

‖ϕ‖4

L4
≤ 2‖ϕ‖2

L2
‖∇ϕ‖2

L2
. (2.11)

Proof. The results stated above are classical and well known [10]. ¤

As in Temam [19], chapter 3, the non-linear term is a trilinear continuous form
on H

1
0(O) × H

1
0(O) × H

1
0(O)

b̂(u,v,w) := 〈B̂(u,v),w〉 :=
1

2

∑

i,j

∫

O

[ui ∂ivj wj − ui ∂iwj vj ]dx, (2.12)

where

B̂(u) = B̂(u,u) = [(u · ∇) +
1

2
Div u]u. (2.13)

We have the following lemmas.

Lemma 2.2. Let u and w be in the spaces H
1
0(O,R2) and L

4(O,R2) respectively.
Then the following estimate holds:

|〈B̂(u),w〉| ≤ 2‖u‖3/2 |u|1/2 ‖w‖L4(O,R2). (2.14)

Proof. We observe that

b̂(u,v,w) =
2
∑

i,j=1

∫

O

ui(Divj)wj dx +
1

2

2
∑

j=1

∫

O

(div u)vjwj dx.

Using the Hölder inequality,

|b̂(u,v,w)| ≤
2
∑

i,j=1

‖ui‖L4(O,R2) |Divj |L2(O,R2) ‖wj‖L4(O,R2)

+
1

2

2
∑

j=1

|div u|L2(O,R2) ‖vj‖L4(O,R2) ‖wj‖L4(O,R2).

In Frobenius norm divergence can be estimated by gradient. Hence

|b̂(u,u,w)| ≤ 3

2
‖u‖L4(O,R2) ‖u‖ ‖w‖L4(O,R2).

Using the equation (2.11) in Lemma 2.1 we get

|〈B̂(u),w〉| = |b̂(u,u,w)| ≤ 2‖u‖3/2 |u|1/2 ‖w‖L4(O,R2).

¤
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Lemma 2.3. Let u and v be in the space H
1
0(O,R2). Then the following estimate

holds:

|〈B̂(u) − B̂(v),u − v〉| ≤ ν

2
‖u − v‖2 +

27

2ν3
|u − v|2 ‖v‖4

L4(O,R2)
. (2.15)

Proof. For any given u and v in H
1
0(O,R2) , we have from (2.12)

〈B̂(u),u〉 = 0, (2.16)

and

〈B̂(u,v),v〉 = 〈(u · ∇)v,v〉 +
1

2
〈(Div u)v,v〉 = 0. (2.17)

Then using (2.16) we obtain

〈B̂(u) − B̂(v),u − v〉 = 〈B̂(u),u〉 − 〈B̂(u),v〉 + 〈B̂(v),v〉 − 〈B̂(v),u〉
= −〈B̂(u),v〉 − 〈B̂(v),u〉. (2.18)

Now

〈B̂(u − v),v〉 = 〈((u − v) · ∇)(u − v) +
1

2
(Div(u − v))(u − v),v〉

= 〈B̂(u),v〉 + 〈B̂(v),v〉 − 〈(u · ∇)v +
1

2
(Div u)v,v〉

− 〈(v · ∇)u +
1

2
(Div v)u,v〉.

Hence using (2.16) and (2.17) we have

〈B̂(u − v),v〉 = 〈B̂(u),v〉 − 〈(v · ∇)u +
1

2
(Div v)u,v〉

= 〈B̂(u),v〉 + 〈B̂(v),u〉 − 〈(v · ∇)u +
1

2
(Div v)u,v〉

− 〈(v · ∇)v +
1

2
(Div v)v,u〉

= 〈B̂(u),v〉 + 〈B̂(v),u〉

− 〈(v · ∇)(u + v) +
1

2
(Div v)(u + v),u + v〉

+ 〈(v · ∇)u +
1

2
(Div v)u,u〉

+ 〈(v · ∇)v +
1

2
(Div v)v,v〉.

With the help of (2.16) and (2.17) last three terms of the right hand side van-
ish.Thus

〈B̂(u − v),v〉 = 〈B̂(u),v〉 + 〈B̂(v),u〉. (2.19)

Thus (2.18) and (2.19) yield

〈B̂(u) − B̂(v),u − v〉 = −〈B̂(u − v),v〉, (2.20)

which by Lemma 2.2 gives the estimate

|〈B̂(u) − B̂(v),u − v〉| ≤ 2 ‖u − v‖3/2 |u − v|1/2 ‖v‖
L4(O,R2)

,
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where ‖ · ‖ and | · | denotes the norm in H
1
0(O) and L

2(O) respectively.
Now using the fact that for any two real numbers a, b and any p, q > 1 with
1
p + 1

q = 1,

ab ≤ |a|p
p

+
|b|q
q
,

we obtain the estimate (2.15). ¤

Notice that H
1
0(O) is continuously included in L

4(O) = L4(O,R2) and u 7→
(∇ · u)u is a (nonlinear) continuous mapping from H

1
0(O) into its dual H

−1(O).

Hence the nonlinear operator B̂(·) can be considered as a map from H
1
0(O) into

the space H
−1(O) ∩ L

4/3(O,R2). Then combination of previous lemmas yield the
following local monotonicity property.

Lemma 2.4. For a given r > 0, let us denote by Br the (closed) L
4-ball in H

1
0

Br = {v ∈ H1
0(O,R2) ; ‖v‖

L4(O,R2)
≤ r}, (2.21)

then the nonlinear operator u 7→ Au + B̂(u) := −ν4u + [(u · ∇) + (1/2)Div u]u
is monotone in the convex ball Br i.e.,

〈Aw,w〉 + 〈B̂(u) − B̂(v),w〉 +
27r4

2ν3
|w|2 ≥ ν

2
‖w‖2, (2.22)

∀u ∈ H1
0(O,R2), v ∈ Br and w = u − v.

Proof. First, it is clear that

〈Aw,w〉 = ν‖w‖2,

and the equation(2.15) yields

〈B̂(u) − B̂(v),w〉 ≥ −ν
2
‖w‖2 − 27r4

2ν3
|w|2.

Summing these equations up we get the desired result (2.22). ¤

3. Stochastic 2-D Navier-Stokes Equation with

Artificial Compressibility

Let us consider the Navier-Stokes equation subject to a random (Gaussian) term
i.e., the forcing field f has a mean value still denoted by f and a noise denoted by
Ġ. We can write (to simplify notation we use time-invariant forces) f(t) = f(x, t)

and the noise process Ġ(t) = Ġ(x, t) as a series dGk =
∑

k gk(x, t)dwk(t), where
g = (g1,g2, · · · ) and w = (w1, w2, . . .) are regarded as `2-valued functions in
x and t respectively. The stochastic noise process represented by g(t)dw(t) =
∑

k gk(x, t)dwk(t, ω) is normal distributed in H with a trace-class co-variance op-
erator denoted by g2 = g2(t) and given by















(g2(t)u,v) =
∑

k

(gk(t),u) (gk(t),v),

Tr(g2(t)) =
∑

k

|gk(t)|2 <∞.
(3.1)

55



128 UTPAL MANNA, J.L. MENALDI, AND S.S. SRITHARAN

We interpret the stochastic Navier-Stokes equations as an Itô stochastic equa-
tions in variational form























d(u(t),v) + 〈−ν4u(t) + [(u(t) · ∇) +
1

2
Div u(t)]u(t)

+ ∇p(t),v〉dt = (f ,v) dt+
∑

k

(gk,v) dwk(t),

〈εṗ(t) + Div u(t), q〉 = 0,

(3.2)

in (0, T ), with the initial condition

(u(0),v) = (u0,v) and (p(0), q) = (p0, q), (3.3)

for any v in the space H
1
0(O) and any q in L2(O).

A finite-dimensional (Galerkin) approximation of the stochastic Navier-Stokes
equation can be defined as follows. Let {e1, e2, . . .} be a complete orthonormal
system (i.e., a basis) in the Hilbert space L

2(O) belonging to the space H
1
0(O)

(and L
4(O)). Denote by L

2
n(O) the n-dimensional subspace of L

2(O) and H
1
0(O)

of all linear combinations of the first n elements {e1, e2, . . . , en}. Also denote by
L2

n(O) := ∇ · L2
n(O) the image of ∇.

Consider the following stochastic ODE in R
n























d(un(t),v) + 〈−ν4un(t) + [(un(t) · ∇) +
1

2
Div un(t)]un(t)

+ ∇pn(t),v〉dt = (f ,v)dt+
∑

k

(gk,v)dwk(t),

〈εṗn(t) + Div un(t), q〉 = 0,

(3.4)

in (0, T ), with the initial condition

(u(0),v) = (u0,v), (3.5)

for any v in the space L
2
n(O) and q in L2

n(O). The coefficients involved are locally
Lipschitz and we need some a priori estimate to show global existence of a solution
un(t) as an adapted process in the space C0(0, T,L2

n(O)).

Proposition 3.1 (energy estimate). Under the above mathematical setting let

f ∈ L2(0, T ; L2(O)), g ∈ L2(0, T ; `2(L
2(O))), u0 ∈ L

2(O), p0 ∈ L2(O). (3.6)

Let un(t) be an adapted process in C0(0, T,Hn) which solves the stochastic ODE
(3.4). Then we have the energy equality











d
[

|un(t)|2 + ε|pn(t)|2
]

+ 2ν |∇un(t)|2dt
=
[

2 (f(t),un(t)) + Tr(g2(t))
]

dt+ 2
∑

k

(gk(t),un(t))dwk(t), (3.7)

which yields the following estimate for any δ > 0


















E
{

|un(t)|2 + ε|pn(t)|2
}

e−δt + 2 ν

∫ T

0

E
{

|∇un(t)|2
}

e−δtdt

≤ |u(0)|2 + ε|p(0)|2 +

∫ T

0

[1

δ
|f(t)|2 + Tr(g2(t))

]

e−δtdt,

(3.8)
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for any 0 ≤ t ≤ T. Moreover, if we suppose

f ∈ Lp(0, T ; L2(O)), g ∈ Lp(0, T ; `2(L
2(O))) (3.9)

then we also have


































E
{

sup
0≤t≤T

[

|un(t)|p + ε|pn(t)|p
]

e−δt

+ p ν

∫ T

0

|∇un(t)|2|un(t)|p−2e−δtdt
}

≤ |u(0)|p

+ ε|p(0)|p + Cδ,p,T

∫ T

0

[

|f(t)|p + Tr(g2(t))p/2
]

e−δtdt,

(3.10)

for some constant Cδ,p,T depending only on δ > 0, ε > 0, 1 ≤ p <∞ and T > 0.

Proof. From (3.4) we notice that,

d(un(t),un(t)) + 〈−ν4un(t),un(t)〉dt+ 〈(un(t) · ∇)un(t),un(t)〉dt

+
1

2
〈un(t)Div un(t),un(t)〉dt+ 〈∇pn(t),un(t)〉dt

= (f(t),un(t))dt+
∑

k

(gk(t),un(t))dwk(t). (3.11)

It is clear that

〈−ν4un(t),un(t)〉 = ν|∇un(t)|2,
and the equation (2.8) yields

〈(un(t) · ∇)un(t),un(t)〉 = −〈un(t)Div un(t),un(t)〉 − 〈(un(t) · ∇)un(t),un(t)〉.
Hence

〈(un(t) · ∇)un(t),un(t)〉 +
1

2
〈un(t)Div un(t),un(t)〉 = 0. (3.12)

Using the equation εṗn(t) + Div un(t) = 0 we get from (2.6)

〈∇pn(t),un(t)〉 = −〈pn(t),Div un(t)〉 = −〈pn(t),−εṗn(t)〉 =
ε

2

d

dt
|pn(t)|2.

(3.13)
Combining all the above results one can get from (3.11)

1

2
d|un(t)|2 + ν|∇un(t)|2dt+

ε

2
d|pn(t)|2

= (f(t),un(t))dt+
1

2
Tr(g2(t))dt+

∑

k

(gk(t),un(t))dwk(t).

Rearranging the terms we get the desired energy equality (3.7).
Next, we calculate the stochastic differential of the process

F(t) :=
[

|un(t)|2 + ε|pn(t)|2
]

e−δt

to get

dF(t) = e−δtd
[

|un(t)|2 + ε|pn(t)|2
]

− δ
[

|un(t)|2 + ε|pn(t)|2
]

e−δtdt.
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Using the energy equality (3.7) we have

dF(t) = − 2ν|∇un(t)|2e−δtdt+ 2 (f(t),un(t))e−δtdt+ Tr(g2(t))e−δtdt

+ 2
∑

k

(gk(t),un(t))e−δtdwk(t) − δ
[

|un(t)|2 + ε|pn(t)|2
]

e−δtdt. (3.14)

Now using the inequality

2ab ≤ δa2 +
1

δ
b2

on 2 (f(t),un(t)) we have

2 (f(t),un(t)) ≤ δ|un(t)|2 +
1

δ
|f(t)|2 ≤ δ

[

|un(t)|2 + ε|pn(t)|2
]

+
1

δ
|f(t)|2.

Then (3.14) yields

dF(t) = − 2ν|∇un(t)|2e−δtdt+ δ
[

|un(t)|2 + ε|pn(t)|2
]

e−δtdt

+
1

δ
|f(t)|2e−δtdt+ Tr(g2(t))e−δtdt+ 2

∑

k

(gk(t),un(t))e−δtdwk(t)

− δ
[

|un(t)|2 + ε|pn(t)|2
]

e−δtdt.

Rearranging the terms we have

d
[{

|un(t)|2 + ε|pn(t)|2
}

e−δt
]

+ 2ν|∇un(t)|2e−δtdt

≤ 1

δ
|f(t)|2e−δtdt+ Tr(g2(t))e−δtdt+ 2

∑

k

(gk(t),un(t))e−δtdwk(t).

Next we integrate in [0, T ] to get

[

|un(t)|2 + ε|pn(t)|2
]

e−δt + 2ν

∫ T

0

|∇un(t)|2e−δtdt

≤ |u(0)|2 + ε|p(0)|2 +

∫ T

0

[1

δ
|f(t)|2 + Tr(g2(t))

]

e−δtdt

+ 2
∑

k

∫ T

0

(gk(t),un(t))e−δtdwk(t).

Finally taking mathematical expectation and keeping in mind the expectation of
a stochastic integral is zero, we have the desired result (3.8).
Similarly, consider

G(t) :=
[

|un(t)|p + ε|pn(t)|p
]

e−δt

and use Itô calculus. Here we check that its stochastic differential satisfies

dG(t) = − δ
[

|un(t)|p + ε|pn(t)|p
]

e−δtdt

+
p

2
|un(t)|p−2

{

d
[

|un(t)|2 + ε|pn(t)|2
]}

e−δt

+
p(p − 1)

8
|un(t)|p−4

{

d
[

|un(t)|2 + ε|pn(t)|2
]}2

e−δt.

58



STOCHASTIC NAVIER-STOKES EQUATION WITH ARTIFICIAL COMPRESSIBILITY 131

Using the energy equality (3.7) we get

dG(t) + δ
[

|un(t)|p + ε|pn(t)|p
]

e−δtdt

=
p

2
|un(t)|p−2

{

− 2ν ‖un(t)‖2dt+
[

2 (f(t),un(t)) + Tr(g2(t))
]

dt

+ 2
∑

k

(gk(t),un(t))dwk(t)
}

e−δt

+
p(p − 1)

8
|un(t)|p−4

[

4
∑

k

(gk(t),un(t))2dt
]

e−δt.

Simplification and rearrangement of the terms in the above equation yields

dG(t) + νp‖un(t)‖2|un(t)|p−2e−δtdt+ δ
[

|un(t)|p + ε|pn(t)|p
]

e−δtdt

= |un(t)|p−2
[

p (f(t),un(t)) +
p2

2
Tr(g2(t))

]

e−δtdt

+ p
∑

k

(gk(t),un(t))|un(t)|p−2e−δtdwk(t). (3.15)

Now in the first and the second terms on the right hand side of the above equation
we apply the following elementary inequality

λab ≤ (αa)p

p
+

(βb)q

q
,

where 1
p + 1

q = 1, λ = αβ > 0, ab > 0. Then choosing

λ = p, α =
p

( δq
2 )

1
q

, β =
(δq

2

)

1
q

,

we get

p (f(t),un(t))|un(t)|p−2 ≤ αp |f(t)|p
p

+ βq |un(t)|(p−1)q

q

= Cδ,p |f(t)|p +
δ

2
|un(t)|p,

where the constant Cδ,p > 0 depends only on δ > 0 and 1 ≤ p < ∞. Similarly
with proper choices of α and β, we can prove that

p2

2
Tr(g2(t))|un(t)|p−2 ≤ Cδ,p Tr(g2(t))

p
2 +

δ

2
|un(t)|p.

Then (3.15) yields

dG(t) + νp‖un(t)‖2|un(t)|p−2e−δtdt

≤ Cδ,p

[

|f(t)|p + Tr(g2(t))
p
2

]

e−δtdt

+ p
∑

k

(gk(t),un(t))|un(t)|p−2e−δtdwk(t). (3.16)
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Integrating the stochastic differential (3.16),then taking the sup norm in [0, T ] and
finally taking the mathematical expectation we have

E
{

sup
0≤t≤T

[

|un(t)|p + ε|pn(t)|p
]

e−δt

+ p ν

∫ T

0

|∇un(t)|2|un(t)|p−2e−δtdt
}

≤ |u(0)|p

+ ε|p(0)|p + Cδ,p,T

∫ T

0

[

|f(t)|p + Tr(g2(t))p/2
]

e−δtdt

+ p E
{

sup
0≤t≤T

∣

∣

∣

∫ t

0

∑

k

(gk(s),un(s))|un(s)|p−2e−δsdwk(s)
∣

∣

∣

}

. (3.17)

By means of martingale inequality, we deduce

E
{

sup
0≤t≤T

∣

∣

∣

∫ t

0

∑

k

(gk(s),un(s))|un(s)|p−2e−δsdwk(s)
∣

∣

∣

}

≤ C E
{(

∫ T

0

∑

k

[

(gk(t),un(t))|un(t)|p−2e−δt
]2

dt
)1/2}

≤ C E
{(

∫ T

0

Tr(g2(t))|un(t)|2p−2e−2δtdt
)1/2}

≤ C E
{

sup
0≤t≤T

(|un(t)|p−1e−δt/p′

)
(

∫ T

0

Tr(g2(t))e−2δt/pdt
)1/2}

≤ δ

2
E
{

sup
0≤t≤T

(|un(t)|pe−δt)
}

+ Cδ,p,T E
{

∫ T

0

Tr(g2(t))p/2e−δtdt
}

,

(3.18)

where the constant Cδ,p,T depends only on δ > 0, 1 ≤ p < ∞ and T > 0. Using
(3.18) in (3.17) we get the desired estimate (3.10). ¤

Now we deal with the existence and uniqueness of the SPDE and its finite-
dimensional approximation.

Proposition 3.2 (uniqueness). Let u be a solution of the stochastic Navier-Stokes
equation (SPDE) (3.2) with the regularity

{

u ∈ L2(Ω;C0(0, T ; L2(O)) ∩ L2(0, T ; H1
0(O))),

u ∈ L
4(Ω ×O × (0, T )), p ∈ L2(Ω ×O × (0, T )),

(3.19)

and let the data f , g, u0 and p0 satisfy the condition

{

f ∈ L2(0, T ; H−1(O)), g ∈ L2(0, T ; `2(L
2(O))),

u0 ∈ L
2(O), p0 ∈ L2(O).

(3.20)
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If v in L2(Ω;C0(0, T,L2(O))∩L2(0, T,H1
0(O))) is another solution of the stochastic

Navier-Stokes equation (3.2), then










[

|u(t) − v(t)|2 + ε|p(t) − q(t)|2
]

exp
[

− 27

ν3

∫ t

0

‖u(s)‖4

L4(O)
ds
]

≤

≤ |u(0) − v(0)|2 + ε|p(0) − q(0)|2,
(3.21)

with probability 1 for any 0 ≤ t ≤ T and ε > 0.

Proof. Indeed if u and v are two solutions then w = v−u solves the deterministic
equation

∂tw(t) − ν4w(t) + ∇(q(t) − p(t)) = B̂(u) − B̂(v) in L
2(0, T ; H−1(O)),

with B̂(u) = [(u ·∇)+ 1
2 Div u]u. Notice that actually p and q are better processes,

they belong to the space L2(Ω;C0(0, T ; L2(O))).
Next, setting

r(t) :=
27

ν3

∫ t

0

‖u(s)‖4

L4(O)
ds

we have

d〈w(t), 2e−r(t)w(t)〉 − ν〈4w(t), 2e−r(t)w(t)〉dt
+ 〈∇(q(t) − p(t)), 2e−r(t)w(t)〉dt

= 〈B̂(u) − B̂(v), 2e−r(t)w(t)〉dt.
Using (2.6) we get

e−r(t)d(|w(t)|2)+2νe−r(t)‖w(t)‖2dt+ 2e−r(t)〈p(t) − q(t),Div w(t)〉dt
= 2e−r(t)〈B̂(u) − B̂(v),w(t)〉dt. (3.22)

Since ε∂t(q(t) − p(t)) + Div w(t) = 0, Lemma 2.3 and (3.22) yield

e−r(t)d
[

|w(t)|2 + ε|q(t) − p(t)|2
]

= −2νe−r(t)‖w(t)‖2dt− 2e−r(t)〈B̂(v) − B̂(u),w(t)〉dt

≤ −2νe−r(t)‖w(t)‖2dt+ 2e−r(t)
[ν

2
‖w(t)‖2 +

27

2ν3
|w(t)|2‖u(t)‖4

L4(O)

]

dt

= −νe−r(t)‖w(t)‖2dt+ ṙ(t)e−r(t)|w(t)|2dt

≤ −νe−r(t)‖w(t)‖2dt+ ṙ(t)e−r(t)
[

|w(t)|2 + ε|q(t) − p(t)|2
]

dt.

Hence

d
[

e−r(t)
{

|w(t)|2 + ε|q(t) − p(t)|2
}]

≤ 0.

Hence, integrating in t, we deduce (3.21), with probability 1. ¤

Each solution u in the space L2(Ω; L∞(0, T ; H−1(O)) ∩ L2(0, T ; H1
0(O))) of the

stochastic Navier-Stokes equation actually belongs to a better space, namely the
space L2(Ω;C0(0, T ; L2(O)) ∩ L

4(O × (0, T ))) in 2-D, O ⊂ R
2. Thus in 2-D, the

uniqueness holds in the space L2(Ω; L2(0, T ; H−1(O))).
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If a given adapted process u in L2(Ω; L∞(0, T ; L2(O))∩L2(0, T ; H1
0(O))) satisfies

d(u(t),v) = 〈F(t),v〉dt+ (g(t),v)dw(t), (3.23)

for any function v in H
1
0(O) and some functions F in L2(0, T ; H−1(O)) and g in

L2(0, T ; `2(L
2(O))), then we can find a version of u (which is still denoted by u)

in L2(Ω;C0(0, T ; L2(O))) satisfying the energy equality

d|u(t)|2 =
[

2〈F(t),u(t)〉 + Tr(g2(t)
]

dt+ 2(g(t),u(t))dw(t) (3.24)

see e.g. Gyongy and Krylov [9], Pardoux [15].

Definition 3.3. (Strong Solution) A strong solution u is defined on a given
probability space (Ω, Σ, Σt, M) as a L2(Ω; L∞(0, T ; L2(O)) ∩ L2(0, T ; H1

0(O)) ∩
C0(0, T ; L2(O))) valued function which satisfies the stochastic Navier-Stokes equa-
tion (3.2) in the weak sense and also the energy inequality

E
{

sup
0≤t≤T

[

|u(t)|p + ε|p(t)|p
]

e−δt + p ν

∫ T

0

|∇u(t)|2|u(t)|p−2e−δtdt
}

≤ |u(0)|p + ε|p(0)|p + Cδ,p,T

∫ T

0

[

|f(t)|p + Tr(g2(t))p/2
]

e−δtdt,

where the constant Cδ,p,T depends only on δ > 0, ε > 0, 1 ≤ p <∞ and T > 0.

Proposition 3.4 (2-D existence). Let f , g and u0 be such that
{

f ∈ Lp(0, T ; H−1(O)), g ∈ Lp(0, T ; `2(L
2(O))),

u0 ∈ L
2(O), p0 ∈ L2(O),

(3.25)

for some p ≥ 4. Then there is adapted processes u(t, x, ω) and p(t, x, ω) with the
regularity

{

u ∈ Lp(Ω;C0(0, T ; L2(O))) ∩ L2(Ω; L2(0, T ; H1
0(O))),

p, ṗ ∈ L2(Ω; L2(0, T ; L2(O)))
(3.26)

satisfying the stochastic Navier-Stokes equation (3.2) and the a priori bound (3.10)
for every ε > 0.

Proof. Denoting

F (u) := Au + B̂(u) − f := −ν4u + [(u · ∇) + (1/2)Div u]u − f ,

we have
dun(t) + F (un(t))dt+ ∇pn(t)dt = g(t)dw(t).

Then using the a priori estimate (3.10), it follows from the Banach-Alaoglu theorem
that along a subsequence, the Galerkin approximations {un} have the following
limits:

un −→ u weakly star in Lp(Ω; L∞(0, T ; L2(O))) ∩ L2(Ω; L2(0, T ; H1
0(O))),

pn −→ p weakly in L2(Ω; L2(0, T ; L2(O))),

F (un) −→ F0 weakly in L2(Ω; L2(0, T ; H−1(O))),

where u has the Itô differential

du(t) + F0(t)dt+ ∇p(t)dt = g(t)dw(t) in L2(Ω; L2(0, T ; H−1(O)))
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and the energy equality holds, i.e.,

d
[

|u(t)|2 + ε|p(t)|2
]

+ 2〈F0(t),u(t)〉dt = Tr(g2(t))dt+ 2(g(t),u(t))dw(t).

Now, for any adapted process v(t, x, ω) in L∞((0, T ) × Ω; L2(O)), we define

r(t, ω) :=
27

ν3

∫ t

0

‖v(s, ., ω)‖4

L4(O)
ds

as an adapted, continuous (and bounded in ω) real-valued process in [0, T ]. Then
from the energy equality

d
[

e−r(t)
{

|un(t)|2+ε|pn(t)|2
}

]

+ e−r(t)〈2F (un(t)) + ṙ(t)un(t),un(t)〉dt

+ ε|pn(t)|2ṙ(t)e−r(t)dt

= Tr(g2(t))e−r(t)dt+ 2(g(t),un(t))e−r(t)dw(t).

Integrating between 0 ≤ t ≤ T and taking the mathematical expectation we have

E
[

e−r(T )
{

|un(T )|2 + ε|pn(T )|2
}

− |un(0)|2 − ε|pn(0)|2
]

+ E
[

∫ T

0

e−r(t)〈2F (un(t)) + ṙ(t)un(t),un(t)〉dt
]

+ E
[

ε

∫ T

0

|pn(t)|2ṙ(t)e−r(t)dt
]

= E
[

∫ T

0

Tr(g2(t))e−r(t)dt
]

.

Considering the fact that the initial conditions un(0) and pn(0) converge to u(0)
and p(0) respectively in L

2, and the lower-semi-continuity of the L
2-norm, we

deduce

lim
n

inf E
[

−
∫ T

0

e−r(t)〈2F (un(t)) + ṙ(t)un(t),un(t)〉dt
]

= lim
n

inf E
[

e−r(T )
{

|un(T )|2 + ε|pn(T )|2
}

− |un(0)|2 − ε|pn(0)|2

+ ε

∫ T

0

|pn(t)|2ṙ(t)e−r(t)dt−
∫ T

0

Tr(g2(t))e−r(t)dt
]

≥ E
[

e−r(T )
{

|u(T )|2 + ε|p(T )|2
}

− |u(0)|2 − ε|p(0)|2

+ ε

∫ T

0

|p(t)|2ṙ(t)e−r(t)dt−
∫ T

0

Tr(g2(t))e−r(t)dt
]

= E
[

−
∫ T

0

e−r(t)〈2F0(t) + ṙ(t)u(t),u(t)〉dt
]

.

Next, by monotonicity on L
4-balls, i.e. by Lemma 2.4, we have

2E
[

∫ T

0

e−r(t)〈F (un(t)) − F (v(t)),un(t) − v(t)〉dt
]

+ E
[

e−r(t)ṙ(t)|un(t) − v(t)|2dt
]

≥ 0.
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Rearranging the terms we find

E
[

∫ T

0

e−r(t)〈2F (v(t)) + ṙ(t)v(t),v(t) − un(t)〉dt
]

≥ E
[

∫ T

0

e−r(t)〈2F (un(t)) + ṙ(t)un(t),v(t) − un(t)〉dt
]

.

Taking limit in n , we get

E
[

∫ T

0

e−r(t)〈2F (v(t)) + ṙ(t)v(t),v(t) − u(t)〉dt
]

≥ E
[

∫ T

0

e−r(t)〈2F0(t) + ṙ(t)u(t),v(t) − u(t)〉dt
]

.

Now we take v := u + λw with λ > 0 and w is an adapted process in the space

L4(Ω; L∞(0, T ; L2(O))) ∩ L2(Ω; L2(0, T ; H1
0(O))).

Then we have

λE
[

∫ T

0

e−r(t)〈2F
(

u(t) + λw(t)
)

− 2F0(t),w(t)〉dt
]

+ λ2E
[

∫ T

0

e−r(t)ṙ(t)|w(t)|2dt
]

≥ 0.

Dividing by λ on both sides of the inequality above, and letting λ go to 0, one
obtains

E
[

∫ T

0

e−r(t)〈F (u(t)) − F0(t),w(t)〉dt
]

≥ 0.

Since w is arbitrary, we conclude that F0(t) = F (u(t)). Thus the existence of a
strong solution of the stochastic Navier-Stokes equation (3.2) has been proved. ¤

4. Convergence as ε→ 0

We will now study the asymptotic limit of ε→ 0. Let us consider the family of
perturbed systems(depending on the positive parameter ε),

∂tu
ε − ν4uε +

2
∑

i=1

uε
iDiu

ε +
1

2
(Div uε)uε + ∇pε = f + g(t)dw(t) (4.1)

in L2(0, T ; H−1(O)),

ε∂tp
ε + Div uε = 0 in L2(0, T ; L2(O)), (4.2)

with the initial conditions

uε(0) = u0 in L
2(O) and pε(0) = p0 in L2(O). (4.3)

This is a method to overcome the computational difficulties connected with the
constraint ”Div u = 0”. The equations (4.1)-(4.2) are easier to approximate than
the original stochastic Navier-Stokes equation as the constraint ”Div u = 0” has
been replaced by the evolution equation (4.2).
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Here we will show how the solutions of the perturbed problems converge to the
solutions of the incompressible stochastic Navier-Stokes equation as ε → 0. The
idea of the proof is similar to the deterministic case presented in Temam [19].

Let

f ∈ L2(0, T ; L2(O)), g ∈ L2(0, T ; `2(L
2(O))), u0 ∈ L

2(O), p0 ∈ L2(O).

Then we can write the above mentioned perturbed systems as Itô Stochastic equa-
tions in variational form











d(uε(t),v) + 〈−ν4uε(t),v〉dt+ B̂(uε,uε,v)dt

+ 〈∇pε(t),v〉dt = (f ,v) dt+ (g(t),v) dw(t),

〈εṗε(t) + Div uε(t), q〉 = 0,

(4.4)

in (0, T ), with the initial conditions

(uε(0),v) = (u0,v) and (pε(0), q) = (p0, q), (4.5)

for any v in the space H
1
0(O) and any q in L2(Ω; L2(0, T ; L2(O))).

Proposition 4.1. As ε → 0, the solutions {uε, pε} of the equations (4.4)-(4.5)
converge to the solution u of the incompressible stochastic Navier-Stokes equation.

Proof. First we should point out that the solutions {uε, pε} of the equations (4.4)-
(4.5) satisfy the monotonicity property in Lemma 2.4, the energy equality (3.7)
and the a priori estimates (3.8) and (3.10). By virtue of these a priori estimates
and using the Banach-Alaoglu theorem, along a subsequence the approximations
{uε, pε} have the following limits:

uε −→ u weakly star in Lp(Ω; L∞(0, T ; L2(O))), (4.6)

weakly in L2(Ω; L2(0, T ; H1
0(O))),

√
εpε −→ χ weakly in L2(Ω; L2(0, T ; L2(O))). (4.7)

Let us denote

F (uε) := Auε + B̂(uε) − f := −ν4uε + [(uε · ∇) + (1/2)Div uε]uε − f ,

and
F̃ (u) := Au +B(u) − f := −ν4u + (u · ∇)u − f .

Let φ be a C∞ scalar function on [0, T ] with φ(T ) = 0. Multiplying the equation
(4.4) by φ(t), integrating in t and taking mathematical expectation, we obtain

(uε(T ),v)φ(T ) − (uε(0),v)φ(0) − E
[

∫ T

0

(uε(t),vφ′(t))dt
]

+ E
[

∫ T

0

(

F (uε(t)),vφ(t)
)

dt
]

+ E
[

∫ T

0

〈∇pε(t),vφ(t)〉dt
]

= E
[

∫ T

0

(g(t),vφ(t)) dw(t)
]

, for all v in H
1
0(O). (4.8)

Now passing to the limit in (4.7) we have in the sense of distribution,

E
[√
ε
(dpε

dt
, q
)]

−→ E
[(dχ

dt
, q
)]

. (4.9)
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Hence in the same sense

E
[

ε
(dpε

dt
, q
)]

−→ 0.

Then passing to the limit in the following equation

E
[

〈εṗε(t) + Div uε(t), q〉
]

= 0,

we get

E
[

〈Div u, q〉
]

= 0, ∀q ∈ L2(Ω; L2(0, T ; L2(O))),

which implies that Div u = 0, almost everywhere and almost surely.
Hence u ∈ Lp(Ω; L∞(0, T ; L2(O))) ∩ L2(Ω; L2(0, T ; H1

0(O))).
Now it is clear that

〈∇pε,vφ(t)〉 = 〈pε, φ(t)Div v〉 = 0, almost surely. (4.10)

Now using the same Minty-Browder monotonicity argument used in Proposition
3.4 we can show that in limit

F (uε) −→ F̃ (u) weakly in L2(Ω; L2(0, T ; H−1(O))). (4.11)

Using the results (4.10) and (4.11), in limit we have from equation (4.8)

−E
[

∫ T

0

(u(t),vφ′(t))dt
]

+ E
[

∫ T

0

(

F̃ (u(t)),vφ(t)
)

dt
]

=(u0,v)φ(0),

for all v in H
1
0(O).

This proves that u is a solution of the incompressible stochastic Navier-Stokes
equation. ¤

Remark 4.2. If one considers the multiplicative noise σ(t,u) of the type considered
in the hypotheses (A.1 − A.3) in Sritharan and Sundar [16], then under these
conditions same a priori estimates (3.8)-(3.10) hold. Thus σε(.,uε) → S weakly
in L2(Ω; L2(0, T ; LQ)), where LQ denote the space of linear operators S such that

SQ1/2 is a Hilbert-Schmidt operator from L2 to L2 and the norm on the space
LQ is defined by |S|2LQ

= Tr(SQS?) and Q is a trace class operator. Hence with

the help of Minty-Browder monotonicity arguments the existence and uniqueness
proofs go through and we can also establish the limit to incompressible flow.

Acknowledgment. We thank the referee for the helpful comments.
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