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Abstract. This article introduces a theory of proximal nerve complexes and

nerve spokes, restricted to the triangulation of finite regions in the Euclidean
plane. A nerve complex is a collection of filled triangles with a common vertex,
covering a finite region of the plane. Structures called k-spokes, k ≥ 1, are a
natural extension of nerve complexes. A k-spoke is the union of a collection of

filled triangles that pairwise either have a common edge or a common vertex.
A consideration of the closeness of nerve complexes leads to a proximal view
of simplicial complexes. A practical application of proximal nerve complexes
is given, briefly, in terms of object shape geometry in digital images.

1. Introduction

This article introduces a proximal computational topology approach in the the-
ory of nerve complexes. Computational topology combines geometry, topology and
algorithms in the study of topological structures, introduced by H. Edelsbrunner
and J.L. Harer [10]. K. Borsuk was one of the first to suggest studying sequences of
plane shapes in his theory of shapes [6]. Borsuk also observed that every polytope
can be decomposed X into a finite sum of elementary simplexes, which he called
brics. A polytope is the intersection of finitely many closed half spaces [36]. This
leads to a simplicial complex K covered by simplexes ∆1, . . . ,∆n (filled triangles)
such that the nerve of the decomposition is the same as K [5]. Briefly, a geometric
simplicial complex (denoted by ∆(S) or simply by ∆) is the convex hull of a
set of points S, i.e., the smallest convex set containing S. Geometric simplexes in
this paper are restricted to vertices (0-simplexes), line segments (1-simplexes) and
filled triangles (2-simplexes) in the Euclidean plane, since our main interest is in
the extraction of features of simplexes superimposed on planar digital images. In
this paper, we consider only what is known as a Vietoris-Rips complex, which is
a collection of 2-simplices determined by subsets of 3 points in a set of points in
the Euclidean plane [4]. An important form of simplicial complex is a collection of
simplexes called a nerve.
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Figure 1. NrvK

A planar simplicial complex K is
a nerve, provided the simplexes in
K have nonempty intersection (called
the nucleus of the nerve). A nerve
of a simplicial complex K (denoted
by NrvK) in the triangulation of a
plane region is defined by NrvK ={∆ ⊆K ∶ ⋂∆ ≠ ∅} (Nerve complex). In
other words, the simplexes in a nerve
have proximity to each other, since they
share the nucleus. The nucleus of a
nerve complex is a vertex common to
the 2-simplexes in a nerve. Triangula-
tion of point clouds in the plane provides a straightforward basis for the study of
nerve complexes. A spoke A (denoted by skA) on a nerve complex is a 2-simplex
in the nerve.

Example 1. Let X be a planar triangulated region containing a nerve complex
NrvK. Each filled triangle in NrvK is a spoke. For example, skA in Fig. 1 is a
spoke in NrvK. �

The study of nerves was introduced by P. Alexandroff [3], elaborated by K.
Borsuk [5], J. Leray [14], and a number of others such as M. Adamaszek et al. [1],
E.C. de Verdière et al. [9], H. Edelsbrunner and J.L. Harer [10], and more recently
by M. Adamaszek, H. Adams, F. Frick, C. Peterson and C. Previte-Johnson [2]. In
this paper, an extension of the Borsuk Nerve Theorem is given.

Theorem 1. Borsuk Nerve Theorem [5] If U is a collection of subsets in a topo-
logical space, the nerve complex is homotopy equivalent to the union of the subsets.

A main result in this paper is the following extension of Theorem 1.

Theorem 2. If NrvK is a nerve complex in a topological space, NrvK is homotopy
equivalent to the union of its n-spokes, n ≥ 1.

A practical application of simplicial complexes is the study of the characteristics
of surface shapes. Such shapes can be quite complex when they are found in digital
images. By covering a part or all of a digital image with simplexes, we simplify the
problem of describing object shapes, thanks to a knowledge of geometric features
of either individual simplices or simplicial complexes. The problem of describing
complex shapes is further simplified by extracting feature values from nerves that
are imbedded in simplicial complexes covering a spatial region. This is essentially
a point-free geometry approach introduced by [27].

2. Preliminaries

This section briefly introduces shape geometry, an extension of nerve complexes
in the form of k-spokes, k ≥ 1 and proximities useful in the study nerve complexes.

2.1. Shape Geometry. This section briefly introduces structures useful in the
study of collections of close filled triangles in the triangulation of planar digital
images. A filled triangle is defined in terms of the boundary and the interior of a
set of surface vertices. A sample algorithm useful in triangulating a digital image
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2.1: Edge 2-spoke 2.2: Edges 2-spokes 2.3: Vertex 2-spoke 2.4: Vertex 2-spokes

Figure 2. Two forms of nerve 2-spokes

3.1: Edge 3-spoke 3.2: Edges 3-spokes 3.3: Vertex 3-spoke 3.4: Vertex 3-spokes

Figure 3. Two forms of nerve 3-spokes

is given in Alg. 1.

Algorithm 1: Digital Image Geometry via Triangulation

Input : Read digital image img.
Output: Triangulation Mesh M covering an image.

1 img z→ SelectedV ertices;

2 S ← SelectedV ertices;

3 /* S contains vertex coordinates used to triangulate img. */ ;

4 Continue ← True; Vertices ← emptyset ;

5 while (S ≠ ∅ & Continue = True) do
6 /* Select neighbouring vertices {p, q, r} ⊂ S. */ ;

7 V ertices ∶= V ertices ∪ {p, q, r};
8 /* fil∆(pqr) = intersection of three closed half spaces. */ ;

9 M ∶= M ∪ fil∆(pqr);
10 S ∶= S ∖ V ertices;

11 if S ≠ ∅ then
12 /* Continue */

13 else
14 Continue ← False;

15 M z→ img ;

16 /* Use M to gain information about image shape geometry. */ ;
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Let A δ B indicate that the nonempty sets A and B are close to each other in
a space X equipped with the proximity δ (for the details, see Section 2.3). The
boundary of A (denoted bdyA) is the set of all points that are close to A and
close to the complement of A [17, §2.7, p. 62]. The closure of A (denoted by clA)
is defined by

clA = {x ∈X ∶ x δ A} (Closure of A).

An important structure is the interior of A (denoted intA), defined by intA =
clA − bdyA. Let p, q, r be points in the space X. A filled triangle (denoted by
fil∆(pqr)) is defined by

fil∆(pqr) = int∆(pqr) ∪ bdy ∆(pqr) (filled triangle).

When it is clear from the context that simplex triangles are referenced, we write
∆(pqr) or ∆A or simply ∆, instead of fil∆(pqr). Since image object shapes tend
to be irregular, the geometry of 2-simplexes covering of an image gives a precise
view of the shapes of image objects. From the known properties of 2-simplexes
(e.g., interior angles, perimeter, area, lengths of sides), object shape interiors and
contours covered by 2-simplexes can be described in a very accurate fashion.

2.2. Nerve Spokes. A nerve spoke extends outward from the nucleus of a nerve
NrvK, giving rise to 1-spokes (2-simplexes within a nerve NrvK), 2-spokes (a 2-
simlex that has either a vertex or an edge in common with a 1-spoke in NrvK),
3-spokes (a 2-simlex that has either a vertex or an edge in common with a 2-spoke in
NrvK),..., and n-spokes (a 2-simlex that has either a vertex or an edge in common
with an n − 1-spoke in NrvK).

Example 2. Two forms of 2-spokes are shown in Fig. 2. Let NrvK be a planar
nerve. An edge-based 2-spoke consists of a nerve NrvK 1-spoke that has an edge
in common with a non-nerve 1-spoke (see, e.g., Fig. 2.1). A complete collection of
edge-based 2-spokes on NrvK is shown in Fig. 2.2.

An vertex-based 2-spoke consists of a nerve NrvK 1-spoke that has a vertex in
common with a non-nerve 1-spoke (see, e.g., Fig. 2.3). A complete collection of
vertex-based 2-spokes on NrvK is shown in Fig. 2.4. �

Edge-based and vertex-based 3-spokes are also possible.

Example 3. Two forms of 3-spokes are shown in Fig. 3. An edge-based 3-spoke
consists of a nerve NrvK 2-spoke that has an edge in common with a non-nerve
1-spoke (see, e.g., Fig. 3.1). A complete collection of edge-based 3-spokes on NrvK
is shown in Fig. 3.2.

An vertex-based 3-spoke consists of a nerve NrvK 2-spoke that has a vertex in
common with a non-nerve 1-spoke (see, e.g., Fig. 3.3). A complete collection of
vertex-based 3-spokes on NrvK is shown in Fig. 3.4. �

2.3. Descriptions and Proximities. This section briefly introduces two basic
types of proximities, namely, traditional spatial proximity and the more recent de-
scriptive proximity in the study of computational proximity [24]. Nonempty sets
that have spatial proximity are close to each other, either asymptotically or with
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common points. Sets with points in common are strongly proximal. Nonempty sets
that have descriptive proximity are close, provided the sets contain one or more
elements that have matching descriptions. A commonplace example of descriptive
proximity is a pair of paintings that have matching parts such as matching facial
characteristics, matching eye, hair, skin colour, or matching nose, mouth, ear shape.
Each of these proximities has a strong form. A strong proximity embodies a spe-
cial form of tightly twisted nextness of nonempty sets. In simple terms, this means
sets that share elements, have strong proximity.

Figure 5. Strongly near filled triangles

Example 4. From Fig. 4, the pair of nerves NrvA,NrvB exhibit strong proximity,
since there is a 2-spoke that overlaps the nerves. To see this, consider triangles
∆A,∆B in Fig. 5 and let skEbe a 2-spoke in NrvA defined by skE = ∆A ∪∆B.
Similarly, NrvB has a 2-spoke skH, also defined by skH =∆A∪∆B. In other words,
nerves NrvA,NrvB overlap due to their 2-spokes skE, skH. In effect, ∆A,∆B are
strongly near, since these triangles belong to overlapping 2-spokes. �

Figure
4. Overlapping
Nerves

Proximities are nearness relations. In other
words, a proximity between nonempty sets is
a mathematical expression that specifies the
closeness of the sets. A proximity space re-
sults from endowing a nonempty set with one or
more proximities. Typically, a proximity space
is endowed with a common proximity such as
the proximities from C̆ech [34], Efremovic̆ [12],
Lodato [15], and Wallman [35], or the more re-
cent descriptive proximity [19, 18, 20].

A pair of nonempty sets in a proximity space
are near (close to each other), provided the sets
have one or more points in common or each set
contains one or more points that are sufficiently
close to each other. Let X be a nonempty set,
A,B,C ⊂ X. E. C̆ech [34] introduced axioms
for the simplest form of proximity δC , which satisfies

C̆ech Proximity Axioms [34, §2.5, p. 439]

(P1): ∅ /δ A,∀A ⊂X.
(P2): A δ B⇔ BδA.
(P3): A ∩ B ≠ ∅⇒ AδB.
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(P4): A δ (B ∪C)⇔ A δ B or A δ C. ∎
The Lodato proximity δL satisfies the C̆ech proximity axioms and axiom (P5).

Lodato Proximity Axiom [15]

(P5): A δL B and {b} δL C for each b ∈ B ⇒ A δL C. ∎
We can associate a topology with the space (X,δ) by considering as closed sets
those sets that coincide with their own closure.

Nonempty sets A,B in a topological space X equipped with the proximity
⩕

δ are

strongly near [strongly contacted ] (denoted A
⩕

δ B), provided the sets have at least

one point in common. The strong contact relation
⩕

δ was introduced in [22] and
axiomatized in [30], [13, §6 Appendix].

Strong Proximity [23, §1.2] (see, also, [24, §1.5], [22, 29]).

Let X be a topological space, A,B,C ⊂ X and x ∈ X. The relation
⩕

δ on the
family of subsets 2X is a strong proximity, provided it satisfies the following axioms.

(snN0): ∅ /δ
⩔ A,∀A ⊂X, and X

⩕

δ A,∀A ⊂X.

(snN1): A
⩕

δ B⇔ B
⩕

δ A.

(snN2): A
⩕

δ B implies A ∩ B ≠ ∅.
(snN3): If {Bi}i∈I is an arbitrary family of subsets of X and A

⩕

δ Bi∗ for some

i∗ ∈ I such that int(Bi∗) ≠ ∅, then A
⩕

δ(⋃i∈I Bi)
(snN4): intA ∩ intB ≠ ∅⇒ A

⩕

δ B. ∎
When we write A

⩕

δ B, we read A is strongly near B (A strongly contacts B). The

notation A
⩕/δ B reads A is not strongly near B (A does not strongly contact B).

For each strong proximity (strong contact), we assume the following relations:

(snN5): x ∈ int(A)⇒ x
⩕

δ A

(snN6): {x} ⩕δ{y} ⇔ x = y ∎
For strong proximity of the nonempty intersection of interiors, we have that

A
⩕

δ B⇔ intA∩ intB ≠ ∅ or either A or B is equal to X, provided A and B are not
singletons; if A = {x}, then x ∈ int(B), and if B too is a singleton, then x = y. It
turns out that if A ⊂X is an open set, then each point that belongs to A is strongly
near A. The bottom line is that strongly near sets always share points, which is
another way of saying that sets with strong contact have nonempty intersection.
Let δ denote a traditional proximity relation [16].

Proposition 1. Let NrvA,NrvB be nerve complexes in a triangulated space X.

NrvA
⩕

δ NrvB, if and only if 2-spoke skE ∈ NrvA ∩ NrvB for some 2-spoke
common to the pair of nerves.

Corollary 1. Let NrvA,NrvB be nerve complexes in a triangulated space X. A
3-spoke skH ∈ NrvA ∪ NrvB for some 3-spoke common to the pair of nerves.

Proof. Immediate from Prop. 1 and the definition of a 3-spoke. �
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2.4. Descriptive Proximities. In the run-up to a close look at extracting fea-
tures of triangulated image objects, we first consider descriptive proximities, fully
covered in [8] and briefly introduced, here. There are two basic types of object
features, namely, object characteristic and object location. For example, an object
characteristic of a picture point is colour. Descriptive proximities resulted from the
introduction of the descriptive intersection pairs of nonempty sets.

Descriptive Intersection [20] and [17, §4.3, p. 84].

(Φ): Φ(A) = {Φ(x) ∈ Rn ∶ x ∈ A}, set of feature vectors.
(∩
Φ

): A ∩
Φ

B = {x ∈ A ∪B ∶ Φ(x) ∈ Φ(A)& ∈ Φ(x) ∈ Φ(B)}. ∎

Figure
6. Strongly
Near

The descriptive proximity δΦ
was introduced in [19, 18, 20].
Let Φ(x) be a feature vector for
x ∈ X, a nonempty set of non-
abstract points such as picture
points. A δΦ B reads A is de-
scriptively near B, provided Φ(x) =
Φ(y) for at least one pair of points,
x ∈ A,y ∈ B. The proximity δ

in the C̆ech, Efremovic̆, and Wall-
man proximities is replaced by δΦ.
Then swapping out δ with δΦ in
each of the Lodato axioms defines
a descriptive Lodato proximity that satisfies the following axioms.

Descriptive Lodato Axioms [21, §4.15.2]

(dP0): ∅ /δΦ A,∀A ⊂X.
(dP1): A δΦ B⇔ B δΦ A.
(dP2): A ∩

Φ

B ≠ ∅⇒ A δΦ B.

(dP3): A δΦ (B ∪C)⇔ A δΦ B or A δΦ C.
(dP4): A δΦ B and {b} δΦ C for each b ∈ B ⇒ A δΦ C. ∎

Nonempty sets A,B in a proximity space X are strongly near (denoted A
⩕

δ B),

provided the sets share points. Strong proximity
⩕

δ was introduced in [23, §2] and
completely axiomatized in [30] (see, also, [13, §6 Appendix]).

Proposition 2. Let (X,δΦ) be a descriptive proximity space, A,B ⊂ X. Then
A δΦ B ⇒ A ∩

Φ

B ≠ ∅.
Proof. A δΦ B ⇔ there is at least one x ∈ A,y ∈ B such that Φ(x) = Φ(y) (by
definition of A δΦ B). Hence, A ∩

Φ

B ≠ ∅. �
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Next, consider a proximal form of a Száz relator [31]. A proximal relator R is
a set of relations on a nonempty set X [25]. The pair (X,R) is a proximal relator

space. The connection between
⩕

δ and δ is summarized in Prop. 1.

Lemma 1. Let (X,{δ, δΦ,⩕δ}) be a proximal relator space, A,B ⊂X. Then

1o A
⩕

δ B ⇒ A δ B.

2o A
⩕

δ B ⇒ A δΦ B.

Proof.

1o: From Axiom (snN2), A
⩕

δ B implies A ∩ B ≠ ∅, which implies A δ B (from
Lodato Axiom (P2)).
2o: From 1o, there are x ∈ A,y ∈ B common to A and B. Hence, Φ(x) = Φ(y), which
implies A ∩

Φ

B ≠ ∅. Then, from the descriptive Lodato Axiom (dP2), A ∩
Φ

B ≠
∅⇒ A δΦ B. This gives the desired result. �

Theorem 3. Let (X,{δΦ,⩕δ}) be a proximal relator triangulated space, NrvA,NrvB ⊂
2X . Then

1o NrvA
⩕

δ NrvB implies NrvA δΦ NrvB.
2o A 2-spoke skA ∈ NrvA ∩NrvB implies if skA ∈ NrvA ∩

Φ

NrvB.

3o A 2-spoke skA ∈ NrvA ∩NrvB implies NrvA δΦ NrvB.

Proof.
1o: Immediate from part 2o Lemma 1.

2o: From Prop. 1, skA ∈ NrvA∩NrvB, if and only if NrvA
⩕

δ NrvB. Consequently,
there are members of the 2-spoke skA common to NrvA,NrvB, which have the same
description. Hence, skA ∈ NrvA ∩

Φ

NrvB.

3o: Immediate from 2o and Lemma 1. �

Example 5. Let X be a topological space endowed with the strong proximity
⩕

δ
and A = {(x,0) ∶ 0.1 ≤ x ≤ 1},B = {(x, 1

x
sin(13/x)) ∶ 0.1 ≤ x ≤ 1}. In this case, A,B

represented by Fig. 6 are strongly near sets with many points in common. ∎
The descriptive strong proximity

⩕

δ
Φ
is the descriptive counterpart of

⩕

δ .

Definition 1. Let X be a topological space, A,B,C ⊂ X and x ∈ X. The relation
⩕

δ
Φ
on the family of subsets 2X is a descriptive strong Lodato proximity, provided

it satisfies the following axioms.

Descriptive Strong Lodato proximity [21, §4.15.2]

(dsnN0): ∅ /δ
⩔

Φ
A,∀A ⊂X, and X

⩕

δ
Φ

A,∀A ⊂X
(dsnN1): A

⩕

δ
Φ

B⇔ B
⩕

δ
Φ

A

(dsnN2): A
⩕

δ
Φ

B ⇒ A ∩
Φ

B ≠ ∅
(dsnN3): If {Bi}i∈I is an arbitrary family of subsets of X and A

⩕

δ
Φ

Bi∗ for

some i∗ ∈ I such that int(Bi∗) ≠ ∅, then A
⩕

δ
Φ
(⋃i∈I Bi)
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(dsnN4): intA ∩
Φ

intB ≠ ∅⇒ A
⩕

δ
Φ

B ∎
When we write A

⩕

δ
Φ

B, we read A is descriptively strongly near B. The notation

A
/δ
⩔

Φ
B reads A is not descriptively strongly near B. For each descriptive strong

proximity, we assume the following relations:

(dsnN5): Φ(x) ∈ Φ(int(A))⇒ x
⩕

δ
Φ

A

(dsnN6): {x} ⩕

δ
Φ
{y}⇔ Φ(x) = Φ(y) ∎

So, for example, if we take the strong proximity related to non-empty intersection

of interiors, we have that A
⩕

δ
Φ

B⇔ intA ∩
Φ

intB ≠ ∅ or either A or B is equal to

X, provided A and B are not singletons; if A = {x}, then Φ(x) ∈ Φ(int(B)), and if
B is also a singleton, then Φ(x) = Φ(y).
Example 6. Descriptive Strong Proximity.
Let X be a triangulated space of picture points represented in Fig. 5 with red, brown
or yellow colors and let Φ ∶X → R

n be a description of X representing the color of a
picture point, where 0 stands for red (r), 1 for brown (b) and 2 for yellow (y). Sup-
pose the range is endowed with the topology given by τ = {∅,{r, b},{r, b, y}}. Then

∆A
⩕

δ
Φ

∆B, since int∆A ∩
Φ

int∆B ≠ ∅, i.e., points in the interior of simplexes

∆A,∆B have matching colours. ∎
Example 7. Nerve Spokes with Descriptive Strong Proximity.
Let X be a planar triangulated region containing a nerve complex NrvK, equipped

with
⩕

δ
Φ
. A pair of spokes skA, skB in a nerve complex NrvK is shown in Fig. 7.

skA
⩕

δ skB, since skA, skB have common wiring represented by an overlapping coil.

Hence, from Lemma 1, skA δΦ skB. From Axiom (dsnN4), skA
⩕

δ
Φ

skB, since
int skA ∩

Φ

int skB. �

2.5. Closure Nerve Complexes. This section briefly introduces closure nerves.
Let F denote a collection of nonempty sets. An Edelsbrunner-Harer nerve of F [10,
§III.2, p. 59] (denoted by NrvF consists of all nonempty sub-collections whose sets
have a common intersection and is defined by

NrvF = {X ⊆F ∶ ⋂X ≠ ∅} .
A natural extension of the basic notion of a nerve arises when we consider adja-

cent polygons and the closure of a set. Let A,B be nonempty subset in a topological
space X. The expression A δ B (A near B) holds true for a particular proximity
that we choose, provided A and B have nonempty intersection, i.e., A ∩ B ≠ ∅.
Every nonempty set has a set of points in its interior (denoted intA) and a set of
boundary points (denoted bdyA). A nonempty set is open, provided its boundary
set is empty, i.e., bdyA ≠ ∅. Put another way, a set A is open, provided all points
y ∈ X sufficiently close to x ∈ A belong to A [7, §1.2]. A nonempty set is closed,
provided its boundary set is nonempty. Notice that a closed set can have an empty
interior.

Example 8. Circle, triangles, and or any quadrilaterals are examples of closed sets
with either empty or nonempty interiors. Disks can be either closed or open sets
with nonempty interiors. �
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An extension of the notion of a nerve in a collection of simplicial complexes F

called a closure nerve (denoted clNrvF ), defined by

clNrvF = {X ∈F ∶ ⋂ clX ≠ ∅} .
Closure nerves are commonly found in triangulations of digital images.

Example 9. Examples of closure nerves are shown in Fig. 4. �

From Example 9, a new form of closure nerve can be derived from the filled
triangles in a nerve complex (denoted by clNrv∆F ) defined by

clNrv∆F = {∆ ∈ NrvF ∶ ⋂ cl∆ ≠ ∅} .

bc

bc

bc

bc

bc

X
NrvK

skB

skA

Figure 7. skA
⩕

δ
Φ

skB

An easy next step is to consider
nerve complexes that are descriptively
near and descriptively strongly near.
Let NrvA,NrvB be a pair of nerves
and let ∆A ∈ NrvA,∆B ∈ NrvB. Then
NrvA δΦ NrvB, provided ∆A ∩

Φ

∆B ≠
∅, i.e., ∆A δΦ ∆B . Taking this a
step further, whenever a region in in-
terior of NrvA has a description that
matches the description of a region
in the interior of NrvB, the pair of
nerves are descriptively strongly near.
Let ∆A ∈ NrvA,∆B ∈ NrvB. Then

NrvA
⩕

δ
Φ

NrvB, provided cl∆A ∩
Φ

cl∆B ≠ ∅.
A descriptive closure nerve complex (denoted by clNrv∆

Φ

F ) is defined by

clNrv∆
Φ

F = {∆ ∈ NrvF ∶ ⋂
Φ

cl∆ ≠ ∅} .
Lemma 2. Each closure nerve clNrv∆F has a nucleus.

Proof. Since all filled triangles in clNrv∆F have nonempty intersection, the trian-
gles have a common vertex, the nucleus of the nerve. �

Definition 2. A pair of filled triangles ∆A,∆B in a triangulated region are sepa-
rated triangles, provided ∆A∩∆B = ∅ (the triangles have no points in common)
or ∆A,∆B have an edge or a vertex in common and do not have a common nucleus
vertex. �

Theorem 4. Let V be a set of vertices, X be a triangulated plane surface covered
with 2-simplexes with vertices in V . If v, v′ ∈ V are vertices of separated filled
triangles on X, then the space has more than one nerve.

Proof. Let ∆(v, p, q),∆(v′, p′, q′) be filled triangles on X. In a nerve, every filled
triangle has a pair of edges in common with adjacent triangles and, from Lemma 2,
the filled triangles in the nerve have a common vertex, namely, the nucleus. By
definition, separated triangles have at most one edge or vertex in common and do
not have a common nucleus. Hence, the separated triangles belong to different
nerves. �
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Theorem 5. Nerves with a common 2-spoke are strongly near nerves.

Proof. Immediate from the definition of
⩕

δ . �

Theorem 6. Strongly near nerves are strongly descriptively near nerves.

Proof. Let NrvA
⩕

δ NrvB be strongly near nerves. Then NrvA,NrvB have a 2-
spoke in common. Then intNrvA ∩ intNrvB ≠ ∅. Consequently, from Part 2 of

Theorem 3, intNrvA ∩
Φ

intNrvB ≠ ∅. Hence, from Axiom (dsnN4), NrvA
⩕

δ
Φ
NrvB.

�

Theorem 7. Nerves containing interior regions with matching descriptions are
strongly descriptively near nerves.

Proof. Immediate from the definition of
⩕

δ
Φ
. �

3. Main Results

From a computational topology perspective, homotopy types are introduced
in [11, §III.2] and lead to significant results for in the theory of nerve spokes.

Let f, g ∶ X Ð→ Y be two continuous maps. A homotopy between f and g is a
continuous map H ∶ X × [0,1] Ð→ Y so that H(x,0) = f(x) and H(x,1) = g(x).
The sets X and Y are homotopy equivalent, provided there are continuous maps
f ∶ X Ð→ Y and g ∶ Y Ð→ X such that g ○ f ≃ idX and f ○ g ≃ idY . This yields an
equivalence relation X ≃ Y . In addition, X and Y have the same homotopy type,
provided X and Y are homotopy equivalent.

Let F be a finite collection of nerve complexes that cover a space X, endowed

with the strong proximity
⩕

δ . Let N be the nucleus of nerve NrvK, K a collection
of 1-spokes that have in N in common. Then NrvK is defined by

NrvK = {skA ∈K ∶ skA ⩕

δ N} .
A nerve complex endowed with a proximal relator is a collection of spokes with

proximities given in Lemma 3 and Theorem 8.

Lemma 3. Let NrvK be a nerve complex endowed with the strong proximity
⩕

δ .
Then ⋂

skA∈NrvK
skA ≠ ∅.

Proof. Let skA, skB be a pair of spokes in nerve NrvK. Since skA, skB have a

nucleus N in common, skA
⩕

δ skB implies skA ∩ skB ≠ ∅ (from Axiom (snN2)).
This holds true for all spokes in NrvK. Consequently, ⋂

skA∈NrvK
skA ≠ ∅. �

Theorem 8. Let (NrvK,{δ, δΦ,⩕δ}) be a proximal relator space, spokes skA, skB ∈
NrvK. Then

1o skA
⩕

δ skB ⇒ skA δ skA.

2o skA
⩕

δ skB ⇒ skA δΦ skB.
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Proof.
1o: From Lemma 3, NrvF

MNC
is an Edelsbrunner-Harer nerve.

skA
⩕

δ skB for every pair of spokes skA, skB in the nerve NrvK, since skA, skB
have common vertex, namely, the nucleus of NrvK. From Lemma 3, ⋂

skA∈NrvK
skA ≠

∅ for every pair of spokes in NrvK. Consequently, skA
⩕

δ skB. Then, from Axiom
(snN2), skA δ skA for all spokes skA, skB.
2o: Spokes skA, skB have nucleus N in common. Hence, skA ∩

Φ

skB ≠ ∅. Then,

from Lemma 1, skA ∩
Φ

skB ≠ ∅ ⇒ skA δΦ skB. This gives the desired result for

each pair of spokes in the nerve. �

Theorem 9. [11, §III.2, p. 59] Let F be a finite collection of closed, convex sets
in Euclidean space. Then the nerve of F and the union of the sets in F have the
same homotopy type.

Lemma 4. Let NrvK be a finite collection of 1-spokes, which are closed, convex
sets in a triangulation of a region in the Euclidean plane. The nerve NrvK and the
union of the 1-spokes in NrvK have the same homotopy type.

Proof. From Theorem 9, we have that the union of the 1-spokes skA ∈ NrvK and
NrvK have the same homotopy type. �

Remark 1. Every 1-spoke in a nerve complex NrvK is part of an n-spoke, n > 1.
From a consideration of n-spoke extensions of 1-spokes in NrvK, we obtain the main
result of this paper, namely, Theorem 2 as a straightforward corollary of Lemma 4.
�

Theorem 10. Let 2X be a finite collection of strongly near maximal nerve com-
plexes covering a finite region of the Euclidean plane equipped with the relator

{⩕δ, ⩕δΦ
}, Φ(NrvK) = number of 1-spokes in NrvK. Then ⋂

Φ

NrvK ≠ ∅.
Proof. Each maximal NrvK has the same description, namely, the number of 1-
spokes in the nerve complex. Hence, ⋂

Φ

NrvK ≠ ∅. �

4. Application: Detecting Image Object Shapes

This section carries forward the notion of descriptively proximal images. The
study image object shapes is aided by detecting triangulation nerves containing the
maximal number of filled triangles (denoted by maxNrvK).

Remark 2. How to Detect Image Object Shapes with Maximal Nerve
Clusters.
The following steps lead to the detection of image object shapes.

Triangulation: : The triangulation of a digital image depends on the ini-
tial choice of vertices, used as generating points for filled triangles. In this
work, keypoints have been chosen. A keypoint is defined by the gradient ori-
entation (an angle) and gradient magnitudes (edge strength) of each image
pixel. All selected image keypoints have different gradient orientations and
edge strengths. Typically, in an image with a 100,000 pixels, we might find
1000 keypoints. Keypoints are ideally suited for shape detection, since each
keypoint is also usually an edge pixel.
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Nerve Complexes: : Keypoint-based nerve complexes have a nucleus that
is a keypoint. For nerve complexes, see Fig. 8.3.

Maximal Nerves: : In the search for a principal image object shape, we start
with maxNrvK in a nerve with the maximum number of filled triangles that
have a nucleus vertex in common. Experimentally, it has been found a
large part of an image object shape will be covered by a maximal nerve (see,
e.g., [28, §8.9,§9.1]).

Maximal Nerve Clusters: : Nerve complexes strongly near maxNrvK form
a cluster useful in detecting an image object shape (denoted by maxNrvCluK).

Shape Contour: : The outer perimeter of a maxNrvCluK provides the con-
tour of a shape that can be compared with other known shape contours,
leading to the formation of shape classes. A maxNrvCluK outer perime-
ter is called a shape edgelet [28, §7.6]. Shape contour comparisons can be
accomplished by decomposing contour into nerve complexes and extracting
geometric features of the nerves, e.g., nerve centroids, area (sum of the
areas of the nerve triangles), number of nerve triangles, maximal nerve
triangle area, which are easily compared across triangulations of different
images.

�

8.1: Vietri girl 8.2: Girl vertices 8.3: Girl nerves

Figure 8. Simplex vertices and overlapping Girl nerve simplicial complexes

Example 10. Girl Closure Nerve Cluster Head Shape.
Based on a selection of keypoints shown in Fig. 8.2, the triangulation of the girl
image in Fig. 8.1 leads to a collection of filled triangle simplexes that cover the
central region of the image as shown in Fig. 8.3. From this triangulation, maximal
nucleus clusters can be identified. For example, we can begin to detect the shape
of the head from the collection of overlapping nerve complexes in Fig. 9. The
nerve complexes in Fig. 9 form a cluster with maxNrvA doing most of the work in
highlighting the shape of a large part of the girl’s head. Let the upper region of this
space be endowed with what is known as proximal relator [26], which is a collection
of proximity relations on the space. Let (X,Rδ) be a proximal relator space with the

upper region of Fig. 8.1 represented by the set of points X and let Rδ = {⩕δ, δΦ, ⩕δΦ
}.

Notice that the triangulation in Fig. 8.3 contains a number of separated triangles.
Hence, from Theorem 4, we can expect to find more than one nerve. In this case,
families of nerves can be found in this image, starting with the upper region of the
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Figure 9. Overlapping Nerve Complexes on Girl Image

image. Then observe the following things in the collections of nerve complexes in
Fig. 9.

NrvA
⩕

δ NrvB (Nerves with a common 2-spoke are strongly near (Theorem 5)),

NrvA
⩕

δ NrvC (From Theorem 5, these nerves are strongly near),

NrvB
⩕

δ NrvC (From Theorem 5, these nerves are strongly near),

(NrvA ∩ NrvB) δΦ NrvC (nerves with matching feature vectors, cf. Theorem 6),

(NrvA ∩ NrvC) δΦ NrvB (nerves with matching feature vectors, cf. Theorem 6),

(NrvA ∩ NrvC) ⩕

δ
Φ

NrvB (nerve interiors with matching descriptions, cf. Theorem 7),

(NrvA ∩ NrvB) ⩕

δ
Φ

NrvC (nerve interiors with matching descriptions, cf. Theorem 7).

From these proximities, we can derive the head shape from the contour formed by
the sequence of connected line segments along the outer edges of the nerve spokes.
�

Concluding Remarks

A theory of proximal nerve complexes is introduced in this paper. An application
of this theory is in the form of a framework for the detection of image object shapes.
For other promising places for applications of proximal nerve complexes, see, e.g.,
[33], [32] and [24, §5.3, §5.4, §5.10, §12.1 and §14.1].
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