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ON BLOCK CIRCULANT POLYNOMIAL MATRICES

R. MUTHAMILSELVAM AND G. RAMESH

ABSTRACT. The characterization of block circulant polynomial matrices are
derived as a generalization of the block circulant matrices.

1. Introduction

Let (a1(a), az(a),...an(c)) be an ordered n-tuple of polynomial complex
numbers and let them generate the circulant polynomial matrix [2] [3] [5] [7] of

order n:
a1(a) az(a) ... an(@)
Ala) = an(a) ai(a) ... a2(e) (1.1)
az(a) az(a) ... a(@)
We shall often denote this circulant polynomial matrix as
A(a) = Circ(ar(a), az(a), ..., an(a)) (1.2)

It is well known that all circulant polynomial matrices of order n are simul-
taneously diagonalizable by the polynomial matrix F(«) associated with the finite
Fourier transform.

Specifically, let

w(a) = eap(T (@), i = VT (13)
and set
1 1 1 1
B 1 w(a) w?(a) wHa)
Fra)=n(Z)] 1 w?(a) wt(a) w1 () (1.4)
. 1 w("._-ll) () w("._-Q.) () .. .. .. w(a)

The Fourier polynomial matrix F(«) depends only on n. This matrix is also
symmetric polynomial and unitary polynomial F(«)F*(a) = F*(a)F(a) = I(a)
and we have

A(a) = F*(a) A (a)F (@) (1.5)
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where A(a) = diag(ar, g, ... ay,)
The symbol * designates the conjugate transpose.
From the spectral mapping theorem, we may represent A(«) in the form

A(a) = ay(a) + az(a)m(a) + az(@)m?(a) + - + ap ()7 Ha) (1.6)
where () is the permutation matrix circ(0, 1,0,0,...).
Also, let A(«) be an n X n polynomial matrix. Then A(«) is a circulant
polynomial matrix if and only if

Alo)m(a) = m(a)A() (1.7)
The matrix 7(a) = cire(0,1,0,...,0)
This paper is devoted to the study of block circulant polynomial matrices.

2. Block Circulant Polynomial Matrices

In this section we define block circulant polynomial matrices and we extend
some of the properties of block circulant matrices found in [1], [4], [6], [8], [9] to
block circulant polynomial matrices.

Definition 2.1. A block circulant polynomial matrix is a polynomial matrix in
the following form

211(04) iz(a) “ee AAm(O‘)
b circ(4i(a), Aa(a), ..., Ap()) = m(a) 1(04) m.—.l.(a)
AQ(OL) Ag(Oé) cee Al (a)

We denote the set of all block circulant polynomial matrices of order m x n
as BC,, » ().

Example 2.2. The polynomial matrix

1—a? o? 24a? —lla
a+3a® l14+a 4+46a° —8+a
24 a? —1lo 1—a? a?

44602 —-8+a a+3a2 l1+4+a

is a block circulant polynomial matrix.

Theorem 2.3. A(a) € BC,, »(a) iff A(a) commutes with the unitary polynomial
matriz

T (@) @ In(a) + A(e)(mm () @ In(a)) = (mm(a) @ I () Aa)

Proof. Assume that A(a) is a block circulant polynomial matrix. That is a
Ai(ar)  Ax(a) Am(a)
b cire(A1(a), As(a), ... An(a)) = | Am(@) Arl@) o Amoi(e)
AQ(OK) Ag(a) Al(Oé)
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We have to prove that A(a)(mm () @ I (a)) = (T (@) ® In(a))A(a).
Now the polynomial matrix m,(a) ® I, (@) € BC,, »(«) is given by

On(a) In(a) Op(a) ... Op(a)
On(a) On(a) In(a) ... Op(a)
Tm(a) @ I(a) =] .. .

On(a) Op(a) Opla I, («)

In(a) Op(a) On(a) On(a)

An(a)  Aj(a) As(a) Ap—1(a)
A@)(mn(0)  Iy(a)) = | Ar(@) Anle) Aila) o Anala) |y )

Ai(a)  Asx(a)  Asz(a) Ap(a)

An(a)  Aj(a) As(a) Ap—1(a)
(Mm(@) ® Lo(a))Ala) = | Am=1(@) Anle) Arla) o Ana(0) | o )

Ai(a) As(a)  As(a) ... A (@)

From (8) and (9), we get A(a)(mm (@) ® In(a)) = (mm(a) @ I,(a))A(a).
Conversely, assume that A(a) (7, (@) @ I () = (T (@) @ In(a))Aa).
We have to prove that A(«) is a block circulant polynomial matrix.

A () 0 0

e
0 0 ... A(a)
0 Az (a) 0 0
Tm(a) ® As(a) = 0 0 Ay(a) 0
AQ(Q) 0 0 0

T () ® As(a) = (O 0 0 Az(a) 0

0 As(a) 0 0 ... 0

etc
(I (@) @A1 () +(mm (@)@ Az () ++ -+ (7 (@)@ Am (a)) = b cire(41(a), A2(a), . . ., Ap(a) ]
Hence, A(«) is a block circulant polynomial matrix.
m—1
Theorem 2.4. b circ(Ai(a), Az(«), ..., An(a) = X [7k (o) @ Arii(a)).
k=0

Proof. Given that A(a) = b circ(41(a), A2(a), ..., A, () is a block circulant
polynomial matrix.
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That is,
Al(a) AQ(Q) An(a
Afa) = | @)l ()
Az(a)  As(a) Ai(a)
Now
Al(oz) 0 0
Inf@ea@=| 4 ’
0 0 Ai(a)
0 AQ(O() 0 0
(0) ® Ay(a) 0. 0 Alz.(.a) 0
Ag(Oé) O 0 O
0 0  Az(a) O 0
M@ e =] 0 0 A
0 Asz(a) 0 0 ... 0

Since the pre direct of any n x m polynomial matrix by 7,,(«) shifts the
columns of the matrix one place to the right. Therefore, we find that

0 0 O 0 An ()
a0 @A) = [0 0 0O
0O 0 0 An@) 0
b circ(A;(a), Ax(a), ..., Ax(a) = T:g:[wfn(a) ® Agi1(a)]. O

Remark 2.5. Block circulant polynomial matrix of the same type do not necessarily
commute.

Example 2.6.
(o6 %) (6t B) = ("6l aste)
(O 2D (60 9) = (o pita)
Theorem 2.7. Let A(a) =b

B(a) = b cire(B(«

), Ba(@), ..., By (a ))eIB%(Can(
Then, if the A;(
2.

’

@)'s commutes with the By (a)'s, A(a) and B(«) commute.
Proof. By theorem (2.4), we have

Al0) = S [1(0) © Aja (@), Bla) = S [7(a) ® Bega ()]

j=0 k=0
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A@B(@) = (£ W@ 8 4@ £ 7 © Bunla)]
=SS w0 (0) @ Agga(@) By (o)
j=0 k=0
=Y T 7 (a) ® Brsi (@) Az ()]
k=0 j=0
—[E (@) 0 Bua(@IS () © A (@)]
= B(a)A(a) O

Theorem 2.8. A(a) € BC,,xn() if and only if it is of the form
Ala) = [Fin(a) ® Fy(a)"]diag[Mi(a), Ma(a), ..., My ()] [Frn(e) @ Fo(a)]
where the My(a) are arbitrary polynomial square matrices of order n.

Proof. Assume that A(«) is a block circulant polynomial matrix.

From theorem (2.4), we have
m—1
A(a) = Db circ(41(a), Az(a), . .., An(a)) = X [7F (a)® Ak 11(a)] for some A (o).

Now 7, ()@ Ap+1(a) = [}, ()2 (@) Fon ()| @[ F (@) (F (@) Apa (@) B () Fr (o)
Let By () = (Fy(a JArt1(0) i (a)

7 (0) ® Ay (@) = [F ()2 (0) Frn ()] @ [F () K (@) Fo(a))]

= (Fi(0) ® Fy ()0 )®BK(04 )(Fm (@) © Fo ()

) m
(@) 8 A (@) = S (F(@) © Fa(@)*(@4(0) @ Bic(@)(Fn (@) © Fi (@)

k=0 k=0

Afa) = (Fn(a) @ Fu(a))® mZ (Q2*(a) ® Bx(@))(Fin(a) ® Fo(a))

GG Fo(0))* diag(My(a), Ma(0), ... Mo (@) (Fn(a) ® Fy(a))

whnere
Ml(Oé) BO(CV)
M) | — (b (0) @ o)) | P (23)
Mm(a) B(mfl)(a)

Thus, A(a) = (Fn(a) ® Fy ()" diag(My (), Ma(a), .., M (@) (Fin(c) © Fy (@)

From (10),
Bo(a) M ()
Bl(oz) _ (m%lF:l(a) ® I () MQ(Q)
b Mi(a)

Since Ay1)(a) = F (o) B(a) Fr ()
My («) arbitrary < By(«) are arbitrary.
< Ap(«) are arbitrary.
Hence, A(a) € BC(y, n) (). O
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3. Conclusion

some of the characterization of block circulant polynomial matrices are

discussed here. Further we can study the circulant block polynomial matrices.
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