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ABSTRACT 

This paper addresses the descriptive modeling of a queuing system in which the arrival and 

service processes are non-stationary.  It is assumed that the arrival and service processes 

follow non-homogeneous Poisson processes.  Two models namely, (i) Single server queuing 

model and (ii) Two node tandem queuing model are developed and analyzed.  For both the 

models the probability generating functions of the queue size distributions are derived 

using the difference-differential equations.  The system characteristics of the model such as 

the average number of customers in the queue, the throughput of the service station, the 

average waiting time of a customer in the queue and in the system, the variance of the 

number of customers in each queue are derived.  The sensitivity of the models with respect 

to the changes in the input parameters are also presented.  It is observed that the time 

dependent nature of arrival and service processes has significant effect on the system 

performance measures.  It is further assumed that the load dependent service can reduce the 

congestion in queues and delay in service.  These models also include some of the earlier 

models as particular cases. 

KEYWORDS: Non-stationary queuing model, time dependent queuing model, tandem 

queuing model, Non-homogeneous Poisson process, performance measures, sensitivity 

analysis. 

1. INTRODUCTION:  

                               Queuing models provide the basic framework for analyzing several systems arising at 

places like communication networks, cargo handling, transportation systems, machine repair, supply 

chain management and production processes.  In general in queuing models it is considered that the 

arrival and service processes are independent of time.  But in reality there are several systems in which 

the arrival and service processes are time dependent.  Abry et al. (2002) and Cappe et al. (2002) have 

mentioned that modeling and analysis of computer network traffic using Poisson processes may not 

serve the purpose of predicting the traffic.  Also they stated that the Poisson like nature assume the 

arrival of packets are smoother and less bursty but the present communication system the aggregate 

traffic does not become smooth and remain bursty.  Leland et al.  (1994) have mentioned that the actual 

traffic in Ethernet LAN exhibits the property of self similarity (burstness) and long range similarity.  

Rakesh Singhai et al.  (2007) have further studied that metropolitan area network (MAN) traffic, wide 

area network (WAN) and variable bit rate (VBR) traffic which exhibit self similar and elastic 

characteristics and established that several of these networks are bursty because of time dependent 

nature of arrival and service processes. 
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                 Crovella et al.  (1997), Murali Krishna et al.  (2003), Feldman, A.  (2000) have demonstrated that 

in TCP connection arrival or service processes, the inter arrival time of packets / inter service times of 

packets cannot be characterized by an exponential distribution.  Hence, Fischer et al.  (2001) have 

developed G/M/1 model with weibull inter-arrival time distribution.  In addition to this a number of 

measurement studies given by Dinda P.A. et al. (2006) have revealed that the traffic generated by many 

real world applications exhibits a high degree of burstyness (time varying arrival and service rates).  

Therefore, there are many situations in real life that the arrival and service processes are time dependent 

due to various factors like load fluctuations, congestion and flow control, peaks hour overloads, adaptive 

rooting and others.  Much work has been reported in literature regarding queuing models with time 

dependent arrival and service rates. 

                Newell (1968) has studied time-dependent arrival rates.  Rothkopf and Oren (1979) have given 

closure approximation for the non-stationary M/M/s queue. Massey et al.  (1993) have studied networks 

of infinite- server queues with non-stationary Poisson input, queuing systems.  Massey and Whitt (1994) 

have analyzed of the modified offered load approximation for the non-stationary Erlang loss model.  

Mandelbaum and Massey (1995) have studied the approximation for time dependent queues.  Davis et al. 

have (1995) studied the sensitivity to the service time distribution in the non-stationary Erlang loss 

model.  William A. Massey (1996) has studied stability of queues with time varying rates.  He analyzed 

the models using asymptotic method known as Uniform acceleration asymptotic behavior carry based on 

fluid and diffusion approximations.  Duffield et al. (2001) have analyzed a non-stationary load model for 

packet networks.  William A. Massey (2002) has analyzed the queues with time varying rates for 

telecommunication models.  He also reviewed several works which support the arguments that time 

dependent behavior has an impact on traffic flow models.  Ward Whitt (2016) reviewed the recent papers 

on time varying single server queue. In all these papers they analyzed the queuing models for time 

varying arrival and service rates using diffusion approximations or Kendal’s frame work.  

                   Recently Durga Aparajitha and rajkumar (2014), Srinivasa Rao et al. (2017,2017a) have 

developed and analyzed the queuing models with time and state dependent service rates.  But they 

assumed that the arrival process follows a Poisson process which implies that the arrival process is 

independent of time.  However, in many practical situations both the arrival and service processes are 

time dependent and the service rate is dependent on the content of the queue.  Very little work has been 

reported in literature regarding queuing models with non-stationary arrival and service processes having 

load dependent service rates which are very useful for analyzing several practical situations.  Hence, in 

this paper we develop and analyze queuing models with non-stationary arrival and service processes 

having load dependent service rates.  First we develop a single server queuing model with time 

dependent arrival and service processes having state dependent service rate.  It is assumed that the 

arrival and service processes follow non-homogeneous Poisson processes with different parameters.  It is 

also assumed that the service rate is linearly dependent on the content of the queue connected to it.  This 

model is extended to the case of two node tandem queuing model with non-stationary arrival and service 

processes having load dependent service rates.  In this model it is assumed that the customers after 

getting service in the first service station join the second queues which are in series.  The arrival process 

follows a non-homogeneous Poisson processes with parameter λ(t).  It is also further assumed in both the 

service stations the service processes follow non-homogeneous Poisson processes with different service 

rates.  In both the models the queue discipline is first in, first out and queue capacity is infinite. 
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                 Using the difference-differential equations, the transient behavior of the models are analyzed by 

deriving the system performance measures such as probability of emptiness of the system, probability of 

emptiness of the marginal queues, the average number of customers in each queue, the utilization of the 

service station, the throughput of nodes, the average waiting time of customers in each queue.  The 

sensitivity analyses of the models are also presented.   Comparative study of the proposed models with 

that of models having Poisson arrival and service processes is also discussed. 

2. SINGLE SERVER NON-HOMOGENEOUS POISSON QUEUING MODEL 

In this section, we briefly present the development of the queuing model, Consider a single server 

Queuing model with the following assumptions. 

a) The arrival process follows a non homogeneous Poisson process with mean arrival rate 

λ(t)=λ1+λ2t. 

b) The service process follows a non homogeneous Poisson process with mean service rate 

µ(t)=µ1+µ2t. 

c) It is further assumed that the service rate is dependent on the number of customers in the queue. 

d) The Queue discipline is first-in-first-out. 

e) The Queue capacity is infinity.        

f) The schematic diagram representing the Queuing model is shown in Figure-1. 

 

        Arrival λ (t)            Queue                                          Server μ(t)   Departure                

 

 

 

 

Fig1: Schematic diagram showing the queuing model. 

 

Let n denote the number of customers in the queue, and Pn(t) be the probability that there are n 

customers in the queue at time t.  The difference- differential equations governing the model are: 

 
𝜕𝑃𝑛(𝑡)

𝜕𝑡
= −(𝜆(𝑡) + 𝑛𝜇(𝑡))𝑃𝑛(𝑡) + 𝜆(𝑡)𝑃𝑛−1(𝑡) + (𝑛 + 1)𝜇(𝑡)𝑃𝑛+1(𝑡) ;   𝑓𝑜𝑟 𝑛 ≥ 1 

  
𝜕𝑃0(𝑡)

𝜕𝑡
= −𝜆(𝑡)𝑃0(𝑡) + 𝜇(𝑡)𝑃1(𝑡)   ;                                          𝑓𝑜𝑟 𝑛 = 0                                    (2.1) 

Let the probability generating function of Pn (t) be  

𝑃(𝑠, 𝑡) = ∑ 𝑃𝑛(𝑡)𝑠𝑛

∞

𝑛=0

                                                                                                                              (2.2) 

Multiplying the equation (2.1) by sn and summing over all n, we obtain 

𝜕𝑃(𝑠, 𝑡)

𝜕𝑡
= 𝜇(𝑡)(1 − 𝑠)

𝜕𝑃(𝑠, 𝑡)

𝜕𝑠
− 𝜆(𝑡)𝑃(𝑠, 𝑡)(1 − 𝑠)                                                                    (2.3) 
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Solving the equation (2.3) by the Lagrangian method, the auxiliary equation is  

𝜕𝑡

1
=

𝜕𝑃

𝜆(𝑡)(𝑠 − 1)𝑃
=

𝜕𝑠

𝜇(𝑡)(𝑠 − 1)
                                                                                                       (2.4) 

To solving the first and third terms in equation (2.4), consider the service rate is linear and time 

dependent and is of the form    𝜇(𝑡) =  𝜇1 + 𝜇2𝑡 .
   

This implies, 

a = (s − 1)e
−(μ1t+μ2

t2

2
)
 ,               where a is an arbitrary constant                                            (2.5) 

Solving the first and second terms in equation (2.4), consider the arrival rate is linear and time dependent 

and is of the form  𝜆(𝑡) = 𝜆1 + 𝜆2𝑡  

𝑏 = 𝑃𝑒𝑥𝑝 [−(𝑠 − 1)𝑒−∫𝜇(𝑡)𝑑𝑡 ∫ 𝜆(𝑡)𝑒∫𝜇(𝑡)𝑑𝑡𝑑𝑡]                                                                           (2.6) 

where b is arbitrary constant. Using the initial conditions Pj(0)=0, P0(0)=1, P0(t)=0;  ∀ 𝑡 > 0 ; the general 

solution of (2.4) gives the probability generating function of the number of customers in the queue at time 

‘t’ as  

𝑃(𝑠, 𝑡) = exp [(𝑠 − 1) + [𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒𝜇1𝑣+𝜇2

𝑣2

2 𝑑𝑣
𝑡

0
+ 𝜆2 ∫ 𝑣𝑒𝜇1𝑣+𝜇2

𝑣2

2 𝑑𝑣
𝑡

0
]]]   ; s<1  (2.7) 

3. CHARACTERSTICS OF THE SINGLE SERVER NON-HOMOGENEOUS POISSON QUEUING 

MODEL 

             Expanding P(s, t) given in equation (2.7) and collecting the constant terms, we obtain the 

probability that the queue is empty as 

𝑃0(𝑡) = exp [−𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣 + 𝜆2 ∫𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0

]]                            (3.1) 

The mean number of customers in the system is  

𝐿(𝑡) = 𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣 + 𝜆2 ∫𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0

]                                            (3.2) 

The mean number of customers in the queue is 

𝐿𝑞(𝑡) = 𝐿(𝑡) − (1 − 𝑃0(𝑡)) 
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           = 𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣 + 𝜆2 ∫𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0

]

− [1 − exp [−𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣 + 𝜆2 ∫𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0

]]] 

(3.3) 

The utilization of the service station is  

𝑈(𝑡) = 1 − 𝑃0(𝑡)                

          = [1 − exp [−𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣+𝜆2 ∫𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0

]]]                   (3.4) 

The throughput of the service station is  

𝑇ℎ𝑝(𝑡) = 𝜇(𝑡)𝑈(𝑡) 

     = ( 𝜇2 + 𝜇2𝑡 ) [1 − exp [−𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣+𝜆2 ∫ 𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0

]]]            (3.5)     

The average waiting time of a customer in the system is 

𝑊(𝑡) =
𝐿(𝑡)

𝑇ℎ𝑃(𝑡)
            

=

𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣 + 𝜆2 ∫ 𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0
]

( 𝜇2 + 𝜇2𝑡 ) [1 − exp [−𝑒
−(𝜇1𝑡+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣+𝜆2 ∫ 𝑣𝑒

(𝜇1𝑣+𝜇2
𝑣2

2
)
𝑑𝑣

𝑡

0

𝑡

0
]]]

        (3.6) 

The variance of the number of customers in the system is 

𝑉(𝑡) = 𝑒
−∫(𝜇1+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒

(𝜇1+𝜇2
𝑣2

2
)

𝑡

0

𝑑𝑣 + 𝜆1 ∫ 𝑒
(𝜇1+𝜇2

𝑣2

2
)

𝑡

0

𝑑𝑣]                                               (3.7) 

The coefficient of variation of the number of customers in the system is 

𝐶𝑉 =
√𝑉(𝑡)

𝐿(𝑡)
∗ 100 

   =[𝑒
−∫(𝜇1+𝜇2

𝑡2

2
)
[𝜆1 ∫ 𝑒

(𝜇1+𝜇2
𝑣2

2
)𝑡

0
𝑑𝑣 + 𝜆1 ∫ 𝑒

(𝜇1+𝜇2
𝑣2

2
)𝑡

0
𝑑𝑣]]

−1
2⁄

∗ 100                                 (3.8)         
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4. NUMERICAL ILLUSTRATION AND SENSITIVITY ANALYSIS 

                       In this paper, the performance of the queuing model is discussed through numerical 

illustration. The customers arrive to the queue in which the arrival and service processes are non-

homogeneous Poisson processes with mean arrival rate λ(t)=λ1+λ2t and service rate µ(t)=µ1+µ2t.   

                Because the characteristics of the queuing model are highly sensitive with respect to time, the 

transient behavior of the model is studied by computing the performance measures with the following 

sets of values for the model parameters 

 t = 2, 3, 4, 5, 6 ;                          λ1=2, 4, 6, 8, 10, 13;                   λ2=1, 4, 5, 7, 8, 9 

µ1=3, 9, 10, 11, 12, 13;               µ2= 1, 2, 2.5, 3, 3.5, 4; 

            The probability of emptiness of the queue, the mean number of customers, the utilization of 

service station, the throughput of the service station, the variance of the number of customers in the 

queue and the coefficient of the variation of the number of customers in the queue are computed for 

different values of the parameters t, λ1, λ2, µ1, µ2 and are presented in Table 1.  The relationships between 

the parameters and performance are shown in Figure 2a, 2b. 

Table 1 

Values of  P0(t), L(t), U(t), ThP(t),W(t),V(t),CV(t) for different values of parameters 

t λ1 λ2 µ1 µ2 P0(t) L(t) U(t) ThP(t) W(t) V(t) CV(t) 

2 2 1 3 1 0.4536 0.7906 0.5464 2.7320 0.2894 0.7906 1.1247 

3 2 1 3 1 0.4368 0.8282 0.5632 3.3791 0.2451 0.8282 1.0988 

4 2 1 3 1 0.4257 0.8540 0.5743 4.0201 0.2124 0.8540 1.0821 

5 2 1 3 1 0.4177 0.8729 0.5823 4.6583 0.1874 0.8729 1.0703 

6 2 1 3 1 0.4117 0.8875 0.5883 5.2947 0.1676 0.8875 1.0615 

2 4 1 3 1 0.2986 1.2088 0.7014 3.5072 0.3447 1.2088 0.9096 

2 6 1 3 1 0.1965 1.6270 0.8035 4.0174 0.4050 1.6270 0.7840 

2 8 1 3 1 0.1293 2.0452 0.8707 4.3533 0.4698 2.0452 0.6992 

2 10 1 3 1 0.0851 2.4635 0.9149 4.5743 0.5385 2.4635 0.6371 

2 13 1 3 1 0.0455 3.0908 0.9545 4.7727 0.6476 3.0908 0.5688 

2 2 4 3 1 0.1484 1.9075 0.8516 4.2578 0.4480 1.9075 0.7240 

2 2 5 3 1 0.1023 2.2798 0.8977 4.4885 0.5079 2.2798 0.6623 

2 2 7 3 1 0.0486 3.0245 0.9514 4.7571 0.6358 3.0245 0.5750 

2 2 8 3 1 0.0335 3.3968 0.9665 4.8326 0.7029 3.3968 0.5426 

2 2 9 3 1 0.0231 3.7691 0.9769 4.8846 0.7716 3.7691 0.5151 

2 2 1 9 1 0.6989 0.3582 0.3011 3.3120 0.1082 0.3582 1.6708 

2 2 1 10 1 0.7199 0.3286 0.2801 3.3609 0.0978 0.3286 1.7445 

2 2 1 11 1 0.7382 0.3035 0.2618 3.4023 0.0892 0.3035 1.8151 

2 2 1 12 1 0.7543 0.2820 0.2457 3.4403 0.0820 0.2820 1.8831 

2 2 1 13 1 0.7685 0.2634 0.2315 3.4731 0.0758 0.2634 1.9486 

2 2 1 3 2 0.5628 0.5748 0.4372 3.0602 0.1878 0.5748 1.3190 

2 2 1 3 2.5 0.6038 0.5045 0.3962 3.1695 0.1592 0.5045 1.4079 

2 2 1 3 3 0.6382 0.4491 0.3618 3.2564 0.1379 0.4491 1.4922 
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2 2 1 3 3.5 0.6673 0.4045 0.3327 3.3270 0.1216 0.4045 1.5723 

2 2 1 3 4 0.6922 0.3678 0.3078 3.3856 0.1087 0.3678 1.6488 
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Figure 2a: The relationships between the parameters and performance measures. 
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Figure 2b: The relationships between the parameters and performance measures. 

                    From Table-1, it is observed that as time (t) increases, the probability of emptiness of the 

queue decreases, the mean number of customers in the queue increases, the utilization of the service 

station increases, the throughput of the service station increases, the average waiting time of the 

customers in the queue decreases, the variance of the number of customers in the queue increases, and 

the coefficient of variation of the number of customers in the queue decreases,  when the other 

parameters are fixed. 

                It is observed that as the arrival rate parameter (λ1) increases, the probability of emptiness of the 

queue decreases, the mean number of customers in the queue increases, the utilization of the service 

station increases, the throughput of the service station increases, the average waiting time of the 

customers in the queue increases, the variance of the number of customers in the queue increases, and the 

coefficient of variation of the number of customers in the queue decreases,  when the other parameters 

are fixed. 

                It is also observed that as the arrival rate parameter (λ2) increases, the probability of emptiness of 

the queue decreases, the mean number of customers in the queue increases, the utilization of the service 

station increases, the throughput of the service station increases, the average waiting time of the 

customers in the queue increases, the variance of the number of customers in the queue increases, and the 

coefficient of variation of the number of customers in the queue decreases,  when the other parameters 

are fixed. 

                It is observed that as the service rate parameter (µ1) increases, the probability of emptiness of the 

queue increases, the mean number of customers in the queue decreases, the utilization of the service 

station decreases, the throughput of the service station increases, the average waiting time of the 

customers in the queue decreases, the variance of the number of customers in the queue decreases, and 

the coefficient of variation of the number of customers in the queue increases,  when the other parameters 

are fixed. 

                It is observed that as the service rate parameter (µ2) increases, the probability of emptiness of the 

queue increases, the mean number of customers in the queue decreases, the utilization of the service 

station decreases, the throughput of the service station increases, the average waiting time of the 

customers in the queue decreases, the variance of the number of customers in the queue decreases, and 

the coefficient of variation of the number of customers in the queue increases,  when the other parameters 

are fixed. 
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                         Sensitivity analysis of the model is performed with respect to the value of time (t), arrival 

rate parameters λ1 and λ2, service rate parameters µ1and µ2 and all parameters together on the mean 

number of customers (L), Utilization (U), the mean delay (W) and the throughput (Thp), are computed 

and presented in Table 2 with variation of -15%, -10%, -5%, 0%, +15%, +10%, +5% on the model 

parameters. 

 

Table 2: Sensitivity Analysis of the model 

(t =4, λ1 =2, λ2 =1, µ1=3, µ2 =1) 

 

Parameter Performance 

measure 

% change in parameters 

-15% -10% -5% 0% 5% 10% 15% 

t=4 L(t) 0.8396 0.8447 0.8495 0.8540 0.8583 0.8622 0.8660 

U(t) 0.5681 0.5703 0.5724 0.5743 0.5761 0.5778 0.5794 

W(t) 0.2309 0.2244 0.2183 0.2124 0.2069 0.2017 0.1967 

Thp(t) 3.6360 3.7642 3.8922 4.0201 4.1479 4.2756 4.4032 

λ1 =2 L(t) 0.8102 0.8248 0.8394 0.8540 0.8686 0.8832 0.8978 

U(t) 0.5552 0.5617 0.5680 0.5743 0.5805 0.5866 0.5925 

W(t) 0.2085 0.2098 0.2111 0.2124 0.2138 0.2151 0.2165 

Thp(t) 3.8867 3.9318 3.9763 4.0201 4.0633 4.1059 4.1478 

λ2=1 L(t) 0.7697 0.7978 0.8259 0.8540 0.8821 0.9102 0.9398 

U(t) 0.5369 0.5497 0.5622 0.5743 0.5861 0.5976 0.6087 

W(t) 0.2048 0.2073 0.2099 0.2124 0.2150 0.2176 0.2202 

Thp(t) 3.7580 3.8478 3.9352 4.0201 4.1027 4.1830 4.2611 

µ1=3 L(t) 0.9139                        0.8930 0.8731 0.8540 0.8358 0.8184 0.8017 

U(t) 0.5990 0.5906 0.5823 0.5743 0.5665 0.5588 0.5514 

W(t) 0.2329 0.2257 0.2189 0.2124 0.2064 0.2006 0.1951 

Thp(t) 3.9238 3.9569 3.9890 4.0201 4.0503 4.0796 4.1080 

µ2=1 L(t) 0.9322 0.9046 0.8786 0.8540 0.8308 0.8087 0.7878 

U(t) 0.6063 0.5953 0.5846 0.5743 0.5643 0.5546 0.5451 

W(t) 0.2402 0.2302 0.2210 0.2124 0.2045 0.1971 0.1901 

Thp(t) 3.8804 3.9290 3.9756 4.0201 4.0628 4.1038 4.1431 

 

                The performance measures are highly affected by time (t) as t increases from -15% to +15%, the 

average number of customers in the queue along with the average delay are increasing.  As λ1 and λ2 are 

increasing the average number of customers in the queue along with the average delay, the utilization 

and throughput are increasing.  Similarly as the service rate parameters µ1 and µ2 decrease from -15% to 

+15%, the same phenomenon is observed. Overall analysis of the parameters reflects that the load 

dependent strategy reduces the congestion in queues, the delay in transmission and improves the quality 

of service.   

5. COMPARATIVE STUDY OF SINGLE SERVER NON-STATIONARY QUEUING MODEL 
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        The comparative study between the non-homogeneous and homogeneous Poisson arrival and 

service rates is presented in this session.  The computed performance measure of both models are 

presented in the Table-3 for different values of t = 2, 3, 4, 5, 6 seconds. 

Table 3: Comparative study if model with non-homogeneous and homogeneous Poisson Arrival and 

Service rates 

t Parameter 

measure 

Non-homogeneous arrival 

and service process 

Homogeneous arrival 

and service process 

 

Difference Percentage of 

Variation 

2 L(t) 1.20878 1.3303 0.12152 9.134782 

U(t) 0.70144 0.73553 0.03409 4.634753 

W(t) 0.34466 0.60275 0.25809 42.81875 

3 L(t) 1.17175 1.33317 0.16142 12.10798 

U(t) 0.69018 0.73636 0.04618 6.271389 

W(t) 0.28296 0.6035 0.32054 53.1135 

4 L(t) 1.14596 1.33333 0.18737 14.05279 

U(t) 0.68209 0.7364 0.05431 7.375068 

W(t) 0.24001 0.60353 0.36352 60.2323 

5 L(t) 1.12705 1.33333 0.20628 15.47104 

U(t) 0.67601 0.7364 0.06039 8.200706 

W(t) 0.2084 0.60353 0.39513 65.46982 

6 L(t) 1.11254 1.33333 0.22079 16.55929 

U(t) 0.67128 0.7364 0.06512 8.84302 

W(t) 0.18415 0.60353 0.41938 69.48785 

 

                  From Table 3, it is observed that as time increases the percentage of variation of the 

performance measures between the two models are increasing. The model with homogeneous Poisson 

arrival and service process has more L(t) ant W(t) than the model with non-homogeneous Poisson arrival 

and service processes. It is also observed that the assumption of non-homogeneous Poisson arrival and 

service processes has a significant influence on all the performance measures of the queuing model. As t 

increases the percentage of variation is increasing.  Time also has a significant effect on the system 

performance and the proposed model can predict the performance more accurately. 

6. TWO NODE TANDEM NON-HOMOGENEOUS POISSON QUEUING MODEL 

                   Consider a queuing system in which the customers arrive to the first queue and after getting 

service through the first server they join the second queue, which is serially connected to the first service 

station. The arrival of the customers follow non-homogeneous Poisson process with mean arrival rate 

λ(t)= λ1+ λ2t. and the service processes in the first and second service stations follow non-homogeneous 

Poisson processes with mean service rates μ1(t) = α1+β1t and μ2(t) = α2+β2t respectively.  The schematic 

diagram representing the queuing model is shown in Figure-3. 

                               n1                                                n2 
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               λ(t)                   µ1(t)                                            µ2(t) 

 

Figure -3: Schematic diagram of the queuing model 

 

               Let  𝑃𝑛1𝑛2
(𝑡) be the probability that there are n1 customers in the first queue and n2 customers in 

the second queue at time’t’. The difference differential equations governing the model are:  

      
𝜕𝑃𝑛1,𝑛2(𝑡)

𝜕𝑡
= −(𝜆(𝑡) + 𝑛1𝜇1(𝑡) + 𝑛2𝜇2(𝑡))𝑃𝑛1,𝑛2

(𝑡) + 𝜆(𝑡)𝑃𝑛1−1,𝑛2
(𝑡)  

 

                       +(𝑛1 + 1)𝜇1(𝑡)𝑃𝑛1+1,𝑛2−1(𝑡) + (𝑛2 + 1)𝜇2(𝑡)𝑃𝑛1,𝑛2+1(𝑡) ;        ∀ 𝑛1, 𝑛2 ≥ 0 

 𝜕𝑃𝑛1,0
(𝑡)

𝜕𝑡
= −(𝜆(𝑡) + 𝑛1𝜇1(𝑡))𝑃𝑛1,0

(𝑡) + 𝜆(𝑡)𝑃𝑛1−1,0(𝑡) + 𝜇2(𝑡)𝑃𝑛1,1(𝑡) ; 

∀ 𝑛1 > 0, 𝑛2 = 0 

   𝜕𝑃0,𝑛2
(𝑡)

𝜕𝑡
= −(𝜆(𝑡) + 𝑛2𝜇2(𝑡))𝑃0,𝑛2

(𝑡) + 𝜇1(𝑡)𝑃1,𝑛2−1(𝑡) + (𝑛2 + 1)𝜇2(𝑡)𝑃0,𝑛2+1(𝑡);  

∀ 𝑛2 > 0, 𝑛1 = 0   

 
𝜕𝑃0,0(𝑡)

𝜕𝑡
= −𝜆(𝑡)𝑃0,0(𝑡) + 𝜇2(𝑡)𝑃0,1(𝑡);   𝑛1 = 0, 𝑛2 = 0                                               (6.1) 

The probability generating function of 𝑃𝑛1𝑛2
(𝑡) is  

𝑃(𝑆1, 𝑆2, 𝑡) = ∑ ∑ 𝑃𝑛1,𝑛2

∞

𝑛2=0

∞

𝑛1=0

(𝑡)𝑠1
𝑛1𝑠2

𝑛2                                                                                                (6.2) 

Multiplying the equation (6.1) with 𝑠1
𝑛1 , 𝑠2

𝑛2

 
and summing over all n1,n2 , we get 

𝜕𝑃(𝑡)

𝜕𝑡
= − ∑ ∑ (𝜆(𝑡) +

∞

𝑛2=0

∞

𝑛1=0

𝑛1𝜇1(𝑡) + 𝑛2𝜇2(𝑡)) 𝑃𝑛1,𝑛2
(𝑡)𝑠1

𝑛1𝑠2
𝑛2 + ∑ ∑ 𝜆(𝑡)

∞

𝑛2=0

∞

𝑛1=0

𝑃𝑛1−1,𝑛2
(𝑡)𝑠1

𝑛1𝑠2
𝑛2

+ ∑ ∑ (𝑛1 + 1)

∞

𝑛2=0

𝜇1(𝑡)𝑃𝑛1+1,𝑛2−1(𝑡)𝑠1
𝑛1𝑠2

𝑛2

∞

𝑛1=0

+ ∑ ∑ (𝑛2 + 1)𝜇2(𝑡)

∞

𝑛2=0

𝑃𝑛1,𝑛2+1(𝑡)𝑠1
𝑛1𝑠2

𝑛2

∞

𝑛1=0

;                                                        

 

(6.3) 

After simplifying, we get 

𝜕𝑃(𝑆1, 𝑆2, 𝑡)

𝜕𝑡
= 𝜇1(𝑡)(𝑠2 − 𝑠1)

𝜕𝑃(𝑠1, 𝑠2, 𝑡)

𝜕𝑠1

+ 𝜇2(𝑡)(1 − 𝑠2)
𝜕𝑃(𝑠1, 𝑠2, 𝑡)

𝜕𝑠2

 

                        −𝜆(𝑡)(1 − 𝑠1)𝑃(𝑠1, 𝑠2, 𝑡)                                                                                                (6.4) 

 

Solving the equation (6.4) by Lagrangian’s method, the auxiliary equations are 

𝑑𝑡

1
=

𝑑𝑠1

−𝜇1(𝑡)(𝑠2 − 𝑠1)
=

𝑑𝑠2

−𝜇2(𝑡)(1 − 𝑠2)
=

𝑑𝑃

−𝜆(𝑡)(1 − 𝑠1)𝑃(𝑠1, 𝑠2, 𝑡)
                                    (6.5) 
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Let the arrival rate and service rates are linear and time dependent and is of the form 

𝜆(𝑡) = 𝜆1 + 𝜆2𝑡; 

𝜇1(𝑡) = 𝛼1 + 𝛽1𝑡;                      0 ≤ 𝛽1 ≤ 1 

𝑎𝑛𝑑 𝜇2(𝑡) = 𝛼2 + 𝛽2𝑡;             0 ≤ 𝛽2 ≤ 1, 𝛼1 ≠ 𝛼2 

 

Solving the first and third terms in equation (6.5), we get 

𝑎 = (𝑠2 − 1)𝑒−∫𝜇2(𝑡)𝑑𝑡                                                                                                                            (6.6)  

Solving the first and second terms in equation (6.5), we get  

 

𝑏 = 𝑠1𝑒
−∫𝜇1(𝑡)𝑑𝑡 + (𝑠2 − 1)𝑒−∫𝜇2(𝑡)𝑑𝑡(∫ 𝜇1(𝑡)𝑒

∫[𝜇2(𝑡)−𝜇1(𝑡)]𝑑𝑡 𝑑𝑡) + ∫ 𝜇1(𝑡)𝑒
−∫𝜇1(𝑡)𝑑𝑡𝑑𝑡) 

(6.7) 

Solving the first and fourth terms in equation (6.5), we get  

 

𝑐 = 𝑃(𝑠1, 𝑠2, 𝑡) exp (− [𝑠1𝑒
−∫𝜇1(𝑡)𝑑𝑡 + (𝑠2 − 1)𝑒−∫𝜇2(𝑡)𝑑𝑡 (∫𝜇1(𝑡)𝑒

∫[𝜇2(𝑡)−𝜇1(𝑡)]𝑑𝑡 𝑑𝑡)  

+ ∫𝜇1(𝑡)𝑒
−∫𝜇1(𝑡)𝑑𝑡𝑑𝑡] [∫ 𝜆(𝑡) 𝑒∫𝜇1(𝑡)𝑑𝑡])

+ [(𝑠2 − 1)𝑒−∫𝜇2(𝑡)𝑑𝑡 ∫𝜆(𝑡) 𝑒∫𝜇1(𝑡)𝑑𝑡 (∫𝜇1(𝑡)𝑒
∫[𝜇2(𝑡)−𝜇1(𝑡)]𝑑𝑡 𝑑𝑡) 𝑑𝑡]

+ [∫𝜆(𝑡) 𝑒∫𝜇1(𝑡)𝑑𝑡(𝜇1(𝑡)𝑒
−∫𝜇1(𝑡)𝑑𝑡𝑑𝑡)𝑑𝑡] + ∫𝜆(𝑡)𝑑𝑡                                 

(6.8) 

   Where a, b and c are arbitrary constants. Using the initial conditions P00(0)=1, P00(t)=0, ∀ t >0.

 

The probability generating function of the number of customers in the first queue and the number of 

customers in the second queue at time‘t’ is  

𝑃(𝑠1, 𝑠2, 𝑡) = exp

[
 
 
 
 
 

𝜆1

[
 
 
 
 

(𝑠1 − 1)𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)𝑡

0
𝑑𝜗

𝜆1

−
1

𝛼1

)

+ (𝑠2 − 1)𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ (𝑠2 − 1  )𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

(

 
 ∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

)

 
 

]
 
 
 
 

]
 
 
 
 
 

         

(6.9) 

7. CHARACTERSTICS OF THE TWO NODE TANDEM NON-HOMOGENEOUS POISSON 

QUEUING MODEL 
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      Expanding P(s1,s2,t) given in equation (9) and collecting the constant terms, we obtain the probability 

that the queue is empty as  

𝑃0,0(𝑡) = 𝑒𝑥𝑝

[
 
 
 
 
 

−𝜆1

[
 
 
 
 

𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)𝑡

0
𝑑𝜗

𝜆1

−
1

𝛼1

) + 𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ 𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

(

 
 ∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

)

 
 

]
 
 
 
 

]
 
 
 
 
 

                

(7.1) 

Taking s2 = 1 in P(s1,s2,t) , we obtain the probability generating function of the first queue size as 

P(s1,t)=𝑒𝑥𝑝 [𝜆1(𝑠1 − 1)𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1+𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡
0

𝜆1
−

1

𝛼1
)]                                        (7.2)  

By expanding P(s1,t), and collecting the constant terms, we obtain the probability that the first queue is 

empty as 

𝑃0.(𝑡) = 𝑒𝑥𝑝 [−𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

)]                                     (7.3)

 The mean number of customers in the first queue is  

 𝐿1(𝑡) = 𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1+𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2 )
𝑑𝜗

𝑡
0

𝜆1
−

1

𝛼1
)                                                             (7.4)

 The utilization of the first service station is 

𝑈1(𝑡) = 1 − 𝑃0.(𝑡)

  
            = 1 − 𝑒𝑥𝑝 [−𝜆1𝑒

−(𝛼1𝑡+𝛽1
𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

)]                             (7.5)
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_

The throughput of the first service station is 

 

𝑇ℎ𝑃1(𝑡) = 𝜇1(𝑡)𝑈1(𝑡) 

  = (𝛼1 + 𝛽1𝑡)

[
 
 
 

1 − 𝑒𝑥𝑝 [−𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1+𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2 )
𝑑𝜗

𝑡
0

𝜆1
−

1

𝛼1
)]

]
 
 
 

                          (7.6)  

The average waiting time of a customer in the first queue is 

𝑊1(𝑡) =
𝐿1(𝑡)

𝑇ℎ𝑃1(𝑡)
 

 =

𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2 )

(

 
 ∫ (𝜆1+𝜆2𝜗)𝑒

(𝛼1𝜗+𝛽1
𝜗2

2 )
𝑑𝜗

𝑡
0

𝜆1
−

1

𝛼1

)

 
 

(𝛼1+𝛽1𝑡)

[
 
 
 
 
 

1−𝑒𝑥𝑝

[
 
 
 
 

−𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2 )

(

 
 ∫ (𝜆1+𝜆2𝜗)𝑒

(𝛼1𝜗+𝛽1
𝜗2

2 )𝑡
0

𝜆1
−

1

𝛼1

)

 
 

]
 
 
 
 

]
 
 
 
 
 
                                                                   (7.7) 

The variance of the number of customers in the first queue is  

𝑉1(𝑡) = 𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

)                                                     (7.8) 

The coefficient of variation of the number of customers in the first queue is 

𝐶𝑉1(𝑡) =
√𝑉1(𝑡)

𝐿1(𝑡)
 

             = [𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

)]

−1
2

                                           (7.9) 

Taking s1 = 1 in P(s1,s2,t) , we obtain the probability generating function for the Second queue size as 

𝑃(𝑠2, 𝑡) = 𝑒𝑥𝑝

[
 
 
 
 

𝜆1 [(𝑠2 − 1)𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2−𝛼1
−

∫ (𝛼1+𝛽1𝜗)𝑒
(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)

𝜗2

2 𝑑𝜗
𝑡
0

𝛼1
) +                   (𝑠2 −

1  )𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1+𝜆2𝜗)𝑒
𝛼2𝜗+𝛽2

𝜗2

2 𝑑𝜗
𝑡
0 ∫ (𝛼1+𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡
0

𝜆1
−

                   
∫ (𝜆1+𝜆2𝜗)𝑒

𝛼1𝜗+𝛽1
𝜗2

2
𝑡
0 (∫ (𝛼1+𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡
0 )𝑑𝜗

𝜆1
−

1

𝛼2
)]

]
 
 
 
 

                              (7.10)         
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By expanding P(s2,t), and collecting the constant terms, we obtain the probability that the first queue is 

empty as 

𝑃.0(𝑡) = 𝑒𝑥𝑝

[
 
 
 
 
 

−𝜆1

[
 
 
 
 
 

𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ 𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

[
 
 
 
 
∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

]
 
 
 
 

]
 
 
 
 
 

]
 
 
 
 
 

                        (7.11) 

The mean number of customers in the Second queue is  

𝐿2(𝑡) = 𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ 𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

[
 
 
 
 
∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

]
 
 
 
 

                          (7.12)  

The utilization of the Second service station is  

𝑈2(𝑡) = 1 − 𝑃.0(𝑡) 
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= 1 − 𝑒𝑥𝑝

[
 
 
 
 
 

−𝜆1

[
 
 
 
 
 

𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ 𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

[
 
 
 
 
∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

]
 
 
 
 

]
 
 
 
 
 

]
 
 
 
 
 

                       (7.13)  

The throughput of the Second service station is  

𝑇ℎ𝑃2(𝑡) = 𝜇2(𝑡)𝑈2(𝑡) 

= (𝛼2 + 𝛽2𝑡)

[
 
 
 
 
 

1 − 𝑒𝑥𝑝

[
 
 
 
 
 

−𝜆1

[
 
 
 
 
 

𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ 𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

[
 
 
 
 
∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

]
 
 
 
 

]
 
 
 
 
 

]
 
 
 
 
 

]
 
 
 
 
 

                          (7.14) 

The average waiting time of a customer in the Second queue is 

𝑊2(𝑡) =
𝐿2(𝑡)

𝑇ℎ𝑃2(𝑡)
 

Where, L2(t) and ThP2(t) are given in equation (7.12) and (7.14) respectively                         (7.15) 

The variance of the number of customers in the Second queue is  

𝑉2(𝑡) = 𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

) 
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                              +𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

[
 
 
 
 
∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

      

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

]
 
 
 
 

                  (7.16)          

The coefficient of variation of the number of customers in the Second queue is 

𝐶𝑉2(𝑡) =
√𝑉2(𝑡)

𝐿2(𝑡)
 

              =

[
 
 
 
 
 

𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2 − 𝛼1

−
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝛼1

)

+ 𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)

[
 
 
 
 
∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1

𝜗2

2 𝑑𝜗
𝑡

0
∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0

𝜆1

−

∫ (𝜆1 + 𝜆2𝜗)𝑒𝛼1𝜗+𝛽1
𝜗2

2
𝑡

0
(∫ (𝛼1 + 𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡

0
)𝑑𝜗

𝜆1

−
1

𝛼2

]
 
 
 
 

]
 
 
 
 
 

−1
2

                (7.17)     

The mean number of customers in the queuing system at time t is 

𝐿(𝑡) = 𝐿1(𝑡) + 𝐿2(𝑡) 

      = 𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

) 

+𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2−𝛼1
 −

∫ (𝛼1+𝛽1𝜗)𝑒
(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)

𝜗2

2 𝑑𝜗
𝑡
0

𝛼1
) +

𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
[
∫ (𝜆1+𝜆2𝜗)𝑒

𝛼1𝜗+𝛽1
𝜗2

2 𝑑𝜗
𝑡
0 ∫ (𝛼1+𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡
0

𝜆1
−

∫ (𝜆1+𝜆2𝜗)𝑒
𝛼1𝜗+𝛽1

𝜗2

2
𝑡
0 (∫ (𝛼1+𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡
0 )𝑑𝜗

𝜆1
−

1

𝛼2
]                                                      (7.18) 

The variance of the number of customers in the system is 
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𝑉(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡) 

 = 𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

) 

+𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
(

1

𝛼2−𝛼1
 −

∫ (𝛼1+𝛽1𝜗)𝑒
(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)

𝜗2

2 𝑑𝜗
𝑡
0

𝛼1
) +

𝜆1𝑒
−(𝛼2𝑡+𝛽2

𝑡2

2
)
[
∫ (𝜆1+𝜆2𝜗)𝑒

𝛼1𝜗+𝛽1
𝜗2

2 𝑑𝜗
𝑡
0 ∫ (𝛼1+𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡
0

𝜆1
−

∫ (𝜆1+𝜆2𝜗)𝑒
𝛼1𝜗+𝛽1

𝜗2

2
𝑡
0 (∫ (𝛼1+𝛽1𝜗)𝑒

(𝛼2−𝛼1)𝜗+(𝛽2−𝛽1)
𝜗2

2 𝑑𝜗
𝑡
0 )𝑑𝜗

𝜆1
−

1

𝛼2
]                                                      (7.19) 

The mean number of customers waiting in the queue is 

𝐿𝑞(𝑡) = 𝐿1(𝑡) − (1 − 𝑃0.(𝑡)) + 𝐿2(𝑡) + (1 − 𝑃.0(𝑡)) 

            = 𝜆1𝑒
−(𝛼1𝑡+𝛽1

𝑡2

2
)
(

∫ (𝜆1 + 𝜆2𝜗)𝑒
(𝛼1𝜗+𝛽1

𝜗2

2
)
𝑑𝜗

𝑡

0

𝜆1

−
1

𝛼1

) 

           +𝑒𝑥𝑝 [−𝜆1𝑒
−(𝛼1𝑡+𝛽1
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]
 
 
 
 

− 2                                           (7.20) 

8. NUMERICAL ILLUSTRATION AND SENSITIVITY ANALYSIS 

                  In this section, the performance of the queuing model is discussed through numerical 

illustration. The characteristics of the queuing model are highly sensitive with respect to time, the 

transient behavior of the model is studied by computing the performance measures with the following 

sets of values for the model parameters. 

t = 0.11, 0.13, 0.15, 0.17   λ1 =4, 6, 8, 9, 9.5   λ2 =5, 5.5, 5.9, 6.4, 6.8   α1 = 9, 10, 10.2, 10.4, 10.6    

β1 = 6, 8, 10, 13, 16          α2 = 11, 11.4, 11.8, 12.2, 12.6          β2 = 11, 15, 20, 25, 30 

                 For different values of the parameters t, λ1, λ2, α1, β1, α2, and  β2 , the computed values of the 

probability of emptiness of the queue, the mean number of customers, the utilization of the service 

station, the throughput of the service station, the variance of the number of customers in the system and 

the coefficient of variation of the number of customers in the system are presented in Table 4. The 

relationship between the parameters and the performance measures are represented in the Figures 4a, 4b. 

               From Table 4, it is observed that as time (t) varies from 0.11 to 0.17, the probability of emptiness 

of the queuing system increases from 0.63850 to 0.67847 .Similarly, the probability of emptiness of the first 

queue decreases from 0.87268 to 0.74922 and the probability of emptiness of the second queue increases 

from 0.73165 to 0.90557, the mean number of customers in the first queue increases from 0.13618 to 

0.28872, and in the second queue it decreases from 0.31246 to 0.09919 and the mean number of customers 

in the system decreases from 0.44864 to 0.38791, when all other parameters are fixed. 

Table.4 

Values of P00(t), P0.(t), P.0(t), L1(t), L2(t) for different values of parameters 

T λ1 λ2 α1 β1 α2 β2 P00(t) P0.(t) P.0(t) L1(t) L2(t) L(t) 

0.11 4 5 9 6 11 11 0.63850 0.87268 0.73165 0.13618 0.31246 0.44864 

0.13 4 5 9 6 11 11 0.66026 0.82222 0.80301 0.19574 0.21938 0.41512 

0.15 4 5 9 6 11 11 0.67287 0.78183 0.86063 0.24612 0.15009 0.39621 

0.17 4 5 9 6 11 11 0.67847 0.74922 0.90557 0.28872 0.09919 0.38791 

0.17 6 5 9 6 11 11 0.57143 0.66310 0.86176 0.41083 0.14878 0.55961 

0.17 7 5 9 6 11 11 0.52442 0.62383 0.84065 0.47188 0.17358 0.64546 

0.17 8 5 9 6 11 11 0.48127 0.58688 0.82006 0.53294 0.19838 0.73132 
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0.17 9 5 9 6 11 11 0.44168 0.55212 0.79997 0.59399 0.22318 0.81717 

0.17 9.5 5.5 9 6 11 11 0.42124 0.53314 0.79012 0.62897 0.23557 0.86454 

0.17 9.5 5.9 9 6 11 11 0.41975 0.53125 0.79012 0.63253 0.23557 0.86810 

0.17 9.5 6.4 9 6 11 11 0.41788 0.52889 0.79012 0.63698 0.23557 0.87255 

0.17 9.5 6.8 9 6 11 11 0.41640 0.52701 0.79012 0.64054 0.23557 0.87611 

0.17 9.5 6.8 10 6 11 11 0.21728 0.52671 0.41252 0.64111 0.88547 1.52658 

0.17 9.5 6.8 10.2 6 11 11 0.15843 0.52728 0.30047 0.64002 1.20240 1.84242 

0.17 9.5 6.8 10.4 6 11 11 0.09386 0.52802 0.17775 0.63862 1.72737 2.36599 

0.17 9.5 6.8 10.6 6 11 11 0.03306 0.52892 0.06250 0.63692 2.77264 3.40956 

0.17 9.5 6.8 10.6 8 11 11 0.03333 0.53272 0.06257 0.62977 2.77139 3.40116 

0.17 9.5 6.8 10.6 10 11 11 0.03361 0.53649 0.06265 0.62271 2.77020 3.39291 

0.17 9.5 6.8 10.6 13 11 11 0.03402 0.54209 0.06275 0.61233 2.76854 3.38087 

0.17 9.5 6.8 10.6 16 11 11 0.03442 0.54762 0.06285 0.60218 2.76701 3.36919 

0.17 9.5 6.8 10.6 16 11.4 11 0.17831 0.54762 0.32561 0.60218 1.12206 1.72424 

0.17 9.5 6.8 10.6 16 11.8 11 0.30377 0.54762 0.55471 0.60218 0.58931 1.19149 

0.17 9.5 6.8 10.6 16 12.2 11 0.39236 0.54762 0.71648 0.60218 0.33340 0.93558 

0.17 9.5 6.8 10.6 16 12.6 11 0.45405 0.54762 0.82914 0.60218 0.18736 0.78954 

0.17 9.5 6.8 10.6 16 12.6 15 0.46089 0.54762 0.84163 0.60218 0.17241 0.77459 

0.17 9.5 6.8 10.6 16 12.6 20 0.46897 0.54762 0.85638 0.60218 0.15504 0.75722 

0.17 9.5 6.8 10.6 16 12.6 25 0.47655 0.54762 0.87022 0.60218 0.13901 0.74119 

0.17 9.5 6.8 10.6 16 12.6 30 0.48364 0.54762 0.88317 0.60218 0.12423 0.72641 
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Figure 4a: The relationship between the parameters and performance measures 

                 It is further observed that as the arrival rate parameter (λ1) varies from 6 to 9, the probability of 

emptiness of the queuing system decreases from 0.57143 to 0.44168 .Similarly, the probability of 

emptiness of the first and second queues decrease from 0.66310 to 0.55212 and 0.86176 to 0.79997 

respectively, the mean number of customers in the first and second queues increase from 0.41083 to 

0.59399 and 0.14878 to 0.22318 respectively, and the mean number of customers in the system increases 

from 0.55961 to 0.81717, when all other parameters are fixed. 

                 It is also observed that as the arrival rate parameter (λ2) varies from 5.5 to 6.8, the probability of 

emptiness of the queuing system decreases from 0.42124 to 0.41640.  Similarly, the probability of 

emptiness of the first queue decreases from 0.53314 to 0.52701, and in the second queue it remains 

constant, the mean number of customers in the first queue increases from 0.62897 to 0.64054, and in the 

second queue it remains constant, the mean number of customers in the system increases from 0.86454 to 

0.87611, when all other parameters are fixed. 

             It is observed that as the service rate parameter (α1) varies from 10 to 10.6, the probability of 

emptiness of the queuing system decreases from 0.21728 to 0.03306. Similarly, the probability of 

emptiness of the first queue increases from 0.52671 to 0.52892, the probability of emptiness of the second 

queue decreases from 0.41252 to 0.06250 and the mean number of customers in the first queue decreases 

from 0.64111 to 0.63692, the mean number of customers in the second queue increases from 0.88547 to 
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2.77264 and the mean number of customers in the system increases from 1.52658 to 3.40956, when all 

other parameters are fixed. 

                 It is also observed that as the service rate parameter (β1) varies from 8 to 16, the probability of 

emptiness of the queuing system increases from 0.03333 to 0.03442.  Similarly, the probability of 

emptiness of the first queue increases from 0.53272 to 0.54762, the probability of emptiness of the second 

queue increases from 0.06257 to 0.06285 and the mean number of customers in the first queue decreases 

from 0.62977 to 0.60218, the mean number of customers in the second queue decreases from 2.77139 to 

2.76701 and the mean number of customers in the system decreases from 3.40116 to 3.36919, when all 

other parameters are fixed. 

             It is observed that as the service rate parameter (α2) varies from 11.4 to 12.6, the probability of 

emptiness of the queuing system increases from 0.17831 to 0.45405.  Similarly, the probability of 

emptiness of the second queue increases from 0.32561 to 0.82914, and in the first queue it remains 

constant, the mean number of customers in the second queue decreases from 1.12206 to 0.18736, and in 

the first queue it remains constant, the mean number of customers in the system decreases from 1.72424 

to 0.78954, when all other parameters are fixed. 

                It is also observed that as the service rate parameter (β2) varies from 15 to 30, the probability of 

emptiness of the queuing system increases from 0.46089 to 0.48364. Similarly, the probability of emptiness 

of the second queue increases from 0.84163 to 0.88317, and in the first queue remains constant, the mean 

number of customers in the second queue decreases from 0.17241 to 0.12423, and in the first queue 

remains constant, the mean number of customers in the system decreases from 0.77459 to 0.72641, when 

all other parameters are fixed. 

            From Table 5, as time (t) varies from 0.11 to 0.17, the utilization of the first service station, the 

throughput of the first service station, and the average waiting time of a customer in the first queue 

increase from 0.12732 to 0.25078, 1.22987 to 2.51280 and 0.11073 to 0.11490 respectively. But in the second 

queue they decrease from 0.26835 to 0.09443, 3.27659 to 1.21530 and 0.09536 to 0.0.08162 respectively. 

When all other parameters are fixed. It is observed that the utilization of the service stations, throughput 

of the service stations and the waiting time of customers in each queue are highly sensitive with respect 

to time. 

Table 5 

Values of U1(t), U2(t), Thp1(t), Thp2(t), W1(t), W2(t) for different values of parameters 

T λ1 λ2 α1 β1 α1 β2 U1(t) U2(t) Thp1(t) Thp2(t) W1(t) W2(t) 

0.11 4 5 9 6 11 11 0.12732 0.26835 1.22987 3.27659 0.11073 0.09536 

0.13 4 5 9 6 11 11 0.17778 0.19699 1.73866 2.44854 0.11258 0.08960 

0.15 4 5 9 6 11 11 0.21817 0.13937 2.15987 1.76301 0.11395 0.08513 

0.17 4 5 9 6 11 11 0.25078 0.09443 2.51280 1.21530 0.11490 0.08162 

0.17 6 5 9 6 11 11 0.33690 0.13824 3.37574 1.77921 0.12170 0.08362 

0.17 7 5 9 6 11 11 0.37617 0.15935 3.76927 2.05085 0.12519 0.08464 

0.17 8 5 9 6 11 11 0.41312 0.17994 4.13949 2.31584 0.12875 0.08566 

0.17 9 5 9 6 11 11 0.44788 0.20003 4.48778 2.57434 0.13236 0.08669 
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0.17 9.5 5.5 9 6 11 11 0.46686 0.20988 4.67794 2.70120 0.13445 0.08721 

0.17 9.5 5.9 9 6 11 11 0.46875 0.20988 4.69692 2.70120 0.13467 0.08721 

0.17 9.5 6.4 9 6 11 11 0.47111 0.20988 4.72056 2.70120 0.13494 0.08721 

0.17 9.5 6.8 9 6 11 11 0.47299 0.20988 4.73939 2.70120 0.13515 0.08721 

0.17 9.5 6.8 10 6 11 11 0.47329 0.58748 5.21569 7.56085 0.12292 0.11711 

0.17 9.5 6.8 10.2 6 11 11 0.47272 0.69953 5.30391 9.00291 0.12067 0.13356 

0.17 9.5 6.8 10.4 6 11 11 0.47198 0.82225 5.38999 10.58234 0.11848 0.16323 

0.17 9.5 6.8 10.6 6 11 11 0.47108 0.93750 5.47398 12.06567 0.11635 0.22980 

0.17 9.5 6.8 10.6 8 11 11 0.46728 0.93743 5.58871 12.06466 0.11269 0.22971 

0.17 9.5 6.8 10.6 10 11 11 0.46351 0.93735 5.70122 12.06371 0.10922 0.22963 

0.17 9.5 6.8 10.6 13 11 11 0.45791 0.93725 5.86588 12.06236 0.10439 0.22952 

0.17 9.5 6.8 10.6 16 11 11 0.45238 0.93715 6.02573 12.06112 0.09993 0.22942 

0.17 9.5 6.8 10.6 16 11.4 11 0.45238 0.67439 6.02573 8.94917 0.09993 0.12538 

0.17 9.5 6.8 10.6 16 11.8 11 0.45238 0.44529 6.02573 6.08714 0.09993 0.09681 

0.17 9.5 6.8 10.6 16 12.2 11 0.45238 0.28352 6.02573 3.98907 0.09993 0.08358 

0.17 9.5 6.8 10.6 16 12.6 11 0.45238 0.17086 6.02573 2.47232 0.09993 0.07578 

0.17 9.5 6.8 10.6 16 12.6 15 0.45238 0.15837 6.02573 2.39931 0.09993 0.07186 

0.17 9.5 6.8 10.6 16 12.6 20 0.45238 0.14362 6.02573 2.29784 0.09993 0.06747 

0.17 9.5 6.8 10.6 16 12.6 25 0.45238 0.12978 6.02573 2.18678 0.09993 0.06357 

0.17 9.5 6.8 10.6 16 12.6 30 0.45238 0.11683 6.02573 2.06783 0.09993 0.06008 
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Figure 4b: The relationship between the parameters and performance measure 

                It is further observed that as the arrival rate parameter (λ1) varies from 6 to 9, the utilization of 

the service station, the throughput of service station, and the average waiting time of a customers in the 

first and second queue increase from 0.33690 to 0.44788, 0.13824 to 0.20003, 3.37574 to 4.48778, 1.77921 to 

2.57434, 0.12170 to 0.13236 and 0.08362 to 0.08669 respectively, when all other parameters are fixed. 

               It is also observed that as the arrival rate parameter (λ2) varies from 5.5 to 6.8 , the utilization of 

the first service station, the throughput of the first service station, and the average waiting time of a 

customers in the first queue increase from 0.46686 to 0.47299, 4.67794 to 4.73939 and 0.13445 to 0.13515 

respectively. 

           It is observed that as the service rate parameter (α1) varies from 10 to 10.6, the utilization of the first 

service station decreases from 0.47329 to 0.47108, the utilization of the second service station increases 

from 0.58748 to 0.93750, the throughput of the first and second service stations increase from 5.21569 to 

5.47398, 7.56085 to 12.06567 respectively, and the average waiting time of a customers in the first queue 
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decreases from 0.12292 to 0.11635, the average waiting time of a customers in the second queue increases 

from  0.13356 to 0.22980, when all other parameters are fixed. 

         It is also observed that as the service rate parameter (β1) varies from 8 to 16, the utilization of the first 

and second service stations decrease from 0.46728 to 0.45238 and 0.93743 to 0.93715 respectively, the 

throughput of the first service station increases from 5.58871 to 6.02573 and the second service station 

decreases from 12.06466 to 12.06112, and the average waiting time of a customers in the first and second 

queue decrease from 0.11269 to 0.09993 and 0.22971 to 0.22942 respectively, when all other parameters are 

fixed. 

                 It is observed that as the service rate parameter (α2) varies from 11.4 to 12.6, the utilization of the 

second service station, the throughput of the second service station, and the average waiting time of a 

customer in the second queue decrease from 0.67439 to 0.17086, 8.94917 to 2.47232 and 0.12538 to 0.07578 

respectively.  

              It is also observed that as the service rate parameter (β2) varies from 15 to 30, the utilization of the 

second service station, the throughput of the second service station, and the average waiting time of a 

customer in the second queue decrease from 0.15837 to 0.11683, 2.39931 to 2.06783 and 0.07186 to 0.06008 

respectively. And the performance measures remain constant in first queue, when all other parameters 

are fixed. 

           From Table 6, as time (t) varies from 0.11 to 0.17, the variance of the number of customers in first 

queue increases from 0.13618 to 0.28872, in second queue it decreases from 0.31246 to 0.09919 and in the 

system it decreases from 0.44864 to 0.38791, the coefficient of variation of number of customers in first 

queue decreases from 2.70983 to 1.86106 and in second queue it increases from 1.49297 to 1.60559, when 

all other parameters are fixed. It is observed that the variance and coefficient of variation of number of 

customers in each queue are highly sensitive with respect to time. 

            It is further observed that as the arrival rate parameter (λ1) varies from 6 to 9, the variance of the 

number of customers in each queue and in the system increase from 0.41083 to 0.59399, 0.14878 to 0.22318 

and 0.55961 to 0.81717 respectively the coefficient of variation of number of customers in each queue 

decrease from 1.56016 to 1.29750 and 1.33677 to 1.10623 respectively for first and second queue, when all 

other parameters are fixed. 

          It is also observed that as the arrival rate parameter (λ2) varies from 5.5 to 6.8, the variance of the 

number of customers in first queue increases from 0.62897 to 0.64054, in second queue remains be 

constant and in the system it increases from 0.86454 to 0.87611, the coefficient of variation of number of 

customers in each queue decreases from 1.26091 to 1.24947 and 1.07549 to 1.06836 for first and second 

queue respectively, when all other parameters are fixed. 

             It is observed that as the service rate parameter (α1) varies from 10 to 10.6, the variance of the 

number of customers in first queue decreases from 0.64111 to 0.63692, in second queue it increases from 

0.88547 to 2.77264 and in the system it increases from 1.52658 to 3.40956, the coefficient of variation of 

number of customers in first queue increases from 1.24892 to 1.25302 and in second queue it decreases 

from 0.80936 to 0.54156, when all other parameters are fixed. 
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                   It is also observed that as the service rate parameter (β1) varies from 8 to 16, the variance of the 

number of customers in the first, second queues and in the system decrease from 0.62977 to 0.60218, 

2.77139 to 2.76701 and 3.40116 to 3.36919 respectively, the coefficient of variation of number of customers 

in first and second queue increase from 1.26012 to 1.28866 and 0.54223 to 0.54480 respectively, when all 

other parameters are fixed. 

        It is observed that as the service rate parameter (α2) varies from 11.4 to 12.6, the variance of the 

number of customers in the second queue and in the entire queue decrease from 1.12206 to 0.18736 and 

1.72424 to 0.78954 respectively and in the first queue they remain constant, 

Table.6 

Values of V1(t), V2(t),V(t), CV1(t), CV2(t) for different values of parameters 

T λ1 λ2 α1 β1 α2 β2 V1(t) V2(t ) V(t) CV1(t) CV2(t) 

0.11 4 5 9 6 11 11 0.13618 0.31246 0.44864 2.70983 1.49297 

0.13 4 5 9 6 11 11 0.19574 0.21938 0.41512 2.26024 1.55206 

0.15 4 5 9 6 11 11 0.24612 0.15009 0.39621 2.01572 1.58869 

0.17 4 5 9 6 11 11 0.28872 0.09919 0.38791 1.86106 1.60559 

0.17 6 5 9 6 11 11 0.41083 0.14878 0.55961 1.56016 1.33677 

0.17 7 5 9 6 11 11 0.47188 0.17358 0.64546 1.45573 1.24470 

0.17 8 5 9 6 11 11 0.53294 0.19838 0.73132 1.36981 1.16936 

0.17 9 5 9 6 11 11 0.59399 0.22318 0.81717 1.29750 1.10623 

0.17 9.5 5.5 9 6 11 11 0.62897 0.23557 0.86454 1.26091 1.07549 

0.17 9.5 5.9 9 6 11 11 0.63253 0.23557 0.8681 1.25736 1.07328 

0.17 9.5 6.4 9 6 11 11 0.63698 0.23557 0.87255 1.25296 1.07054 

0.17 9.5 6.8 9 6 11 11 0.64054 0.23557 0.87611 1.24947 1.06836 

0.17 9.5 6.8 10 6 11 11 0.64111 0.88547 1.52658 1.24892 0.80936 

0.17 9.5 6.8 10.2 6 11 11 0.64002 1.20240 1.84242 1.24998 0.73673 

0.17 9.5 6.8 10.4 6 11 11 0.63862 1.72737 2.36599 1.25135 0.65012 

0.17 9.5 6.8 10.6 6 11 11 0.63692 2.77264 3.40956 1.25302 0.54156 

0.17 9.5 6.8 10.6 8 11 11 0.62977 2.77139 3.40116 1.26012 0.54223 

0.17 9.5 6.8 10.6 10 11 11 0.62271 2.77020 3.39291 1.26723 0.54289 

0.17 9.5 6.8 10.6 13 11 11 0.61233 2.76854 3.38087 1.27793 0.54386 

0.17 9.5 6.8 10.6 16 11 11 0.60218 2.76701 3.36919 1.28866 0.54480 

0.17 9.5 6.8 10.6 16 11.4 11 0.60218 1.12206 1.72424 1.28866 0.76156 

0.17 9.5 6.8 10.6 16 11.8 11 0.60218 0.58931 1.19149 1.28866 0.91612 

0.17 9.5 6.8 10.6 16 12.2 11 0.60218 0.33340 0.93558 1.28866 1.03386 

0.17 9.5 6.8 10.6 16 12.6 11 0.60218 0.18736 0.78954 1.28866 1.12541 

0.17 9.5 6.8 10.6 16 12.6 15 0.60218 0.17241 0.77459 1.28866 1.13622 

0.17 9.5 6.8 10.6 16 12.6 20 0.60218 0.15504 0.75722 1.28866 1.14919 

0.17 9.5 6.8 10.6 16 12.6 25 0.60218 0.13901 0.74119 1.28866 1.16155 

0.17 9.5 6.8 10.6 16 12.6 30 0.60218 0.12423 0.72641 1.28866 1.17330 

   

the coefficient of variation of number of customers in second queue increases from 0.76156 to 1.12541 and 

in the first queue they remain constant, when all other parameters are fixed. 
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            It is also observed that as the service rate parameter (β2) varies from 15 to 30, the variance of the 

number of customers in the second queue and entire queue decrease from 0.17241 to 0.12423 and 0.77459 

to 0.72641 respectively and in the first queue they remain constant, the coefficient of variation of number 

of customers in second queue increases from 1.13622 to 1.17330 and in the first queue they remain 

constant, when all other parameters are fixed. 

           The sensitivity analysis of the model with respect to the mean number of customers, the utilization 

of service stations, the mean delay in transmission, and the throughput are computed and presented in 

Table 7 with variation of -10%, -5%, 0%, 5%, 10%, on the model parameter. The performance measure are 

highly sensitive with respect to time (t) as t increases, the average number of customers in the first queue 

increase along with the average delay, the utilization and the throughput of the first queue.  Arrival rate 

parameter λ1 increases, the average number of customers in first queue increase along with the average 

delay in transmission, the utilization of service stations and throughput of each queue. 

           Arrival rate parameter λ2 increases, the average number of customers in the first queue increase 

along with the average delay, the utilization of first queue and the throughput of the first queue and there 

is no change with respect to the second queue. 

           Service rate parameter α1 increases, the average number of customers in the first queue decreases 

and second queue increases along with the average delay, the utilization of first queue decreases and 

second queue increases, the throughput of the each queue is increases.  Service rate parameter β1 

increases, the average number of customers in each queue is decreasing  along with the average delay in 

each queue, the utilization of each queue decreases. The throughput of the first queue increases and in the 

second queue it decreases. 

 

 

 

 

Table.7 

The Values of L1(t), L2(t), U1(t), U2(t), Thp1(t), Thp2(t), W1(t), W2(t)   for different values of t, λ1, λ2, α1, β1, 

α2, β2 parameters 

Parameter % change  in 

parameters 

Performance Measures 

L1(t) L2(t) U1(t) U2(t) W1(t) W2(t) Thp1(t) Thp2(t) 

t=0.2 -10% 0.31916 0.17854 0.27324 0.16351 0.11799 0.08877 2.70506 2.01116 

-5% 0.33765 0.15060 0.28656 0.13980 0.11842 0.08687 2.85123 1.73357 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.37073 0.10555 0.30977 0.10017 0.11908 0.08363 3.11316 1.26220 

+10% 0.38552 0.08760 0.31990 0.08388 0.11932 0.08224 3.23102 1.06523 

λ1=4 -10% 0.32620 0.11378 0.27834 0.10754 0.11720 0.08464 2.78340 1.34427 

-5% 0.34050 0.12010 0.28859 0.11316 0.11799 0.08490 2.88587 1.41456 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.36910 0.13274 0.30865 0.12431 0.11959 0.08543 3.08647 1.55382 

+10% 0.38341 0.15170 0.31846 0.12982 0.12039 0.08622 3.18463 1.62279 
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 (t = 0.2,  λ1 =  4, λ2 =  6, α1 =  9, β1 =   5, α2 = 10.5, β2 = 10) 

           Service rate parameters α2 and β2 increase, the average number of customers in the second queue 

decreases along with the average delay in the second queue, the utilization and throughput of the second 

service station decrease and there is no change with respect to the first queue. 

9. COMPARATIVE STUDY OF THE TWO NODES TANDEM NON-STATIONARY QUEUING 

MODEL 

                                        The comparative study of the developed model with that of homogeneous poison 

arrival and service rates is performed by computing the performance measure. The results are presented 

in the Table 8 for different values of t = 0.18, 0.20, 0.22, 0.24. 

                From Table 8, it is observed that as the time increases the percentage variation of the 

performance measures between the two models is significant. The model with non-homogeneous Poisson 

arrival and service processes has higher performance than that of the model with homogeneous Poisson 

arrival and service process.  It can also be observed that the assumption of non-homogeneous Poisson 

arrival and service processes has a significant influence on all the performance measures of the queuing 

model.  This model includes the following queuing models as particular cases: 

(i) M/M/1 Queuing with state dependent service model when λ2 = 0, β1 =0, α2=0, β2 =0. 

λ2=6 -10% 0.34792 0.12642 0.29385 0.11875 0.11840 0.08516 2.93848 1.48441 

-5% 0.35136 0.12642 0.29627 0.11875 0.11859 0.08516 2.96272 1.48441 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.35824 0.12642 0.30110 0.11875 0.11898 0.08516 3.01096 1.48441 

+10% 0.36168 0.12642 0.30350 0.11875 0.11917 0.08516 3.03496 1.48441 

α1=9 -10% 0.35927 0.01475 0.30182 0.01464 0.13081 0.08059 2.74653 0.18302 

-5% 0.35761 0.05922 0.30065 0.05750 0.12455 0.08239 2.87122 0.71880 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.35113 0.24612 0.29611 0.21817 0.11348 0.09025 3.09434 2.72711 

+10% 0.34680 0.53734 0.29305 0.41570 0.10857 0.10341 3.19429 5.19627 

β1=5 -10% 0.35619 0.12661 0.29966 0.11892 0.12007 0.08517 2.96665 1.48650 

-5% 0.35550 0.12651 0.29917 0.11884 0.11942 0.08517 2.97679 1.48545 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.35411 0.12632 0.29820 0.11867 0.11816 0.08516 2.99695 1.48338 

+10% 0.35342 0.12632 0.29772 0.11859 0.11753 0.08516 3.00697 1.48236 

α2=10.5 -10% 0.35480 0.93377 0.29869 0.60693 0.11879 0.13437 2.98689 6.94934 

-5% 0.35480 0.30435 0.29869 0.26239 0.11879 0.09686 2.98689 3.14217 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.35480 0.04758 0.29869 0.04647 0.11879 0.07862 2.98689 0.60527 

+10% 0.35480 0.00584 0.29869 0.00582 0.11879 0.07402 2.98689 0.07886 

β2=10 -10% 0.35480 0.12976 0.29869 0.12169 0.11879 0.08669 2.98689 1.49679 

-5% 0.35480 0.12808 0.29869 0.12021 0.11879 0.08592 2.98689 1.49066 

0% 0.35480 0.12642 0.29869 0.11875 0.11879 0.08516 2.98689 1.48441 

+5% 0.35480 0.12477 0.29869 0.11730 0.11879 0.08442 2.98689 1.47804 

+10% 0.35480 0.12315 0.29869 0.11587 0.11879 0.08369 2.98689 1.47154 
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(ii) Two node tandem Poisson queuing with load dependent model when λ2 = 0, β1 =0, and β2 =0. 

(iii) Single server of queuing model with non-homogeneous Poisson arrivals and state dependent   

       service. When, β1 =0, α2=0, β2 =0. 

(iv) Two node tandem queuing model with non-homogeneous Poisson arrivals and state     

      dependent service.  When, β1 =0, β2 =0. 

(v) Single node Poisson arrival and non-homogeneous Poisson service queuing model with load   

      dependent when λ2 = 0, α2=0, β2 =0. 

(vi) Two node tandem queuing model with Poisson arrival and non-homogeneous Poisson   

       service processes with load dependent when λ2 = 0. 

Table 8 

Comparative study of models with Non-Homogeneous and Homogeneous Poisson arrival and service 

rates 

T Parameter 

Measure 

Models with 

Non-Homogeneous 

arrival and service 

Models with 

Homogeneous arrival and 

service 

Difference Pesrcentage of 

Variation 

0.18 L1(t) 0.62670 0.63027 0.00357 0.566424 

L2(t) 0.13444 0.20059 0.06615 32.97772 

U1(t) 0.46565 0.46755 0.0019 0.406374 

U2(t) 0.12579 0.18175 0.05596 30.78955 

W1(t) 0.09984 0.12717 0.02733 21.49092 

W2(t) 0.06985 0.08759 0.01774 20.25345 

0.20 L1(t) 0.66593 0.68108 0.01515 2.224408 

L2(t) 0.07777 0.13355 0.05578 41.76713 

U1(t) 0.48620 0.49393 0.00773 1.564999 

U2(t) 0.07482 0.12502 0.0502 40.15358 

W1(t) 0.09925 0.13008 0.03083 23.70080 

W2(t) 0.06663 0.08478 0.01815 21.40835 

0.22 L1(t) 0.69436 0.72218 0.02782 3.852225 

L2(t) 0.04055 0.08572 0.04517 52.69482 

U1(t) 0.50060 0.51431 0.01371 2.665707 

U2(t) 0.03974 0.08215 0.04241 51.62508 

W1(t) 0.09823 0.13247 0.03424 25.84736 

W2(t) 0.06418 0.08282 0.01864 22.50664 

0.24 L1(t) 0.71429 0.75543 0.04114 5.445905 

L2(t) 0.01695 0.05199 0.03504 67.39758 

U1(t) 0.51046 0.53019 0.01973 3.721307 
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U2(t) 0.01681 0.05066 0.03385 66.81800 

W1(t) 0.09690 0.13442 0.03752 27.91251 

W2(t) 0.06225 0.08145 0.0192 23.57274 

       

 7. Conclusion 

                      This paper deals with design and development of a new novel queuing models with time 

dependent arrival and service processes and state dependent service which is very useful for analyzing 

the communication network such as LAN, WAN, MAN, data voice transformations during the peak time 

analysis.  Here the arrival and service processes are characterized with non-homogeneous Poisson 

processes.  The explicit expressions for the system performance measures such as the content of the 

buffers, the average waiting time of the customers in the queue and in the system, the throughput of the 

nodes and the variance are useful for predicting the system behavior under transient conditions. It is 

observed that the time dependent and state dependent nature of the arrival and service processes have 

significant effect on the system performance measures. There is a scope for further extension of this paper 

by developing and analyzing a two node tandem queueing model with bulk arrivals having time and 

state dependent arrival and service rates.  

References: 

[1] Choi, B.D.and  Choi, D.I (1996),”Queuing system with length dependence service times and          its 

applications to cell discarding scheme in ATM networks”, IEEE proceedings communications, Vol.143, 

pp:5-11. 

[2.] Erlang, A.K.(1909),”Probability and telephone calls”, Nyt. Tidsskr Krarup Mat.Ser.B, Vol.20,33-39.  

[3.] Kin K.Leung (2002), “ Load-dependent service queues with application to congestion control in 

broadband networks”, Performance Evaluation, Vol.50, No4,pp:27-40. 

[4.] Nageswararao, K., Srinivasa Rao, K. an Srinivasarao, P. (2010), “A tandom communication net work 

with dynamic band width allocation and modified phase type transmission having bulk arrivals”, 

International journal of Computer Sciences, Issues, Vol.7,No.2,pp:18-26. 

[5.] Padmavathi, G., Srinivasa Rao, K and Reddy, K.V.V.S (2009), “Performance Evaluation of parallel and 

series communication network with dynamic band width allocation CIIT” International journal of 

Networking and Communication, Vol.1, No.7,pp:433-454. 

[6.] Parthasarathy, P.R and Selvaraju, N. (2001),” Transient analysis of queue where potential customers 

are discouraged by queue length”, Mathematical problem in Engineering, Vol. 7,pp: 433-454. 

[7.] M.V. Ramasundari, K. Srinivasa Rao, P. Srinivasa Rao and P. Suresh Varma (2011) ,” Three node 

communication network model with dynamic bandwidth allocation and Non-homogeneous Poisson 

arrivals”, International journal of Computer Applictions, Vol. 7, No.1,pp:19-27. 

[8.] Srinivasa Rao, K. Shoba,T. Srinivasa Rao, P.(2000), “The M/M/1 interdependent queuing model with 

controllable arrival rates”, Opsearch Vol 37(1) pp:14-24.    



NON-HOMOGENEOUS POISSON QUEUING MODELS WITH LOAD DEPENDENT SERVICE 

 

112 
 

[9.] Srinivasa Rao, K. Srinivasa Rao, P. Lakshminarayana , j. ” M/M/1 interdependent queueing model 

with servers vacaion” Proc.of AP Akademi of Sciences Vol7, No.3(2003),pp:191-196. 

[10.] Srinivasa Rao, K., Suresh varma, P. and Srinivas, Y.(2008), “Interdependent Queuing model with 

startup delay”. Statistical theory and App.7(2), 219-228. 

[11.] Srinivasa Rao, K. and Vijay kumar CVRS (2003), “ interdependent tandem queuing model”. 

International journal of Management and Systems Vol 16(2) pp:157-168. 

[12.] Suresh Varma, P. Srinivasa Rao, K.(2007), “ A communication Network with load dependent 

transmission”, International Journal of Mathematical Sciences, Issues, Vol.7, No.2,pp:199-210. 

[13.] A.V.S Suhasini, K. Srinivasa Rao and P.R.S Reddy.(2013), “On parallel and series Non-homogeneous 

bulk arrival queueing model”. OPSEARCH 50(4),521-547. 

[14.] Suhasini, A.V.S, K. Srinivasa Rao, P.R.S. Reddy.(2014),”Queuing model with Non-homogeneous 

bulk arrivals having state dependent service rates” int. J. Operation research Vol:21(1),84-99. 

[15.] Suhasini, A.V.S, K. Srinivasa Rao, P.R.S. Reddy.(2013),” Transient analysis of parallel and series 

queuing model with Non-homogeneous Poisson binomial bulk arrival and load dependent service rates” 

Neural , parallel and scientific computations, Vol:21(2),235-262. 

[16.] Suhasini, A.V.S, K. Srinivasa Rao, P.R.S. Reddy.(2012),” Transient analysis of tandem queuing model 

with Non-homogeneous Poisson bulk arrivals having state dependent service rates”, 

Int.J.Adv.Comp.math.Sci.Vol:3(3),272-289. 

[17.] P. Trinath Rao, K. Srinivasa Rao and K.V.V.S Reddy(2012), “Performance of Non-homogeneous 

communication with Poisson arrivals and dynamic bandwidth allocation” accepted in International 

Journal of Systems, control and communication,Vol.4(3),164-182. 

[18.] J.Duraga Aparajitha, G.V.S. Rajkumar(2015), “Single Server Queuing model with time and state 

dependent service rate”, Journal of the Indian Society for Probability and Statistics Vol.15,67-78. 

[19.] Davis, J.L., Massey W.A., and Whitty, W., (1995) “Sensitivity to the service- time distribution in the 

non- stationary Erlang loss model‟. Management Science. Vol.41, No 6, PP 1107-1116.  

[20.] Duffield, N.G., Massey, W.A., and Whitt,W., (2001) “ A nonstationary offered load model for packet 

networks‟. Telecommunication systems. Vol.13, Issue 3/4, PP 271- 296.  

[21.] Durga aparajitha J.,Rajkumak G.V.S, (2014) “single server queueing model with time and state 

dependent service rate”. Journal of the Indian society for probability and statistics. Vol.15, PP 67-77.  

[22.] Mandelbaum, A. and Massey, W.A., (1995) ‟ Strong approximations for time dependent queues”. 

MOR. Vol.20, No1, PP 33-64.  

 [23.] Massey, W.A. and Whitt, W. (1993), “Networks of infinite-server queues with nonstationary Poisson 

input queueing systems”. Queueing systems and their applications. Vol.13, No1, PP 183-250. 



K. Srinivasa Rao, Ch.Sreelatha and B.Muniswamy 

 

113 
 

[24.] Massey, W.A. and Whitt, W. (1994), “An analysis of the modified load approximation for the 

nonstationary Erlang loss model”. Annals of applied probability Vol.4, No 4, PP 1145-1160. 

[25.] Newell, G.F. (1968), “Queues with time-dependent arrival rates (parts I-III)‟. Journal of Applied 

probability. Vol.5, PP 436-451(I), 579-590 (II), 591- 606 II).  

[26.] Rothkopf, M.H. and Oren, S.S, (1979) “A closure approximation for the nonstationary M/M/s 

queue”. Mangement Science Vol.25, PP 522:534.  

[27.] Sadu, A. R., Srinivasa rao, K., Nirupama devi, K, “Forked queueing model with load dependent 

service rate bulk arrivals”. International journal of operation research, Vol.30, No1, PP 1-32.  

[28.] Srinivasa Rao, K., M.Govinda Rao and K.Naveen Kuamr (2011) - Transient analysis of an 

interdependent forked Tandem queueing model with load dependent service rate, International Journal 

of Computer Applications (IJCA), Volume 34, No. 3, pp: 33 – 40. 

[29.] Srinivasa Rao,K., VAsanta, M.R., and Vijaya Kumar, C. V. R.S., (2000), on an interdependent 

communication Network, opsearch.37(2):134-143.  

[30.] K.Srinivasa Rao, J. Durga aparajitha (2017) “ Two node tandem queuing model with phase  type 

state and time dependent service rates” International Journal of Computer Applications (0975 – 8887) 

Volume 177 – No.3, November 2017 

[31.] Ward Whitt (2016), “Recent papers on the time-varying single-server 

queue”.//http.pdfs.semanticsscholar.org//  

[32.] William A. Massey (1996), “Stability for queues with time varying rates”. Stochastic Networks of the 

series lecture notes in statistics 117: 95-107.  

[33.] William A. Massey (2002), “The analysis of queues with time varying rates for telecommunication 

models”. Telecommunication system 21:2-4,173-204. 

 

 

Ch.Sreelatha,  Department of Statistics Andhra University, Visakhapatnam, India 

Email: srilathastats@gmail.com  

K. Srinivasa Rao, Department of Statistics Andhra University, Visakhapatnam, India 

B.Muniswamy, Department of Statistics Andhra University, Visakhapatnam, India 

 

 

mailto:srilathastats@gmail.com

