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Abstract. The problem of the mean-square optimal estimation of the linear

functionals which depend on the unknown values of a stochastic stationary

sequence from observations of the sequence with missings is considered. For-
mulas for calculating the mean-square error and the spectral characteristic of

the optimal linear estimate of the functionals are derived under the condition

of spectral certainty, where the spectral density of the sequence is exactly
known. The minimax (robust) method of estimation is applied in the case

where the spectral density of the sequence is not known exactly while some
sets of admissible spectral densities are given. Formulas that determine the

least favourable spectral densities and the minimax spectral characteristics

are derived for some special sets of admissible densities.

1. Introduction

The problem of estimation of the unknown values of stochastic processes is of
constant interest in the theory and applications of stochastic processes. The for-
mulation of the interpolation, extrapolation and filtering problems for stationary
stochastic sequences with known spectral densities and reducing them to the cor-
responding problems of the theory of functions belongs to A. N. Kolmogorov [17].
Effective methods of solution of the estimation problems for stationary stochas-
tic sequences and processes were developed by N. Wiener [42] and A. M. Yaglom
[43, 44]. Further results are presented in the books by Yu. A. Rozanov [39] and
E. J. Hannan [12]. The crucial assumption of most of the methods developed for
estimating the unobserved values of stochastic processes is that the spectral den-
sities of the involved stochastic processes are exactly known. However, in practice
complete information on the spectral densities is impossible in most cases. In this
situation one finds parametric or nonparametric estimate of the unknown spectral
density and then apply one of the traditional estimation methods provided that the
selected density is the true one. This procedure can result in significant increasing
of the value of error of estimate as K. S. Vastola and H. V. Poor [41] have demon-
strated with the help of some examples. To avoid this effect one can search esti-
mates which are optimal for all densities from a certain class of admissible spectral
densities. These estimates are called minimax since they minimize the maximum
value of the error. The paper by Ulf Grenander [11] was the first one where this
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approach to extrapolation problem for stationary processes was proposed. Several
models of spectral uncertainty and minimax-robust methods of data processing
can be found in the survey paper by S. A. Kassam and H. V. Poor [16]. J. Franke
[7], [8], J. Franke and H. V. Poor [9] investigated the minimax extrapolation and
filtering problems for stationary sequences with the help of convex optimization
methods. This approach makes it possible to find equations that determine the
least favorable spectral densities for different classes of densities. In the papers by
M. P. Moklyachuk [24] - [27] the problems of extrapolation, interpolation and fil-
tering for functionals which depend on the unknown values of stationary processes
and sequences are investigated. The estimation problems for functionals which
depend on the unknown values of multivariate stationary stochastic processes is
the aim of the book by M. Moklyachuk and O. Masytka [29]. Results of investi-
gations of the interpolation, extrapolation and filtering problems for periodically
correlated stochastic sequences presented in the book by M. P. Moklyachuk and I.
I. Golichenko [28]. In their papers M. M. Luz and M. P. Moklyachuk [19] - [23] deal
with the estimation problems for functionals which depend on the unknown values
of stochastic sequences with stationary increments. Prediction problem for sta-
tionary sequences with missing observations is investigated in papers by Bondon
[1, 2], Cheng, Miamee and Pourahmadi [5], Cheng and Pourahmadi [6], Kasahara,
Pourahmadi and Inoue [15], Pourahmadi, Inoue and Kasahara [36], Pelagatti [35].
In papers by Moklyachuk and Sidei [30] - [34] an approach is developed to inves-
tigation of the interpolation, extrapolation and filtering problems for stationary
stochastic processes with missing observations.

In this article we consider the problem of the mean-square optimal estimation

of the linear functional As~ξ =
s−1∑
l=0

Ml+Nl+1∑
j=Ml

~a(j)>~ξ(j), Ml =
l∑

k=0

(Nk +Kk), N0 =

K0 = 0, which depends on the unknown values of a stochastic stationary sequence
~ξ(j) = {ξk(j)}Tk=1 , j ∈ Z from observations of the sequence at points j ∈ Z\S,

where S =
s−1⋃
l=0

{Ml,Ml + 1, . . . ,Ml + Nl+1}. The problem is investigated in the

case of spectral certainty, where the spectral density of the sequence is exactly
known, and in the case of spectral uncertainty, where the spectral density of the
sequence is unknown while a class of admissible spectral densities is given.

2. The Hilbert space projection method of linear interpolation

Let ~ξ(j) = {ξk(j)}Tk=1 , j ∈ Z, be a (wide sense) multidimensional stationary

stochastic sequence with zero mean values, E~ξ(j) = ~0, and with the correlation

function R(n) = E~ξ(j + n)( ~ξ(j))∗ =
{
Eξk(j + n)ξl(j)

}T
k,l=1

which admit the

spectral decomposition (see Gikhman and Skorokhod [10])

R(n) =
1

2π

π∫
−π

eikλF (λ)dλ,
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INTERPOLATION PROBLEM WITH MISSING OBSERVATIONS 3

where F (λ) = {fkl(λ)}Tk,l=1 is the spectral density function of the sequence ~ξ(j)
that satisfies the minimality condition∫ π

−π
Tr
[
(F (λ))−1

]
dλ <∞. (2.1)

This condition is necessary and sufficient in order that the error-free interpola-
tion of unknown values of the sequence is impossible [39].

The stationary stochastic sequence ~ξ(j), j ∈ Z, admits the spectral decomposi-
tion [10, 14]

~ξ(j) =

π∫
−π

eijλZ(dλ), (2.2)

where Z(∆) is the vector- valued orthogonal stochastic measure of the sequence
such that

EZ(∆1)(Z(∆2))∗ =
1

2π

∫
∆1∩∆2

F (λ)dλ.

Consider the problem of the mean-square optimal estimation of the linear func-
tional

As~ξ =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

~a(j)>~ξ(j), Ml =

l∑
k=0

(Nk +Kk), N0 = K0 = 0,

which depends on the unknown values of a stochastic stationary sequence ~ξ(j), j ∈

Z, from observations of the sequence at points j ∈ Z\S, where S =
s−1⋃
l=0

{Ml,Ml +

1, . . . ,Ml +Nl+1}.
It follows from the spectral decomposition (2.2) of the sequence ~ξ(j) that we

can represent the functional As~ξ in the following form

As~ξ =

π∫
−π

(As(e
iλ))>Z(dλ), (2.3)

where

As(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

~a(j)eijλ.

We will consider values ξk(j), k = 1, . . . , T , j ∈ Z, of the sequence ~ξ(j) as
elements of the Hilbert space H = L2(Ω,F , P ) generated by random variables ξ
with zero mathematical expectations, Eξ = 0, finite variations, E|ξ|2 < ∞, and
the inner product (ξ, η) = E(ξη). Denote by Hs(ξ) the subspace of the Hilbert
space H = L2(Ω,F , P ) generated by elements {ξk(j) : j ∈ Z\S, k = 1, T}.

Denote by L2(F ) the Hilbert space of vector-valued functions ~a(λ) = {ak(λ)}Tk=1

such that ∫ π

−π
~a(λ)>F (λ)~a(λ)dλ =

∫ π

−π

T∑
k,l=1

ak(λ)al(λ) fkl(λ) dλ <∞.
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Denote by Ls2(F ) the subspace of L2(F ) generated by functions of the form

einλδk, δk = {δkl}Tl=1 , k = 1, . . . , T , n ∈ Z\S.

The mean square optimal linear estimate Âs~ξ of the functional As~ξ from observa-

tions of the sequence ~ξ(j) at points j ∈ Z\S is an element of the Hs(ξ). It can be
represented in the form

Âs~ξ =

π∫
−π

(h(eiλ))>Z(dλ), (2.4)

where h(eiλ) =
{
hk(eiλ)

}T
k=1
∈ Ls2(F ) is the spectral characteristic of the estimate

Âs~ξ.

The mean square error ∆(h;F ) of the estimate Âs~ξ is given by the formula

∆(h;F ) = E
∣∣∣As~ξ − Âs~ξ∣∣∣2 =

1

2π

π∫
−π

(As(e
iλ)− h(eiλ))>F (λ)(As(eiλ)− h(eiλ))dλ.

The Hilbert space projection method proposed by A. N. Kolmogorov [17] makes
it possible to find the spectral characteristic h(eiλ) and the mean square error

∆(h;F ) of the optimal linear estimate of the functional As~ξ in the case where
the spectral density F (λ) of the sequence is exactly known and the minimality
condition (2.1) is satisfied. The spectral characteristic can be found from the
following conditions:

1)h(eiλ) ∈ Ls2(F ),

2)As(e
iλ)− h(eiλ)⊥Ls2(F ).

It follows from the second condition that for any η ∈ Hs(ξ) the following equa-
tions should be satisfied(

As~ξ − Âs~ξ, η
)

= E
[
(As~ξ − Âs~ξ)η

]
= 0

The last relation is equivalent to equations

E
[
(As~ξ − Âs~ξ)ξk(j)

]
= 0, j ∈ Z\S, k = 1, T .

By using representations (2.3), (2.4) and definition of the inner product in the
space H we get

π∫
−π

(
As(e

iλ)− h(eiλ)
)>
F (λ)e−ikλdλ = 0, k ∈ Z\S.

It follows from this condition that the function (As(e
iλ)− h(eiλ))>F (λ) is of the

form
(As(e

iλ)− h(eiλ))>F (λ) = (Cs(e
iλ))>,

Cs(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

~c(j)eijλ,

where ~c(j), j ∈ S are unknown coefficients that we have to find.
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INTERPOLATION PROBLEM WITH MISSING OBSERVATIONS 5

From the last relation we deduce that the spectral characteristic h(eiλ) of the

optimal linear estimate of the functional As~ξ is of the form

h(eiλ) = As(e
iλ)− (F−1(λ))>Cs(e

iλ). (2.5)

To find equations for calculation of the unknown coefficients ~c(j), j ∈ S, we use
the decomposition of the function (F−1(λ))> into the Fourier series

(F−1(λ))> =

∞∑
m=−∞

B(m)eimλ, (2.6)

where B(m) are the Fourier coefficients of the function (F−1(λ))>.
Inserting (2.6) into (2.5) we obtain the following representation of the spectral

characteristic

h(eiλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

~a(j)eijλ

−
−

( ∞∑
m=−∞

B(m)eimλ

)s−1∑
l=0

Ml+Nl+1∑
j=Ml

~c(j)eijλ

 . (2.7)

It follows from the first condition, h(eiλ) ∈ Ls2(F ), that the Fourier coefficients

of the function h(eiλ) =
{
hk(eiλ)

}T
k=1

are equal to zero for j ∈ S, namely

π∫
−π

hk(eiλ)e−ijλdλ = 0, j ∈ S.

Using the last relations and (2.7) we get the following system of equations that
determine the unknown coefficients ~c(j), j ∈ S,

~a(Mk−1)−
s−1∑
l=0

Ml+Nl+1∑
j=Ml

B(Mk−1 − j)~c(j) = 0;

~a(Mk−1 + 1)−
s−1∑
l=0

Ml+Nl+1∑
j=Ml

B(Mk−1 + 1− j)~c(j) = 0;

. . .

~a(Mk−1 +Nk)−
s−1∑
l=0

Ml+Nl+1∑
j=Ml

B(Mk−1 +Nk − j)~c(j) = 0,

(2.8)

where k = 1, . . . , s.
Denote by ~a>s = (~a>1 ,~a

>
2 , . . . , ~a

>
s ), ~a>k = (~a(Mk−1)>, . . . , ~a(Mk−1 + Nk)>),

k = 1, . . . , s, q = N1 +N2 + . . .+Ns + s. Let Bs be a q × q matrix

Bs =


B11 B12 . . . B1s

B21 B22 . . . B2s

...
...

. . .
...

Bs1 Bs2 . . . Bss

 ,
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6 MIKHAIL MOKLYACHUK, OLEKSANDR MASYUTKA, AND MARIA SIDEI

where Bmn are (Nm + 1) × (Nn + 1) compound matrices constructed of the
block-matrices of dimension T × T that are Fourier coefficients of the function
(F−1(λ))> :

Bmn(k, j) =
1

2π

π∫
−π

(F−1(λ))>e−i(k−j)λdλ = B(k − j),

k = Mm−1, . . . , Mm−1 +Nm,

j = Mn−1, . . . , Mn−1 +Nn,

m, n = 1, . . . , s.

Making use the introduced notations we can write formulas (2.8) in the form of
equation

~as = Bs~cs, (2.9)

where ~c>s = (~c>1 ,~c
>
2 , . . . , ~c

>
s ), ~c>k = (~c(Mk−1)>, . . . ,~c(Mk−1 +Nk)>), k = 1, . . . , s,

is a vector constructed from the unknown coefficients ~c(j), j ∈ S. Since the matrix
Bs is reversible [36], we get the formula

~cs = B−1
s ~as. (2.10)

Hence, the unknown coefficients ~c(j), j ∈ S, are calculated by the formula

~c(j) =
(
B−1
s ~as

)
(j),

where
(
B−1
s ~as

)
(j) is the j-th component of the vector B−1

s ~as, and the formula

for calculating the spectral characteristic of the estimate Âsξ is of the form

h(eiλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

~a(j)eijλ

−
−

( ∞∑
m=−∞

B(m)eimλ

)s−1∑
l=0

Ml+Nl+1∑
j=Ml

(
B−1
s ~as

)
(j)eijλ

 . (2.11)

The mean square error of the estimate of the function can be calculated by the
formula

∆(h;F ) =
1

2π

∫ π

−π
(Cs(e

iλ))>F−1(λ)Cs(eiλ)dλ =

=

π∫
−π

s−1∑
l=0

Ml+Nl+1∑
k=Ml

~c(k)eikλ

>( ∞∑
m=−∞

B(m)eimλ

)s−1∑
l=0

Ml+Nl+1∑
j=Ml

~c(j)e−ijλ

 dλ

= 〈~cs, Bs~cs〉 =
〈
B−1
s ~as, ~as

〉
, (2.12)

where 〈·, ·〉 is the inner product.
Let us summarize our results and present them in the form of a theorem.

Theorem 2.1. Let ~ξ(j) = {ξk(j)}Tk=1 be a multidimensional stationary stochastic
sequence with the spectral density F (λ) that satisfies the minimality condition
(2.1). The spectral characteristic h(eiλ) and the mean square error ∆(h, F ) of
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INTERPOLATION PROBLEM WITH MISSING OBSERVATIONS 7

the optimal linear estimate Âs~ξ of the functional As~ξ from observations of the

sequence ~ξ(j) at points j ∈ Z\S, where S =
s−1⋃
l=0

{Ml, . . . ,Ml + Nl+1}, can be

calculated by formulas (2.11), (2.12).

Example 1. Consider the problem of linear interpolation of the functional A2
~ξ =

~a(0)>~ξ(0) +~a(n)>~ξ(n), n > 1, which depends on the unknown values ~ξ(0), ~ξ(n) of

the multidimensional stochastic sequence ~ξ(j) from observations at points j ∈ Z\S,
where S = {0} ∪ {n}. In this case the spectral characteristic (2.7) of the estimate

Â2
~ξ can be calculated by the formula

h(eiλ) = (~a(0) + ~a(n)einλ)− (F−1(λ))> · (~c(0) + ~c(n)einλ), (2.13)

where F (λ) is a known spectral density, the function (F−1(λ))> admits the decom-

position (F−1(λ))> =
∞∑

m=−∞
B(m)eiλm, and coefficients ~c(0),~c(n) are determined

by the system of equations

~a(0) = B(0)~c(0) +B(−n)~c(n),

~a(n) = B(n)~c(0) +B(0)~c(n).

The matrix B2 is of the form

B2 =

(
B11 B12

B21 B22

)
,

B11 = B(0), B12 = B(−n), B21 = B(n), B22 = B(0).

Let ~a>2 = (~a>1 ,~a
>
2 ), where ~a1 = ~a(0), ~a2 = ~a(n) and let ~c>2 = (~c>1 ,~c

>
2 ), where

~c1 = ~c(0), ~c2 = ~c(n). In this case equations (2.9) and (2.10) can be rewritten as

~a2 = B2~c2,

~c2 = B−1
2 ~a2.

Consider this problem for the two-dimensional stationary sequence ~ξ(n) =

{ξk(n)}2k=1 where ξ1(n) = ξ(n) is a stationary stochastic sequence with the spec-
tral density f(λ), and ξ2(n) = ξ(n) + η(n), where η(n) is an uncorrelated with
ξ(n) stationary stochastic sequence with the spectral density g(λ). The matrix of
spectral densities is of the form

F (λ) =

(
f(λ) f(λ)
f(λ) f(λ) + g(λ)

)
.

Its determinant equals

D = |F (λ)| = f(λ) g(λ),

and the inverse matrix is as follows

F (λ)−1 =

(
1

f(λ) + 1
g(λ)

−1
g(λ)

−1
g(λ)

1
g(λ)

)
.

Let

f(λ) =
1

2π |1− b1eiλ|2
, g(λ) =

1

2π |1− b2eiλ|2
, b1, b2 ∈ R.

91



8 MIKHAIL MOKLYACHUK, OLEKSANDR MASYUTKA, AND MARIA SIDEI

We have the matrix B2:

B2 = 2π


2 + b21 + b22 −1− b22 0 0
−1− b22 1 + b22 0 0

0 0 2 + b21 + b22 −1− b22
0 0 −1− b22 1 + b22

 .

Its determinant equals

D = (2π)
4

(1 + b21)2(1 + b22)2.

The inverse matrix B−1
2 is equal to

1

2π


1

1+b21

1
1+b21

0 0

1
1+b21

2+b21+b22
(1+b21)(1+b22)

0 0

0 0 1
1+b21

1
1+b21

0 0 1
1+b21

2+b21+b22
(1+b21)(1+b22)

 .

The vector ~c2 is as follows

~c2 =
1

2π

(
α+ β

1 + b21
,

α

1 + b21
+

(2 + b21 + b22)β

(1 + b21)(1 + b22)
,
γ + δ

1 + b21
,

γ

1 + b21
+

(2 + b21 + b22)δ

(1 + b21)(1 + b22)

)>
where ~a(0) = (α, β)>, ~a(n) = (γ, δ)>. Thus, the spectral characteristic of the

optimal estimate of the random variable A2
~ξ is calculated by the formula

(h(eiλ))> = (h1(eiλ), h2(eiλ))>,

where

h1(eiλ) =

(
(α+ β)b1

1 + b21
− βb2

1 + b22

)
(eiλ + e−iλ)+

+

(
(γ + δ)b1

1 + b21
− δb2

1 + b22

)
(ei(n+1)λ + ei(n−1)λ),

h2(eiλ) =
βb2

1 + b22
(eiλ + e−iλ) +

δb2
1 + b22

(ei(n+1)λ + ei(n−1)λ).

The mean square error is of the form

∆(F ) =
(α+ β)2 + (γ + δ)2

2π(1 + b21)
+

β2 + δ2

2π(1 + b22)
.

Example 2. Let all conditions of the previous example are satisfied. Consider
the problem of linear interpolation of the functional

A2
~ξ = ~a(0)>~ξ(0) + ~a(1)>~ξ(1) + ~a(n)>~ξ(n),

where ~a(0) = (α1, β1)>, ~a(1) = (α2, β2)>, ~a(n) = (γ, δ)>, n > 2. In this case the
matrix B2 is of the form

B2 =

(
B11 B12

B21 B22

)
,

where

B11 =

(
B(0) B(−1)
B(1) B(0)

)
, B12 =

(
B(−n)

B(−n+ 1)

)
,
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B12 =
(
B(n) B(n− 1)

)
, B22 =

(
B(0)

)
,

B(0) = 2π

(
2 + b21 + b22 −1− b22
−1− b22 1 + b22

)
, B(1) = B(−1) = 2π

(
−b1 − b2 b2

b2 −b2

)
,

B(−n) = B(−n+ 1) = B(n) = B(n− 1) =

(
0 0
0 0

)
.

The inverse matrix B−1
2 is equal to

1

2π



1+b21
A

1+b21
A

b1
A

b1
A 0 0

1+b21
A

1+b21
A +

1+b22
B

b1
A

b1
A + b2

B 0 0
b1
A

b1
A

1+b21
A

1+b21
A 0 0

b1
A

b1
A + b2

B
1+b21
A

1+b21
A +

1+b22
B 0 0

0 0 0 0 1
1+b21

1
1+b21

0 0 0 0 1
1+b21

1
1+b21

+ 1
1+b22


,

where A = 1+b21+b41, B = 1+b22+b42. Then we will have ~c>2 = (~c(0)>,~c(1)>,~c(n)>),
where ~c(0) = (c1(0), c2(0))>,~c(1) = (c1(1), c2(1))>,

c1(0) =
(1 + b21)(α1 + β1) + b1(α2 + β2)

A
,

c2(0) =
(1 + b21)(α1 + β1) + b1(α2 + β2)

A
+

(1 + b22)β1 + b2β2

B
,

c1(1) =
b1(α1 + β1) + (1 + b21)(α2 + β2)

A
,

c2(1) =
b1(α1 + β1) + (1 + b21)(α2 + β2)

A
+
b2β1 + (1 + b22)β2

B
,

~c(n) =

(
γ + δ

1 + b21
,

γ

1 + b21
+

δ

(1 + b21)
+

δ

(1 + b22)

)>
.

Thus, the spectral characteristic of the optimal estimate of the random variable

A2
~ξ is calculated by the formula

(h(eiλ))> = (h1(eiλ), h2(eiλ))>,

where

h1(eiλ) =

(
b1

(1 + b21)(α1 + β1) + b1(α2 + β2)

1 + b21 + b41
− b2

(1 + b22)β1 + b2β2

1 + b22 + b42

)
e−iλ+

+

(
b1
b1(α1 + β1) + (1 + b21)(α2 + β2)

1 + b21 + b41
− b2

b2β1 + (1 + b22)β2

1 + b22 + b42

)
e2iλ+

+

(
(γ + δ)b1

1 + b21
− δb2

1 + b22

)
(ei(n+1)λ + ei(n−1)λ),

h2(eiλ) = b2
(1 + b22)β1 + b2β2

1 + b22 + b42
e−iλ+

+ b2
b2β1 + (1 + b22)β2

1 + b22 + b42
e2iλ +

δb2
1 + b22

(ei(n+1)λ + ei(n−1)λ).

93



10 MIKHAIL MOKLYACHUK, OLEKSANDR MASYUTKA, AND MARIA SIDEI

The mean square error is of the form

∆(F ) =
1

2π

(
((α1 + β1)2 + (α2 + β2)2)(1 + b21) + 2(α1 + β1)(α2 + β2)b1

1 + b21 + b41

)
+

+
1

2π

(
(1 + b22)(β2

1 + β2
2) + 2β1β2b2

1 + b22 + b42

)
+

+
1

2π

(
(γ + δ)2

(1 + b21)
+

δ2

(1 + b22)

)
.

3. Minimax-robust method of interpolation

The traditional methods of estimation of the functional As~ξ which depends on

unknown values of a stationary stochastic sequence ~ξ(j) can be applied in the

case where the spectral density F (λ) of the considered stochastic sequence ~ξ(j)
is exactly known. In practise, however, we do not have complete information on
spectral density of the sequence. For this reason we apply the minimax(robust)

method of estimation of the functional As~ξ, that is we find an estimate that
minimizes the maximum of the mean square errors for all spectral densities from
the given class of admissible spectral densities D. For description of minimax
method we propose the following definitions (see Moklyachuk and Masytka [29]).

Definition 3.1. For a given class of spectral densities D a spectral density F0(λ) ∈
D is called the least favourable in D for the optimal linear estimation of the

functional As~ξ if the following relation holds true

∆ (F0) = ∆ (h (F0) ;F0) = max
F∈D

∆ (h (F ) ;F ) .

Definition 3.2. For a given class of spectral densities D the spectral characteristic

h0(eiλ) of the optimal linear estimate of the functional As~ξ is called minimax-
robust if

h0(eiλ) ∈ HD =
⋂
F∈D

Ls2(F ),

min
h∈HD

max
F∈D

∆ (h;F ) = sup
F∈D

∆
(
h0;F

)
.

It follows from the introduced definitions and the obtained formulas that the
following statement holds true.

Lemma 3.1. The spectral density F0(λ) ∈ D is the least favourable in the class
of admissible spectral densities D for the optimal linear estimate of the functional

As~ξ if the Fourier coefficients of the function F−1
0 (λ) define a matrix B0

s that is a
solution to the optimization problem

max
F∈D

〈
B−1
s ~as, ~as

〉
=
〈
(B0

s )−1~as, ~as
〉
. (3.1)

The minimax spectral characteristic h0 = h(F0) can be calculated by the formula
(2.11) if h(F0) ∈ HD.
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The least favourable spectral density F0 and the minimax spectral characteristic
h0 form a saddle point of the function ∆ (h;F ) on the set HD × D. The saddle
point inequalities

∆ (h;F0) ≥ ∆
(
h0;F0

)
≥ ∆

(
h0;F

)
∀F ∈ D,∀h ∈ HD

hold true if h0 = h(F0) and h(F0) ∈ HD, where F0 is a solution to the constrained
optimization problem

∆̃(F ) = −∆
(
h0;F

)
→ inf, F (λ) ∈ D, (3.2)

where

∆
(
h0;F

)
=

1

2π

∫ π

−π
(C0

s (eiλ))>[F 0(λ)]−1F (λ)[F 0(λ)]−1C0
s (eiλ)dλ,

C0
s (eiλ) =

s−1∑
l=0

Ml+Nl+1∑
j=Ml

(
(B0

s )−1~as
)

(j)eijλ.

The constrained optimization problem (3.2) is equivalent to the unconstrained
optimization problem

∆D(F ) = ∆̃(F ) + δ(F |D )→ inf,

where δ(F |D ) is the indicator function of the set D. Solution F0 to this problem is
characterized by the condition 0 ∈ ∂∆D(F0), where ∂∆D(F0) is the subdifferential
of the convex functional ∆D(F ) at point F0. This condition makes it possible
to find the least favourable spectral densities in some special classes of spectral
densities D [13], [37], [38].

Note, that the form of the functional ∆
(
h0;F

)
is convenient for application the

Lagrange method of indefinite multipliers for finding solution to the problem (3.2).
Making use the method of Lagrange multipliers and the form of subdifferentials
of the indicator functions we describe relations that determine least favourable
spectral densities in some special classes of spectral densities (see books [28, 26, 29]
for additional details).

4. Least favourable spectral densities in the class D−0

Consider the problem of the optimal estimation of the functional As~ξ which

depends on the unknown values of a stationary stochastic sequence ~ξ(j) in the
case where the spectral density is from the class

D−0 =

F (λ)

∣∣∣∣∣∣ 1

2π

π∫
−π

(F−1(λ))>dλ = P

 ,

where P = {pij}Ti,j=1 is a given matrix. To find solutions to the constrained

optimization problem (3.2) we use the Lagrange multipliers method. With the
help of this method we get the equation

(F 0(λ)>)−1C0
s (eiλ)(C0

s (eiλ))∗(F 0(λ)>)−1 = (F 0(λ)>)−1~α · ~α∗(F 0(λ)>)−1,
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where ~α = {αk}Tk=1 is a vector of the Lagrange multipliers. From this relation
we find that the Fourier coefficients of the matrix function (F 0(λ)>)−1 satisfy the
following equations−1∑

l=0

Ml+Nl+1∑
k=Ml

~c(k)eikλ

 ·
s−1∑
l=0

Ml+Nl+1∑
k=Ml

~c(k)eikλ

∗ = ~α · ~α∗, (4.1)

where ~c(k), k ∈ S, are components of the vector ~cs that satisfies the equation
B0
s~cs = ~as, the matrix B0

s consists from matrices B0
mn(k, j), each of which is

determined by the Fourier coefficients of the function (F 0(λ)>)−1

B0
mn(k, j) =

1

2π

π∫
−π

(F 0(λ)>)−1e−i(k−j)λdλ = B0(k − j),

k = Mm−1, . . . , Mm−1 +Nm,

j = Mn−1, . . . , Mn−1 +Nn,

m, n = 1, . . . , s.

The Fourier coefficients B(k) = B(−k), k ∈ S, satisfy both equation (4.1) and
equation B0

s~cs = ~as. These coefficients can be found from the equation B0
s~αs = ~as,

where ~αs = (~α, 0, . . . , 0). The last relation can be presented in the form of the
system of equations

B(k)~α = ~a(k), k ∈ S.

From the first equation of the system (for k = 0) we find the unknown value
~α = B−1(0)~a(0). It follows from the extremum condition (3.1) and the restriction
on the spectral densities from the class D−0 that the Fourier coefficient

B(0) =
1

2π

π∫
−π

(F 0(λ)>)−1dλ = P.

Thus,

B(k) = ~a(k)~a(0)−1P,

where ~a(0)−1 is a vector that satisfies the equation

~a(0)−1 · ~a(0) = 1.

Let

B(k) = B(−k) =

{
~a(k)~a(0)−1P if k ∈ S;
0 if k ∈ {0, . . . ,Ms−1 +Ns} \S.

Let the vector sequences ~a(k), k ∈ S be such that the matrix function

(F 0(λ)>)−1 =

Ms−1+Ns∑
k=−(Ms−1+Ns)

B(k)eikλ.
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is positive definite and has the determinant which does not equal zero identically.
In this case the matrix function can be represented in the form [18]

(F 0(λ))−1 =

Ms−1+Ns∑
k=0

Ake
−ikλ

 ·
Ms−1+Ns∑

k=0

Ake
−ikλ

∗ , λ ∈ [−π, π] ,

where Ak = 0, k ∈ {0, . . . ,Ms−1 +Ns} \S. Hence, F0(λ) is the spectral density
of the autoregressive stochastic sequence of order Ms−1 + Ns generated by the
equation

Ms−1+Ns∑
k=0

Ak~ξ(n− k) =

s−1∑
l=0

Ml+Nl+1∑
k=Ml

Ak~ξ(n− k) = ~εn, (4.2)

where ~ε(n) is a vector-valued stochastic white noise sequence.
The minimax spectral characteristic h(F0) of the optimal linear estimate of the

functional As~ξ can be calculated by the formula (2.5), where

Cs(e
iλ) =

s−1∑
l=0

Ml+Nl+1∑
k=Ml

~c(k)eikλ = ~α = P−1~a(0),

namely

h(F0) =

s−1∑
l=0

Ml+Nl+1∑
k=Ml

~a(k)eikλ −

 Ms−1+Ns∑
k=−(Ms−1+Ns)

B(k)eikλ

P−1~a(0)

=

N1∑
k=1

~a(k)e−ikλ +

s−1∑
l=1

Ml+Nl+1∑
k=Ml

~a(k)e−ikλ.

(4.3)

Summing up our reasoning we come to conclusion that the following theorem
holds true.

Theorem 4.1. The least favourable in the class D−0 spectral density for the optimal

linear estimation of the functional As~ξ determined by a sequence ~a(k), k ∈ S, such

that the matrix function
∑Ms−1+Ns

k=−(Ms−1+Ns)B(k)eikλ, where

B(k) = B(−k) = ~a(k)~a(0)−1P, k ∈ S,

is positive definite and has the determinant which does not equal to zero identi-
cally, is the spectral density of the autoregressive sequence (4.2) with the Fourier
coefficients B(k). The minimax spectral characteristics h(F0) is given by formula
(4.3).

5. Least favourable spectral densities in the class DW

Consider the problem of the optimal estimation of the functional As~ξ which

depends on the unknown values of a stationary stochastic sequence ~ξ(j) in the
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case where the spectral density of the sequence is from the set of spectral densities
with restrictions on the moments of the function (F−1(λ))>. Let

DW =

F (λ)

∣∣∣∣∣∣ 1

2π

π∫
−π

(F−1(λ))> cos(wλ)dλ = B(w) , w = 0, 1, . . . ,W

 ,

where the sequence of matrices B(w) = B(−w), w = 0, . . . ,W , are such that the

matrix function
∑W
w=−W B(w)eiwλ is positive definite and has the determinant

which does not equal zero identically (see the book by M. G. Krein and A. A.
Nudelman [18] for more details). To find solutions to the constrained optimization
problem (3.2) for the set DW of admissible spectral densities we use the Lagrange
multipliers method and the equation

s−1∑
l=0

Ml+Nl+1∑
k=Ml

~c(k)eikλ

 ·
s−1∑
l=0

Ml+Nl+1∑
k=Ml

~c(k)eikλ

∗ =

=

(
W∑
w=0

~α(w)eiwλ

)
·

(
W∑
w=0

~α(w)eiwλ

)∗
, (5.1)

where ~α(w), w = 0, 1, . . . ,W are the Lagrange multipliers and ~c(k), k = 0, . . . ,W
are solutions to the equation

B0
s~cs = ~as.

Consider two cases: W ≥Ms−1+Ns and W < Ms−1+Ns. Let W ≥Ms−1+Ns.
In this case the given Fourier coefficients B(w) define the matrix B0

s and the

optimization problem (3.1) is degenerate. Let ~α(Ms−1 +Ns+1) = . . . = ~α(W ) = ~0

and ~α(j) = ~0, j /∈ S. Components ~α(j), j ∈ S, of the vector ~αs can be found
from the equation B0

s~αs = ~as. Hence, the relation (5.1) holds true. Thus the
least favorable is every density F (λ) ∈ DW and the density of the autoregression
stochastic sequence

F 0(λ)) =

(
W∑

w=−W
B(|w|)>eiwλ

)−1

=

(
W∑
k=0

Ake
ikλ

)(
W∑
k=0

Ake
ikλ

)∗
(5.2)

is least favorable, too.
Let W < Ms−1+Ns. Then the matrix Bs is determined by the known B(w), w ∈

S ∩ {0, . . . ,W}, and the unknown B(w), w ∈ S\ {0, . . . ,W}, Fourier coefficients
of the function (F−1(λ))>. The unknown coefficients ~α(k), k ∈ S ∩ {0, . . . ,W},
and B(w), w ∈ S\ {0, . . . ,W}, can be found from the equation Bs~α

0
s = ~as,

with ~α0
s = (~α(0), . . . , ~α(W1), 0, . . . , 0), where W1 is determined from the relation

{0, . . . ,W1} = {0, . . . ,W} ∩ S.
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The last equation can be presented as the system of equations

B(0)~α(0) +B(1)~α(1) + . . .+B(−W1)~α(W1) = ~a(0);

B(1)~α(0) +B(0)~α(0) + . . .+B(−W1 + 1)~α(W1) = ~a(1);

. . .

B(W1)~α(0) +B(W1 − 1)~α(0) + . . .+B(0)~α(W1) = ~a(W1);

. . .

B(Ms−1 +Ns)~α(0) +B(1)~α(1) + . . .+B(0)~α(W1) = ~a(Ms−1 +Ns).

From the first W1 equations we can find the unknown coefficients ~α(k) and from
the next equations we find the Fourier coefficients B(w), w ∈ S\ {0, . . . ,W}.

If the sequence B(w) = B(−w), w ∈ S, that is constructed from the sequence
B(w), w ∈ S∩{0, . . . ,W} and the calculated coefficients B(w), w ∈ S\ {0, . . . ,W},
determines positive definite function with the determinant which does not equal
zero identically , then the least favourable spectral density F 0(λ) is determined
by the Fourier coefficients B(w), w ∈ S of the function (F 0(λ)>)−1

F 0(λ) =

Ms−1+Ns∑
k=0

(B(k)>eikλ +B(−k)>e−ikλ)

−1

=

=

Ms−1+Ns∑
k=0

Ake
ikλ

Ms−1+Ns∑
k=0

Ake
ikλ

∗ . (5.3)

Let us summarize our results and present them in the form of a theorem.

Theorem 5.1. The least favourable spectral density in the class DW for the optimal

linear estimate of the functional As~ξ in the case where W ≥Ms−1 +Ns is the spec-
tral density (5.2) of the autoregression stochastic sequence of order W determined
by coefficients B(w), w = 0, 1, . . . ,W. In the case where W < Ms−1 + Ns and so-
lutions B(w) = B(−w), w ∈ S\ {0, . . . ,W}, of equation Bs~α

0
s = ~as together with

coefficients B(w) = B(−w), w ∈ S ∩ {0, . . . ,W}, form a positive definite function
with the determinant which does not equal zero identically, the least favourable
spectral density in DW is the density (5.3) of the autoregression stochastic se-
quence of the order Ms−1 + Ns. The minimax characteristic of the estimate is
calculated by formula (2.11).

6. Least favourable spectral densities in the class DU
V

Consider the problem of the optimal estimation of the functional As~ξ which

depends on the unknown values of a stationary stochastic sequence ~ξ(j) in the
case where the spectral density of the sequence is from the set of spectral densities

DU
V =

F (λ)

∣∣∣∣∣∣0 ≤ V (λ) ≤ F (λ) ≤ U(λ),
1

2π

π∫
−π

(F−1(λ))>dλ = P

 ,

where V (λ), U(λ) are given spectral densities. To find solutions to the constrained
optimization problem (3.2) for the set DU

V of admissible spectral densities we use
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the condition 0 ∈ ∂∆D(F 0). It follows from the condition 0 ∈ ∂∆D(F 0) for
D = DU

V that the Fourier coefficients of the function (F 0(λ)>)−1 satisfy both
equation

B0
s~cs = ~as

and the equations−1∑
l=0

Ml+Nl+1∑
k=Ml

((
B0
s

)−1
~as

)
(k)eikλ

s−1∑
l=0

Ml+Nl+1∑
k=Ml

((
B0
s

)−1
~as

)
(k)eikλ

∗ =

= Γ1(λ) + Γ2(λ) + ~α · ~α∗, (6.1)

where Γ1(λ) ≥ 0 and Γ1(λ) = 0 if F 0(λ) ≥ V (λ); Γ2(λ) ≤ 0 and Γ2(λ) = 0 if
F0(λ) ≤ U(λ). Therefore, in the case where V (λ) ≤ F 0(λ) ≤ U(λ), the function
(F 0(λ))−1 is of the form

(F 0(λ))−1 =

Ms−1+Ns∑
k=0

(B(k)>eikλ +B(−k)>e−ikλ) =

=

Ms−1+Ns∑
k=0

Ake
ikλ

Ms−1+Ns∑
k=0

Ake
ikλ

∗ ,
where B(k) = B(−k) = ~a(k)~a(0)−1P. The least favourable in the class DU

V is the
density of the autoregression stochastic sequence of the order Ms−1 + Ns if the
following inequality holds true

V (λ) ≤

Ms−1+Ns∑
k=0

(B(k)>eikλ +B(−k)>e−ikλ)

−1

≤ U(λ), λ ∈ [−π, π] . (6.2)

The following theorem holds true.

Theorem 6.1. If the coefficients B(k) = B(−k) = ~a(k)~a(0)−1P, k ∈ S, satisfy
the inequality (6.2) and form a positive definite function with the determinant
which does not equal zero identically, then the least favourable in the class DU

V

spectral density for the optimal linear estimate of the functional As~ξ is density
(4.2) of the autoregression stochastic sequence of order Ms−1 +Ns. The minimax
characteristic h(F 0) of the estimate can be calculated by the formula (4.3). If the
inequality (6.2) is not satisfied, then the least favourable spectral density in DU

V is
determined by relation (6.1) and the constrained optimization problem (3.1). The
minimax characteristic of the estimate is calculated by formula (2.11).

7. Conclusions

In this article we describe methods of solution of the problem of the mean-square

optimal linear estimation of the functional As~ξ =
s−1∑
l=0

Ml+Nl+1∑
j=Ml

~a(j)>~ξ(j), Ml =
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l∑
k=0

(Nk+Kk), N0 = K0 = 0, which depends on the unknown values of the station-

ary stochastic sequence ~ξ(j) = {ξk(j)}Tk=1. Estimates are based on observations of

the sequence ~ξ(j) at points j ∈ Z\S, where S =
s−1⋃
l=0

{Ml,Ml + 1, . . . ,Ml +Nl+1}.

We provide formulas for calculating the values of the mean square error and the
spectral characteristic of the optimal linear estimate of the functional in the case

where the spectral density of the sequence ~ξ(j) is exactly known. In the case
where the spectral density is unknown while a set of admissible spectral densities
is given, the minimax approach is applied. We obtain formulas that determine the
least favourable spectral densities and the minimax spectral characteristics of the

optimal linear estimates of the functional As~ξ for concrete classes of admissible
spectral densities. It is shown that spectral densities the autoregressive stochastic
sequences are the least favourable in some classes of spectral densities.
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