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Two-fluid Non-linear Models for Blood Flow in Stenosed Arteries:
A Comparative Study

D. S. Sankar”

Abstract: Pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid
model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in
the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as
a (i) Herschel-Bulkley fluid and (ii) Casson fluid. Perturbation method is used to solve the system of non-linear
partial differential equations. The expressions for velocity, flow rate, plug core radius, wall shear stress and
resistance to flow are obtained for two-fluid Casson model and the expressions for these flow quantities obtained
by Sankar and Lee (2006) for two-fluid Herschel-Bulkley model are used to get the data for comparison. It is
noted that the plug flow velocity and velocity distribution for the two-fluid Casson model are considerably
higher than those of the two-fluid Herschel-Bulkley model for a given set of values of the parameters. Further, it
is found that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very
low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Thus, it is concluded
that the two-fluid Casson model is more useful than the two-fluid Herschel-Bulkley model to analyze the blood
flow through stenosed arteries.
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1. INTRODUCTION

There are many evidences that vascular fluid dynamics plays a major role in the development and progression
of arterial stenosis. Arteries are narrowed by the development of atherosclerotic plaques that protrude into the
lumen, resulting arterial stenosis. When an obstruction developed in an artery, one of the most serious
consequences is the increased resistance and the associated reduction of the blood flow to the particular vascular
bed supplied by the artery. Thus, the presence of a stenosis leads to the serious circulatory disorder.

Several theoretical and experimental attempts were made to study the blood flow characteristics in the
presence of stenosis [1-8]. The assumption of Newtonian behavior of blood is acceptable for high shear rate
flow through larger arteries [9]. But, blood, being a suspension of cells in plasma, exhibits non—Newtonian
behavior at low shear rate (7 < 10/sec) in small diameter arteries [10]. In diseased state, the actual flow is
distinctly pulsatile [11, 12]. Many researchers studied the non—-Newtonian behavior and pulsatile flow of blood
through stenosed arteries [1, 3, 9, 12].

Bugliarello and Sevilla [13] and Cokelet [14] have shown experimentally that for blood flowing through
narrow blood vessels, there is a peripheral layer of plasma and a core region of suspension of all the erythrocytes.
Thus, for a realistic description of the blood flow, it is appropriate to treat blood as a two-fluid model with the
suspension of all the erythrocytes in the core region as a non-Newtonian fluid and plasma in the peripheral
region as a Newtonian fluid.
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Sankar and Lee [15] have developed two-fluid model for pulsatile blood flow through arterial stenosis
treating the fluid in the core region as Herschel-Bulkley fluid. Thus, in this paper, we extend this study to two-
fluid Casson model and; compare these models and discuss the advantages of the two-fluid Casson model over
the two-fluid Herschel-Bulkley (H-B) model.

2. MATHEMATICAL FORMULATION

Consider an axially symmetric, laminar, pulsatile and fully developed flow of blood (assumed to be
incompressible) in the z direction through a rigid walled circular artery with an axially symmetric mild stenosis.
The geometry of the arterial stenosis is shown in Fig. 1. We have used the cylindrical polar coordinates (7, ¢, z).
Blood is represented by a two-fluid model with the suspension of all the erythrocytes in the core region as a
Non-Newtonian fluid and the plasma in the peripheral region as a Newtonian fluid. The non-Newtonian fluid in
the core region is represented by (i) Casson fluid model and (ii) Herschel-Bulkley fluid model. The geometry of
the stenosis in the peripheral region (in dimensionless form) and core region are respectively given by

R, in the jormal artery region
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(a) Two-fluid Casson Model (b) Two-fluid Herschel-Bulkley Model

Figure 1: Geometry of the Two-fluid Models with Arterial Stenosis

where R(z) and R, are the radii of the stenosed artery with the peripheral region and core region respectively;
R, and BR are the radii of the normal artery and core region of the normal artery respectively; B is the ratio of
the central core radius to the normal artery radius; L, is the length of the stenosis; d indicates the location of the
stenosis; 8p and O, are the maximum projections of the stenosis in the peripheral region and core region
respectively such that [ 8p/ R]<<land[3/R]<<1.
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2.1 TWO-FLUID CASSON MODEL

2.1.1 Governing equations

It can be shown that the radial velocity is negligibly small and can be neglected for a low Reynolds number
flow. The basic momentum equations governing the flow are

pc(0uc/or)= —(ép/oz)-(1/7)(8(F7 )/oF)in0<F <R (Z) 3)
py (0t /07 ) =—(ap/oz) - (1/7)(8(FTy ) /o7 )in R, (Z) <7 <R(Z) (4)
where the shear stress T=|T-.]=— T-_(since 1=t 0r 1= 1,); p is the pressure; u_and u, are the axial

velocity of the fluid in the core region and peripheral region, respectively; t cand T, are the shear stress of the
Casson fluid and Newtonian fluid, respectively; p.and p, are the densities of the Casson fluid and Newtonian
fluid respectively; ¢ is the time. The relations between the shear stress and strain rate of the fluids in motion in
the core region (Casson fluid) and peripheral region (Newtonian fluid) are given by

VT =\-fic (G /o) +[7, if T 2%, and R, <F <R, (2) (5)

(Ouc/o7)=0 if To<T, and O0<F<R (6)

2

Ty =—Hy (Giy /0F) if R (Z)<F<R(Z) )

where _pc and _pN are the viscosities of the Casson and Newtonian fluids respectively; ?v is the yield stress; R,
is the plug core radius. The boundary conditions are

To isfiniteand 0. /oF =0 at 7 =0
7, =0 at r=R ®)

?C = TN al’ld ﬁc = I/_lN at 7= Rl

Since the pressure gradient is a function of zand 7, we assume
~(op/z)=q(2)(7) ®

where F](Z) = —(ﬁp /07 ) (Z,O). Since, any periodic function can be expanded in a Fourier sine series, it is
reasonable to choose 1+ Asin®7 as a good approximation for f{ ¢ ), where A and ® are the amplitude and
angular frequency of the flow respectively. We introduce the following non-dimensional variables

q(z)=c_1(2)/c_10,sc =g Zﬁgaﬁc/ﬁc@v =ay =E§6§N/EN,RP =Ry /Ry,
Sp ZSP/EO 8¢ ch/ﬁo’uc Zﬁc/(c_loﬁg/“l_lc)’uzv ZEN/(§OE§/4F_1N)’

Tc Z?c/(qoﬁo/z)ﬂ'zv =?N/(%Eo/z)’e=_y/(§oﬁo/2)’t =of (10)
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where {0, is the negative of the pressure gradient in the normal artery, a. and a, are the pulsatile Reynolds
numbers of the Casson fluid and Newtonian fluid respectively. Using the non-dimensional variables, Egs. (1) -
(5) are simplified to

ec (Ouc [or) = 4q(z)f(t)—(2/r)6(rrc)/6r if0<r<Rr(z) (11)

Jie =J(-1/2)ouc jor +4/8 if 120 and R, <r<R(z) (12)

duc[or=0 if 1o <Oand0<r<R, (13)

En 8uN/6t =4q(z)f(t)—(2/r)8(r1:N)/ar }ile(z)SrS R(Z) (14)
Ty =—(1/2)(8uN/8r)

where
f()=1+Asint (15)
The boundary conditions (in the dimensionless form) are
z,.is finite and Ou /or=0at r=0
T.=1tyand u.=u, atr=R, (16)

u,=0atr=R

The geometry of the stenosis in the peripheral region and core region (in the dimensionless form) are given by

1 in the normal artery region
(<) 1-(8,/2) {1+ cos| (2n/Ly ) (2= d = (Ly/2)) |} in d<z<d+L, (17)
B in the normal artery region
Ri(2)= . (18)
B—(8¢c/2){1+cos[ (2n/Ly)(z-d~(Lo/2))]} in d<z<d+Ly
The non-dimensional volume flow rate Q is given by
0 =4I;(Z)u(r,z,t)rdr (19)

where Q = Q/ (nI_Qg 9 / 8Hy), QO is the volume flow rate.

2.1.2 Method of Solution

When we non-dimensionalize the constitutive Eqs. (1) and (2), €. and ¢, occur naturally and these are
time dependent and hence, it is more appropriate to expand the Eqgs. (11)-(14) about ¢ and ¢,. Let us
expand the plug core velocity U, the velocity in the core region u . in the perturbation series of ¢ . as below
(where g, << 1)
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u, (z,t)= u,, (z, ) +eC u, (z, )+ ... (20)
u.(r,z, D=u,.(r,z,0+e.u, (r,z, )+ ... 21)

Similarly, one can expand u,, 7,, T, T, and R, in powers of ¢_and g, where ¢, << 1. Using the perturbation
series in Egs. (11) and (12) and then equating the constant terms and ¢ . terms, the differential equations of the
core region become

ﬁ(rroc )/8r = 2q(z)f(t)r, ﬁuoc/ﬁt = —(2/r)8(rrlc )/8r

—dupe [0r =2(toc =20roc +0), = [or =270 (1=[0]xoc )

Similarly, using the perturbation series expansions in Eq. (14) and then equating the constant terms and ¢,

(22)

terms, the differential equations of the peripheral region become

a(mON )/6r =2q(z)f(t)r, Ougy /Ot =—(2/r)8(rrw )/6r

23
—8M0N/a}"=2‘CON, —aLth/ar=2‘ClN ( )

Substituting the perturbation series expansions in Eq. (16) and then equating the constant terms and ¢_and g,
terms, we get

T, and 1, are finite and Ouyp /Or = 0,0u,p /Or =0at r=0

Toc =Ton»Tic = TinsUoc =Uon» Ui =Upy At =R, (24)

M0N=M1N=Oatr=R

Solving the system of Egs. (22) and (23) using Eq. (24) for the unknowns u ., u, ., Ty T; s Ugys Uyps Toye Tiy» ONE
can obtain
Ty, = VR, 1o =, V1, = Vr (25)
u,, =V R (1- &) (26)
Uy = VR {1 =)+ QL [(1-EH-(8/3)5,"* (1 -6, + 20, (1-E)]} 27
Uy, = VR {(1 =)+ [(1 - %*) = (8/3) 5, (1 = ™) + 205, (1 - 1)1} (28)
1, = VBR’ {(1/4)0(1 - %) + @ 5,[(1/4) <(1/3) 5, + (1/12) 5%]} (29)
T, ==V BR {(1/HE (1- )
()28, -’ -0, " = (821)c, > (7€, — 45 - 35,77 &, D]} (30)
T,y =— VBRR {([1/HE, - (1/8)* ' — (1/8)X¥°E ]
+&,7 2 [(1/8) — (1/7) ©,'* + (1/56)5 *]} (31)
u, =—-VBR R {[1/4) Q" (1-8) - (1/4)QQ log &' - (1/16) Q' (1-E%)]
- QP log E[(1/4) - (2/7) 5, + (1/28)5 *]} (32)
u,. =-VBR R {[3/16)Q2" - (1/4)Q + (1/16)C2 + (1/4)C¥ log Q]
-’ log Q [(1/4( - (2/T)o,'* + (1/28)c %]
+Q (1I-)[(/H(A-E) - (1/3)0,2 (1 - £ )] (33)

+ O3 [(1/4) (1 - &) — (1/3)5,"2 (1= ¥2)~(1/16)(1- & *)
+(53/294)5, "> (1 =€) = (1/3) (1 = £ 2 + (419) 5, (1 — £ )
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—(8/63)c, (1 &) - (1/28)c *log &' + (1/14)5 > (1 - §, "))}
u, =—V BRRI {((3/16)Q" —(1/4)Q2 + (1/16)¥* + (1/4)* log Q)

- QP log Q (1/4) - 2/T)s, "> + (1/28) 6 %)

+Q (1 -M[1/4)(1-062)-(1/3)6,"* (1 -c,.*?)] (34)

+Q [(1/H( -0 ) - (1/3)5,'* (1 -6 - (1/16) (1-0,*)

—-(53/294)5 "* (1 —6,"*) = (1/3)(1 =) + (4/9) 5, (1 =)

+(8/63) 20, (1-6°) - (1/28) 5,* log 5, + (1/14) 6 ** (1- 5,-"")]} (34)
where V = g(f(1), k* = "ry,e o= Ry, =07 [q@fD], B=[1fD)df()/dn), E=1/R, & =1/R,, Q=R /R, 6= KIR, o,
=Kk/R ,and y = ROP/RI. The wall shear stress T can be obtained as below.

T, = (ton + €570, ok = Tow t &4 T1u
=V{R-1/8) BR ¢, (1 -Q*) - (1/8) BR ¢, Q[1 -(8/7) c,"*+ (1/7) 5 *]} (35)
Using Eqgs. (26)-(28) and (32)-(34) in Eq. (19), the volume flow rate is obtained as
O=VR {1-Q2)(1+32%)+Q*[1-(16/7)c,"* + (4/3)5, — (1/21)c,*]}
—&.V BR3 R {[3/8)Q2" = (172)Q + (1/8)C2* + (1/2) ¥ log Q]
- QP log Q[(1/2) - (4/T)o,'* + (1/14)c %]
+Q(1 -Q) [(1/4) - 2/T)o,"* + (1/28) 5 %] (36)
+ Q*[(1/6) — (30/77)G,'* + (8/35)c, — (1/3) 6% + (1/14) 5 *
+(5/21) 67> - (41/770) 5,°* - (1/14) 5, = log 5, + (1/14) 5 ,* (1-5?) log k]}
—-¢, VBR R {[(1/6)Q2" — (3/8)Q2 + (5/24)C¥ — (1/2)Q3 (1-Q*) log R ]
+ QY (1-Q*) (1 +21og R) [(1/4) — (2/7) 5,'* + (1/28) 5 *]}

The shear stress 1. = 1.+ &, T at r=R is given by

[Toc + &c TIC|r:Rp =0 (37)
Using the Taylor’s series of 7. and 7, . about R and using 10C|r7R0 =0, we get
—Up
R, =- 11C|r:ROP/V (38)

Using Egs. (25), (30) and (38) in the two term approximated perturbation series of R, the expression for R, can
be obtained as

R = k* —(1/4) Be . R [6* (1-*) + Q0 (0, — 46 /3 + 6 */3)] (39)
The resistance to flow is given by
A =[Ap fD))/Q (40)
where Ap is the pressure drop. When R = R, the present model reduces to the single fluid Casson model and in

such case, the expressions obtained in the present model for velocity u o shear stress t o wall shear stress t ,
flow rate Q and plug core radius R are in good agreement with those of Chaturani and Ponnalagar Samy [12].

2.2 Two-Fluid Herschel-Bulkley Model

The basic momentum equations governing the flow and the constitutive equations in the non-dimensional form
are
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g, (Ou,J0r) = 4q (2) f (1) = 2/P)@(r,)/or) if 0< r <R, (2) 1)
&, (Ou,JOr) = 4q (2) ft) - 2/r)(@(rt,)/0r) if R (2) < r < R(2) 42)
vy =4/-(1/2)(0uy for) +0if 1, >0and R, <r <R, (2) 43)
Ou,Jor=0ift,<0 andOSrSRP (44)

1, =~ (1/2) (u, /or) if R, (2) £ r <R(2) 45)

The boundary conditions (in dimensionless form) of this model are similar to the boundary conditions of
the two-fluid Casson model given in Eq. (8). Egs. (41) — (45) are also solved using perturbation method with the
help of the appropriate boundary conditions as in the case of the two-fluid Casson model. The details of the
derivation of the expressions for shear stress, velocity, flow rate, plug core radius, wall shear stress and resistance
to flow are given in Sankar and Lee [15].

3. RESULTS AND DISCUSSION

The objective of the present analysis is to compare and bring out advantages of the two-fluid Casson model over
the two-fluid Herschel-Bulkley model. It is observed that the typical value of the power law index n for blood
flow models is taken as 0.95 [3]. The value 0.1 used for the non-dimensional yield stress 0 in this study. Though
the range of the amplitude A is from O to 1, we have used the value 0.5. The value 0.5 is used for the pulsatile
Reynolds number o, a. and pulsatile Reynolds number ratio a of both the two-fluid models [11]. The value of
the ratio B of central core radius B R, to the normal artery radius R in the unobstructed artery is generally taken
as 0.95 [15]. Following Shukla et al. [16], relations R = BR and 6, = BSP are used to estimate R, and . The
maximum thickness of the stenosis in the peripheral region 6, is taken as 0.1 [11]. The steasy flow rate O, value
is taken as 1.0 [12]. It is observed that in the expression of the flow rate for the two-fluid Casson model, f(¥),
R and 0 are known and Q and ¢(z) are the unknowns to be determined. A careful analysis of the flow rate
expression reveals the fact that g(z) is the pressure gradient of the steady flow. Thus, if steady flow is assumed,
then the expression for the flow rate can be solved for g(z) [3,12]. For steady flow, the expression for flow rate
of the two-fluid Casson model reduces to

(R* -4R7R} +3R} )y* +[(R1y)4 - (16/7)o Rly)7 +(4/3)8(Ry)’ —(1/21)94}—st3 =0 (46)

The similar equation for the two-fluid Herschel-Bulkley model is
(R = R )LAO/Q) + (R2 = Ry + [4/(n + 2)(n + 3)]
{(n+2)(Ryy+ —n(n+3)0 (Rly)”+2 + (M +2n-2)0"} -0y’ =0 47

The variation of pressure drop in a time cycle for the two-fluid Herschel-Bulkley (H-B) and Casson models
with0=35,=0.1, A=0.5and 3 =0.95 is shown in Fig. 2. It is observed that for both the two-fluid models the
pressure drop increases as time ¢ (in degrees) increases from 0° to 90° and then it decreases as ¢ increases from
90° to 270° and again the pressure drop increases as ¢ increases further from 270° to 360°. The pressure drop is
maximum at 90° and minimum at 270°. It is found that at any time, the pressure drop is considerably very low
for the two-fluid Casson model than that of the two-fluid H-B model while all the other parameters held constant.
Fig. 3 depicts the variation of the plug core radius with axial distance for the two-fluid H-B and Casson models
with0=6,=0.1, A=0.5 and B = 0.95. It is noticed that the plug core radius decreases as the axial variable
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Figure 2: Variation of Pressure Drop in a Time Cycle for the Two-fluid Casson and H-B Models
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Figure 3: Variation of Plug Core Radius with Axial Distance for the Two-fluid Casson and Herschel-Bulkley Models

increases from 4 to 5 and it increases symmetrically when the axial variable increases from 5 to 6. It is noted that
for a given set of values of the parameters, the plug core radius values are significantly very low for the two-
fluid Casson model than that of the two-fluid H-B model.

3.1 Plug Flow Velocity

The variation of the plug flow velocity in a time cycle for the two-fluid Casson and H-B models with 6 =6, =
0.1,A=0.5,a=0a,=0a.=0.5,0a,=0.25,3=0.95 and z =5 is depicted in Fig. 4. It is seen that the plug flow
velocity decreases as time ¢ (in degrees) increases from 0° to 90° and then it increases as ¢ increases from 90° to
270° and then again it decreases from 270° to 360°. The plug flow velocity is minimum at 90° and maximum at
270°. It is noted that the plug flow velocity is considerably higher for the two-fluid Casson model than that of
the two-fluid H-B model.
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Figure 4: Variation of Plug Flow Velocity in a Time Cycle for the Two-fluid Casson and Two
Fluid Herschel-Bulkley Models

3.2 Wall Shear Stress

Fig. 5 shows the variation of the wall shear stress in a time cycle for the two-fluid Casson and H-B models with
0=6,=0.1,A=05,a=0,= a.=0.5,a,=0.25, B =0.95 and z = 5. The behaviour of the wall shear stress is
just reversed for the two-fluid models that we observed in Fig. 4 for the plug flow velocity.

Wall shear stress 1,

Two-fluid Casson model

0 T T T T T T

Two-fluid H-B model

0 30 60 90 120 150 180 210 240 270 300 330 360

Time t°

Figure 5: Variation of Wall Shear Stress in a Cycle for the Two-fluid Casson and Two Fluid Herschel-Bulkley Models

3.3 Velocity Distribution

The velocity distributions for the two-fluid H-B and Casson models with 6 =8, =0.1, A=0.5, aa = o, =
a.=0.5,a,=0.25, =0.95 and r = 45° are sketched in Fig. 6. One can notice the plug flow around the tube
axis for both the fluid models. It is further recorded that for a given set values of the parameters, a
significantly high magituge velocity profile is found for the two-fluid Casson model model than the two-fluid

H-B model.
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3.4 Resistance to Flow

The variation of resistance to flow with peripheral layer stenosis height for the two-fluid Casson and H-B
models with0=6,=0.1,A=0.5,a=a,=a,.=0.5, a,=0.25, 3 =0.95 and 7 = 45° is shown in Fig. 7. It is seen
that the resistance to flow increases non-linearly with the increase of the peripheral stenosis height. It is of
interest to note that for any value of the stenosis height, the resistanc to flow is considerably very low for the
two-fluid Casson model than that of the H-B model.

4
<
S 35 {Two-fluid H-8 model —
g3
o
) 3 .
Q -
@ e
EZ.S- _____---" |
e  p-7 Two-fluid Casson model
x - . .

0 0.05 0.1 0.15

Peripheral stenosis height op

Figure 7: Variation of Resistance to Flow with Peripheral Layer Stenosis Height for the Two- fluid
Casson and Two-fluid Herschel-Bulkley Models

4. CONCLUSION

The pulsatile blood flow through stenosed arteries is analyzed assuming blood as a (i) two-fluid Casson model
and (ii) two-fluid Herschel-Bulkley model. It is observed that the velocity distribution for the two-fluid Casson
model is considerably higher than that of the two-fluid Herschel-Bulkley fluid model for a given set of values of
the parameters. Further, it is noticed that the pressure drop, plug core radius, wall sheat stress and the resistanc
to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley
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model. It is of interest to note that the difference between the estimates of the two-fluid Casson model and the
two-fluid Herschel-Bulkley model is sustantial. Thus, it is concluded that the two-fluid Casson model will have
more applicability in analysing the blood flow through stenosed arteries.
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