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Abstract: This paper deals with the problem of global existence and asymptotic stability of periodic solution for
reaction-diffusion BAM neural networks with discrete time-varying delays or distributed delays. Based on the
Lyapunov method and coincidence degree, some sufficient conditions for the neural networks with reaction-
diffusion terms are derived. Since the activation functions do not need to satisfy the boundedness conditions, the
criteria are less conservative than existing ones reported in the literature for delayed neural networks.

1. INTRODUCTION

A class of two-layer interassociative network called bidirectional associative memory (BAM) neural network
first introduced by Kosto [1-2] is an important model with the ability of information memory and information
association, which is crucial for application in pattern recognition, solving optimization problems and automatic
control engineering. In such applications, the dynamical characteristics of networks play an important role.
There have been many analytical results for BAM neural networks with and without axonal signal transmission
delays [4-15].

Recently, periodic solution for BAM neural networks with delays has been studied, for example, see [3-8]
and references therein. In [6-8], some sufficient conditions ensuring the existence, uniqueness and global
exponential stability of periodic solution were given for BAM neural networks with constant delays. In [3-5],
under the hypothesis for the boundedness or monotonicity on the activation functions, the authors gave several
sufficient conditions ensuring the existence and global exponential stability of periodic solution for BAM neural
networks with time-varying delays or distributed delays. However, in some applications, one requires to use
unbounded activation functions [7]. For example, when neural networks are designed for solving optimization
problems in the presence of constraints (linear, quadratic, or more general programming problems), unbounded
activations modelled by diode-like exponential-type functions are needed to impose constraints satisfaction.
The extension of the quoted results to the unbounded case is not straightforward.

Moreover, so we must consider that the activations vary in space as well as in time. Refs. [5,9-11] have
considered the stability of neural networks with diffusion terms, which are expressed by partial differential
equations. Recently there has been a somewhat a new category of BAM neural networks, which contains
distributed delays. Interested readers may refer to [11-14]. Therefore, it’s necessary to consider both diffusion
effects and delay effect on the periodic solution and stability of neural networks. To the best of our knowledge,
few authors have considered periodic oscillatory solutions for large-scale networks with delays and reaction-
diffusion terms due to the difficulty of these complicated networks’ analysis [5,15].

On the other hand, the existing literature on artificial neural networks is predominantly concerned with
autonomous systems containing temporal uniform networks parameters and input stimuli. Motivated by the
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above discussions, we will make contributions on the issues of existence and global asymptotic stability of the
periodic oscillatory solutions of reaction-diffusion BAM neural networks with time-varying delays or distributed
delays and the hypothesis for boundedness and monotonicity on the activation functions and differentiability on
time-varying delays are removed. Specifically, we consider a class of neural networks with reaction-diffusion
terms of the form:
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Every hij and kji : [0, �) � [0, �) are pieces of the continuous integral functions, and satisfy that

(H1) ��
�
 hij(s)ds = 1, ��

�
 kji(s)ds = 1.

The boundary conditions of the BAM (1.1) or (1.2) are
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where v = (v1, v2, …, vl)
T � ��� Rl; � is a compact set with smooth boundary �� and mes � > 0 in space Rl; x

= (x1, x2, �, xn)
T � Rn; y = (y1, y2, �, yp)

T � Rp. And yj(t, v) are the state of the ith neurons and the jth neurons at
time t and in space v, respectively; Ii(t) and Jj(t) denote the external inputs on the ith neurons and the j th neurons
at time t, respectively; the time delays �ij(t) and �ji(t) correspond to the finite speed of the axonal transmission of
signal. aij(t) and bji(t) represent the strengths of synaptical connections.

Throughout this paper, we always assume that ai(t), bj(t), aij(t), bji(t),�ij(t), �ji(t), Ii(t) and Jj(t) are continuously
periodic functions defined on t � [0, �) with common period � > 0. Moreover, ai(t), bj(t), �ij(t), �ji(t), are
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positive everywhere, fj(t, x) and gi(t, x) are continuous and �–periodic with respect to t. Smooth function Dik =
Dik(t, x, v) � 0 and D*

jk = D*
jk(t, x, v) � 0 correspond to the transmission diffusion operator along the ith neurons

and the j th neurons, respectively.

Suppose

� = max{�ij(t); 1 � i � n, 1 � j � p, t � [0, �)},

� = max{�ji(t); 1 � i � n, 1 � j � p, t � [0, �)}.

Then we let K = [–�, 0] × [–�, 0] and use C(K) = {� : K � Rn+p is continuous} with the supernorm as the Banach
space for system (1.1) and we will always tacitly use the identification

C(K) = C([–�, 0]; Rn) × C([–�, 0]; Rp).

For each given initial value � = (�, �)T � C(K) with � � v([–�, 0]; Rp) and � � C([–�, 0]; Rp), one can solve
system (1.1) by method of steps to obtain a unique pair of continuous maps x : [–�,�) � Rp and y : [–�, �) � Rn

such that (x, y)T : (0, �) � Rn+p is continuously differentiable and satisfies (1.1) for t > 0, x� [–�, 0] = � and y�[–�, 0]

= �.

In this paper, by means of some spectral theorems, Lyapunov functional, inequality analysis and a continuation
theorem based on coincidence degree, we obtain some new sufficient conditions ensuring the existence, uniqueness
of the periodic solution.

2. GLOBAL EXISTENCE OF PERIODIC SOLUTIONS

For convenience, we use the following notations:
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where f is a continuous periodic �–periodic function. For matrix A = (aij)n×n, let �(A) denote the spectral radius
of A. A matrix or a vector A � 0 means that all the entries of A are greater than or equal to zero, similarly define
A > 0.

Theorem 1: Assume that ai(t) > 0 and bj(t) > 0 i = 1, 2, �, n; j = 1, 2, �, p for t � 0. Moreover,

(A1) there exist non-negative constants pj , qi, �j and �i such that

�fj(t, u)� � pj �u� + �j , �gi(t, u)� � qi�u� + �i (2.1)

for any t, u � R, = 1, 2, �, n, j = 1, 2, �, p;

(A2) �(M) < 1, where M = (mij)(n+p)×(n+p) and
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Then (1.1) has at least one �–periodic solution.

Proof: In order to use the continuation theorem for (1.1), we denote by Z (respectively, X) as the set of all
continuously respectively, differentiable �–periodic functions u(t) = (x1(t), �, xn(t), y1(t), �, yp(t))

T defined on

3



178 Journal of Mathematical Control Science and Applications (JMCSA)

R and denote �u�0 = 
1 1
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+]}. Then X and Z are Banach spaces when they are endowed with the

norms �·�0. For u � X and z � Z, set
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for j = 1, 2, �, p.

It is not difficult to show that Ker L = Rn+p, and that P,Q are continuous projectors such that Im L = {z � Z
: �

�

0 z(t)dt = 0} is closed in Z and that dim Ker L = n + p = co dim ImL, and that P, Q are continuous projectors
such that Im P = Ker L and Ker Q = Im L = Im(I – Q). It follows that L is Fredholm mapping of index zero.
Furthermore generalized inverse (of L) Kp : i = Im L ��Ker P � Dom L reads

(Kp u)i(t) = 
0 0 0

1
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t t
i iu s ds u s dsdt
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for u = u(t) � Z. Thus, it is easy to see that QN and Kp(I – Q)N are continuous An application of the
Arzela-Ascoli theorem to Kp(I – Q)N results in the fact that Kp(I – Q)N( �̄) is compact for any open bounded
��� X. Moreover, QN( �̄) is clearly bounded. Thus, N is L–compact on  �̄ with any open bounded set ��� X.

Now we reach the position to search for an appropriate open bounded subset � for the application of the
continuation theorem Corresponding to the operator equation Lu = �Nu, � � (0, 1), we have

� �

� �

( )

1 1

( )

1 1

( ) ( ) ( ) ( ( ( ))) ( )

( ) ( ) ( ) ( ( ( ))) ( )

i i

k k

j j

k k

pl
x t v x

ik i i ij j j ij it v v
k j

l ny t v y
jk j j ji i i ji jt v v

k i

D a t x t a t f t y t t I t

D b t y t b t g t x t t J t

� � ��
� � �

� �

� � ���
� � �

� �

�
� � � � � � � � � � � ��

�
�
� � � � � � � � � � � � ��
�

� �

� �
(2.2)

for i = 1, 2, �, n, j = 1, 2, �, p.

Assume that u = u(t) � X is a solution of (2.2) for a certain ��� (0, 1). Then xi(t) and yj(t), as the components
of u(t), are all continuously differentiable. Thus, there exist ti, t�j � [0, �] such that �xi(tj)� = [xi(t)]

+ and �yj(t�j)� =
[yj(t)]

+.

Hence, �xi(ti) = �yj(tj) = 0. This implies that

4



Global Existence and Stability of Periodic Solution for Two Kinds of BAM Neural Networks with Diffusion 179

� �

� �
1 1

1 1

( ) ( ) ( ) ( ( ( ))) ( )

( ) ( ) ( ) ( ( ( ))) ( )

i

k k

j

k k

pl
x

i i i ik ij j j ij iv v
k j

l n
y

j j jk ji i i ji jv v
k i

a t x t D a t f t y t t I t

b t y t D b t g t x t t J t

��
� �

� �

���
� �

� �

�
� � � � � � ��

�
�
� � � � � � � � � ��
�

� �

� �
(2.3)

It follows from the first equation of (2.3) that for i = 1, 2, �, n, we have
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In view of �(M) < 1, it follows that

(E –M)T � 0 and h = (E –M)–1D � 0

(see [16] for more details), where D = (D1, D2, �, DT
n+p. It follows from (2.4) and (2.5) that
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+ � hn+j , for i = 1, 2, �, n, j = 1, 2, �, p, (2.6)

where hi is the ith component of vector h. Clearly, hi (i = 1, 2, �, n + p) are independent of �.
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Namely,
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Thus we have �(QN u)i� >
 0 for all i � �1, 2, �, n}. Similarly, �(QN u)i� > 0 for all i ��{n + 1, n + 2, �, n + p}.

Therefore, (2.9) holds and
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QN u � 0, u � ��� � Ker L.

Define

� : � � Ker L × [0, 1] � X = Im L = Xcby,
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T � � � Rn+p and µ � [0, 1].
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Using the property of topological degree and taking J to be the identity mapping I : Im Q � Ker L, we have

deg(JQN,�� � Ker L, 0) = deg(�(·, 0), � � Ker L, 0) = deg(�(·, 1), � � Ker L, 0),

= deg(diag(– ā1, �,– ān, – b̄1, �, – b̄p), � � Ker L, 0) = 1.

Therefore, according to the continuation theorem of Gaines and Mawhin [17], system (1.1) has at least one �–
periodic solution. The proof is completed.

Remark 1: In this section we has proved the existence of periodic solution of (1.1) and avoided finding a
Lyapunov functional for the convenience of proof.

3. GLOBAL ASYMPTOTIC STABILITY OF PERIODIC SOLUTION

In this section, we shall construct a suitable Lyapunov functional to derive a sufficient condition which ensures
the global asymptotic stability of periodic solution of system (1.2).

In the sequel, we will use the following notations:

[0 ] [0 ] [0 ] [0 ]
min ( ) min ( ) max ( ) max ( )i i j j ij ij ji ji

t t t t
a a t b b t a a t b b t� � � �

� �� � �� � �� � ��
� � � � � � �� � � ��

where i = 1, 2, �, n, j = 1, 2, �, p.

Assumption 1: For system (1.2), suppose that the activation functions fi(·), gi(·) are bounded and satisfy
that (H2) there exists a positive number Li such that

� fi(x) – fi(y)��· Li �x – y�, �gi(x) – gi(y)��· Li �x – y�

for all x, y � R, i = 1, 2, �, max{p, n}.

Theorem 2: Assume that (H1)–(H2) hold. If

2 2
1 0

1

2 ( ) 0
p

i ij i ji ji
j

B a a L b k s ds
�� � �

�

� �� � � � �� �
� �� �

2 2
2 0

1

2 ( ) 0
n

j ji i ij ij
i

B b b L a h s ds
�� � �

�

� �� � � � �� �
� �� �

for i = 1, 2, �, n, j = 1, 2, �, p, then the system (1.2) has a unique �-periodic solution and all solutions of (1.2)
converge to its unique �–periodic solution.

Proof: Let

x(t) = {x1(t), x2(t), �, xn(t), y1(t), y2(t), �, yp(t)}

be an arbitrary solution of (1.2) and

x*(t) = {x*
1 (t), x

*
2 (t), �, x*

n(t), y
*
1(t), y

*
2(t), �, y*

p(t)},

be an �–periodic solution of (1.2). First, from (1.2) we have

� �
� �

1 1

1 1

( ) ( ) ( ) ( ( )) 1 2

( ) ( ) ( ) ( ( )) 1 2

i i

k k

j j

k k

p l
x

i i ij j j ikt v vj k

n l y
j j ji i i jkt v vi k

a t t a t A t s D i n

b t t b t A t s D j p

�� ��
� � �� �

�� ���
� � �� �

�
� � � � � � � � � � � � � � ���

�
� � � � � � � � � � � � � � � ���

�

�

(3.1)

8
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where

�i(t) = xi(t) – x*
i (t), i = 1, 2, �, n; �j(t) = yj(t) – y*

j (t), j = 1, 2, �, p,

Aj(�j(t – s)) = fj(�
�
0 hij(s)yj(t – s)ds) – fj(�

�
0 hij(s)y*

j (t – s)ds), j = 1, 2, �, p,

Ai(�i(t – s)) = gi(�
�
0 kji(s)xit – s)ds) – gi(�

�
0 kji(s) x*

i t – s)ds), i = 1, 2, �, n.

Consider the Lyapunov functional V (t) = V1(t) + V2(t), where

22
1

1 1

( ) ( ) ( )
pn

i j
i j

V t t t dv
�

� �

� � � � �� ��

2 2 2
2 0

1 1

( ) ( ) ( ) ( )
pn t

j ij ji jt s
i j

V t L a h s d dsdv
��

� �
� �

� � � �� �� � �

2 2 2

0
1 1

( ) ( )
m n t

i ji ji it s
j i

L b K s d dsdv
��

� �
� �

� � � � ���� � � (3.2)

where �� denotes the integral for v in �.

Calculating the derivative D+V1(t) and D+V2(t) along the solution of (3.1), we derive that

D+V1(t) =
1 1

2 ( ) 2 ( ) ji

pn

i jt t
i j

t t dv
����

� ��
� �

� �
� � �� �

� �� �
� ��

= � �
1 1 1

[2 { ( )[ ( ) ( ) ( ) ( ( )) ]}i

k k

pn l

i i i ij j j ikv v
i j k

t a t t a t A t s D dv���
� ��

� � �

� � � � � � �� � ��

1 1 1

[2 { ( )[ ( ) ( ) ( ) ( ( )) ( )]}
p n l

j
j j j ji i i jk

k kj i k

t b t t b t A t s D dv
v v

�
�

� � �

���
� � � � � � � �

� �� � ��

2 2 2 2 2

0
1 1

{ 2 ( ) ( ) ( ) [ ( ) ( ) ( ) ]}
pn

i i ij i j ij j
i j

a t t a t t L h s t s ds
�

�
� �

� � � � � � � � � �� �� �

2 2 2 2 2

0
1 1

{ 2 ( ) ( ) ( ) [ ( ) ( ) ( ) ]}
p n

j j ji j i ji i
j i

b t t b t t L k s t s ds
�

�
� �

� � � � � � � � � �� �� �

1 1 1 1

2 ( ) 2 ( )
pn l l

ji
i ik j jk

k k k ki k j k

t D dv t D dv
v v v v

�

� � � �

� ���� � � �� ���� �
� � � � � �� � � �� �� � � �� � � �� � � �� � � �
�� ��

2 2 2 2

0
1 1 1 1

[ 2 ( )] ( ) ( ) ( )
p pn n

i ij i ij j ij j
i j i j

a a t t a L h s t s ds
�� � �

�
� � � �

� � � � � � �� � ��� �
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2 2 2

0
1 1 1 1

( ) ( ) 2 ( )
p n n l

i
ji i ji i i ik

k kj i i k

b L k s t s ds t D
v v

��

� � � �

� �� ����
� � � � � � �� �� �� �� �� �
�� ���

2

1 1 1 1

[ 2 ] ( ) 2 ( )
p pn l

j
j ji j j jk

k kj i j k

b b t t D dv
v v

� � �

� � � �

� ���� ��
� � � � � � �� �� �� �� �� �� �
� � �� (3.3)

and

D+V2(t) = 2 2 2 2 2

0 0
1 1

[ ( ) ( ) ( ) ( ) ]
pn

j ij j ij ij j
i j

L a t h s ds h s t s ds
� ��

�
� �

� � � ���� � �

2 2 2 2 2

0 0
1 1

[ ( ) ( ) ( ) ( ) ]
p n

i ji i ji ji i
j i

L b t k s ds k s t s ds dv
� ��

� �

� � � � � ��� � � (3.4)

It follows from (3.3)-(3.4) and Qi, Qj that

D+V (t) � 2 2 2

0
1 1 1

[ 2 ( ) ] ( )
p pn

i ij i ji ji i
i j j

a a L b k s ds t
�� � �

�
� � �

� � � �� � �� �
1 1

2 ( )
n l

i
i ik

k ki k

t D
v v� �

� �� ����
� � � �� �� �� �� �� �
��

2 2 2

0
1 1 1

[ 2 ( ) ] ( )
p n n

j ji j ij ij j
j i i

b b L a h s ds t
�� � �

� � �

� � � � �� � � �
1 1

2 ( ) )
p l

j
j jk

k kj k

t D
v v

�

� �

� ���� ��
� � � �� �� �� �� �� �
��

2 2

1 1 1 1

( ) ( ) 2 ( )
pn n l

i
i i j j i ik

k ki j i k

Q t Q t t D
v v�

� � � �

� �� ����
� � � � � � � � �� �� �� �� �� �

� � ���

1 1

2 ( )
p l

j
j jk

k kj k

t D dv
v v

�

� �

� ���� ��
� � �� �� �� �� �� �� �
�� (3.5)

From the boundary condition (2), we get

� �� � � �
11 1 1

2 2i i

k k k

n l n l

i ik i ikv v v ki k i

D dv D dv�� ���
� � �� � �� � �

� � � � �� � �� �

= � � � �
1 11 1

2 2i i

k k

n nl l

i ik ik iv vk ki i

D dv D dv�� ��
� �� �� �� �

� � � � � ��� �� �

2

1 1 11

2 2
ln n l

i i
i ik ik

k ki i kk

D dv D dv
v v�� �

� � ��

� � � ��� ��
� � �� � � �� �� � � �
� � �� �

=
2

1 1

2
n l

i
ik

ki k

D dv
v�

� �

� ���
� �� ��� �
� �� (3.6)
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where r = � �
1 lv v
� �
� �� � � ��  is the gradient operator, and

1
11

l
i i i

ik i il
k lk

D D D
v v v�

� � � ��� �� ��
� � � �� � � �� � �� � � �

�

Similarly, by using of the same way we get

2

1 1 1 1

2 2
p pl l

j j
j jk jk

k k kj k j k

D dv D dv
v v v

� �
� �

� � � �

�� ��� � � ��
� � � �� � � �� � �� � � �

� � � �� � (3.7)

Since Dik � 0, D*
jk ¸ 0 (i = 1, 2, �, n, j = 1, 2, �, p, k = 1, 2, �, l), from (3.4), (4.6) and (3.7) we get D+ V (t) �

0, and so V (t) � V (0), t � 0.

Integrating both sides of (3.5) from 0 to t, we get

2 2

0 0
1 1

( ) ( ) ( )
pnt t

i i j j
i j

V t Q s ds Q s ds
�

� �

� � � �� �� � �

1 1 1 1

(0)
pn l l

ji
ik jk

k k k ki k j k

D D dv V
v v v v

�

� � � �

��� �� ���� �
� � � �� �� �� � � �� � � �
�� ��

which implies �i(t), �j(t) � L1[0, �). It follows from (1.2) that

( ) ( ) 1 2i
i i i i

x
a t x t i n

t

�
�� � � � � � � � � � �

�
�

and

( ) ( ) 1 2j
j j j j

y
b t y t j p

t

�
�� � � � � � � � � � �

�
�

where

1 1

( sup ( )
p l

i
i ij j i ik

x R k kj k

a f x I D
v v

�
� �

�� �

� �� ����
� � � � � �� �� �� �� �� �� �

� �

1 1

sup ( )
n l

j
j ji i j jk

x R k ki k

b g x J D
v v

�
� � �

�� �

� ���� ��
� � � � � �� �� �� �� �� �� �

� �

So one can easily see that all the solutions of (1.2) are bounded on [0,�). By (2.1) we know that i

t
��
�  and j

t

��
�

are bounded on [0, �). Hence �i(t) and �j(t) are uniformly continuous on [0, �). Therefore, by Barbalatt’s

Lemma [18], we have lim 0 limi
t t

u
�� ��

� � vj = 0, i = 1, 2, �, n, j = 1, 2, �, p. This completes the proof.

4. AN ILLUSTRATIVE EXAMPLE

Example 1: Consider the following two-dimension BAM neural network with distributed delays and reaction-
diffusion terms:

11
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� �

� �

1 1

1 1

( , )
1

2

0
1

( , )
1

2

0
1

( ) ( )

( ) ( ) ( ) ( ) 1 2

( ) ( )

( ) ( ) ( ) ( ) 1 2

i i

j j

x t v x
i i it v v

ij j ij j i
j

y t v y
j j jt v v

ji i ji i j
i

D a t x t

a t f h s y t s ds I t i

D b t y t

b t g k s x t s ds J t j

� ��
� � �

�

�

� ���
� � �

�

�

� � �
�
�

� �� � � � � � � �� �� � ��
�
� � �
�
� � �� � � � � � � �� �� ���

� �

� �

(4.1)

Take

g1(u) = g2(u) = f1(u) = f2(u) = tanh(u),

D11 = D*
11 = t6x2, D21 = D*

21 = t4x4, hij(s) = kji(s) = e–s,

a1(t) = 0.9, a2(t) = 0.5, b1(t) = 1.2, b2(t) = 0.8,

a11(t) = 0.6, a12(t) = 0.2, a21(t) = 0.7, a22(t) = 0.5,

b11(t) = –0.5, b12(t) = 0.3, b21(t) = 0.3, b22(t) = 0.25,

I1(t) = I2(t) = 8 sin(t), J1(t) = J2(t) = –5 cos(t).

Obviously, assumptions (H1) and (H2) hold and L1 = L2 = 1. It can be easily checked that the following conditions
hold:

2 2
2 2 2 2

0 0
1 1

2 ( ) 0 2 ( ) 0i ij i ji ji j ji i ij ij
j i

a a L b k s ds b b L a h s ds
� �� � � � � �

� �

� � � �� � � � � � � �� � � �
� � � �� �� �

Therefore, it follows from Theorem 2 that the system (4.1) has a unique �-periodic solution and all solutions of
(4.1) converge to its unique �–periodic solution.

The dynamical behaviors are shown in Fig.1-Fig.4 with the initial x1(0, v) = –0.5, x2(0, v) = 0.8, y1(0, v)

= 0.6, y2(0, v) = 1 and the boundary conditions 1x
v

�
� (t, 0) = 1y

v
�
� (t, 0) = 0, 2x

v
�
� (t, 1) = 2y

v
�
� (t, 1) = 0, x1(t, 1) = y1

(t, 1) = 1, x2(t, 0) = y2(t, 0) = 0. And the space surface plots are shown in Fig. 5 and Fig. 6. As we can see that the
neural states converge towards a unique �–periodic solution.

Figure 2: Dynamical Behavior Simulation of t–v –x
2

Figure 1: Dynamical Behavior Simulation of t–v –x
1
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Figure 4: Dynamical Behavior Simulation of t – v – y
2

Figure 3: Dynamical Behavior Simulation of t – v – y
1

Figure 5: Space Surface Plot of x
1
 – x

2
Figure 6: Space Surface Plot of y

1
 – y

2

5. CONCLUSIONS

In this paper, the existence of periodic solution for reaction-diffusion BAM neural networks with discrete time-
varying delays and the asymptotic stability of periodic solution for reaction-diffusion BAM neural networks
with distributed delays are studied. By Lyapunov method and coincidence degree, some sufficient conditions
for the neural networks with reaction-diffusion terms are derived and the activation functions may not be bounded.
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