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Abstract. A variable mesh second order finite difference method is estab-
lished for the solution of two-parameter singularly perturbed boundary value

problem. In this method, the derivatives in the problem are replaced by
higher order finite differences on the nonuniform mesh to get the discretiza-

tion equation. This equation is solved efficiently using the tridiagonal solver.

The convergence of the proposed method is analysed, and the method gives
second-order uniform convergence. Test examples are illustrated and maxi-

mum absolute errors in comparison to the other methods in the literature are

shown to justify the method.

1. Introduction

Singularly perturbed boundary value problems (SPBVP) with multi parame-
ters are recognisable in engineering and science. In general, such problems arise in
diverse area of applied mathematics such as fluid mechanics, aerodynamics, quan-
tum mechanics, reaction-diffusion process, elasticity and many other areas. Par-
ticularly, these type of problems occur in transport phenomena of chemical reactor
theory, biology and lubrication theory [1],[2]. The character of the two-parameter
problem asymptotically examined by [2]in which the ratio of two parameters has
a significant role in the solution. It is known that as perturbation parameter goes
to zero, the analytical solution of SPBVP approaches to a discontinuous limit and
boundary or interior layers appear. This gives there are significant difficulties in
numerical computation of singularly perturbed equations due to a minimal amount
of perturbation parameter and occurrence of boundary or interior layers. Hence,
it is necessary to develop efficient numerical methods for such problems, whose
accuracy is independent of the perturbation value ε1 , i.e., the techniques are ε1 -
uniformly convergent. In verity of papers and books, the authors described various
methods to solve SPBV problems [3],[7], citenay85, [11].

Collocation method based on B-Spline for a two-parameter singularly perturbed
convection-diffusion is derived and demonstrated [8]. [13] proposed a method of
a quadratic spline collocation for two parameter SPBVP. [9] used a uniform Ritz-
Galerkin method on shishkin mesh to solve the boundary value problem with two
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parameters. An approximate method is derived by [6]for solving two parameters
SPBV problems where the boundary layers near the both end points. [5] proposed
finite difference, finite element and B-spline collocation methods very nicely for
solving a class of SPBVP with two parameters. [14] constructed an exponential
spline method to solve semilinear SPBVP with multi parameters on shishkin mesh.
[4]derived a numerical method of second order monotone for a two-parameter
SPBVP affecting the convection and diffusion terms.

A second order convergence numerical method to solve the two parameters
SPBVP on the non-uniform mesh is proposed in this paper. In section 2, we
have given description of the problem. The solution of the problem with proposed
numerical method is discussed in section 3. The method is analysed for convergence
in section 4. Test examples, results and graphs are given in next section. The
discussions and conclusions are given in the final section.

2. Description of the method

Consider a model singular perturbed differential equation of the form

L[y(x)] ≡ ε1y′′(x) + ε2a(x)y′(x) + b(x)y(x) = f(x), 0 6 x 6 1 (2.1)

with

y(0) = α0

y(1) = α1 (2.2)

where ε1 (0 < ε1 � 1) ,ε2 (ε2 � 1) are very small positive parameters and the
functions a(x), b(x) and f(x) are functions which are sufficiently smooth and sat-
isfying the condition b(x) ≤ −θ < 0 where θ is a positive constant.

The zeroes of the characteristic equation can describe the solution of Eq. (2.1)

ε1λ(x)
2

+ ε2a(x)λ(x) + b(x) = 0

which gives two functions

λ1(x) = −ε2a(x)

2ε1
−

√(
ε2a(x)

2ε1

)2

+
b(x)

ε1

λ2(x) = −ε2a(x)

2ε1
+

√(
ε2a(x)

2ε1

)2

+
b(x)

ε1

Put θ1 := max
x∈[0,1]

λ1 < − ε2ε1 ≤ 0, θ2 := min
x∈[0,1]

λ2(x).

The decay of the solution in the boundary layer region is defined by θ1 and θ2.
For

ε1
ε22
≤ 1, |θ1| = O

(
ε2
ε1

)
and |θ2| = O

(
1

ε2

)
,
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for
ε22
ε1
≤ 1, |θ1| = O

(
1
√
ε1

)
and |θ2| = O

(
1
√
ε1

)
.

The term e−θ1x governs the layer at left end x = 0, and the layer is governed using
e−θ2(1−x) at right end x = 1.
From [4], we have

θ1 =

√
α2ã√
ε1

,
ε22
ε1
≤ α2

ã

ãε2
ε1
,
ε22
ε1
≥ α2

ã

θ2 =

√
α2ã

2
√
ε1
,
ε22
ε1
≤ α2

ã

α2

2ε2
,
ε22
ε1
≥ α2

ã

where ã = min
x∈[0,1]

a(x) and α2 = min
x∈[0,1]

b(x)
a(x) .

3. Numerical Scheme

Let the domain [0, 1] be divided into N subintervals with variable mesh size
hi = xi − xi−1 for i = 1 to N and hi+1 = σihi. To start the computational
implementation, we have to determine the value of h1. Denote R = xN − x0.
Then

R = (xN − xN−1) + (xN−1 − xN−2) + ....+ (x1 − x0)

= hN + hN−1 + ....+ h1

= (σ1 + σ1σ2 + ....+ σ1σ2σ3....σN−1)h1

Then h1 = R
(σ1+σ1σ2+....+σ1σ2σ3....σN−1)

determines the value of the starting step

length with which we can compute the subsequent step lengths h2,h3, etc. In
singular perturbation problems, if the layer is at the left end boundary x=0, then
a large collection of nodal points nearer to this point are required. Likewise, when
the layer is at the right end boundary then a large cluster of nodal points at
this boundary is needed. The following process achieves this distribution of nodal
points.

Choose σi = σ = constant for i = 1, 2, ..., N . Then the step length h1 reduces to

h1 = R(1−σ)
(1−σN )

. If the boundary layer is at left end point, then we choose σ > 1 . It

guarantees that more number of nodal points exist near to the left end boundary.
If the boundary layer exists at the right end, then choose σ < 1 which ensures a
collection of large number of nodal points near the right end boundary. When the
boundary layer is at the both end points of the interval then take σ > 1 in the left
half, σ < 1 in the right half of the respective intervals. Then we have a symmetric
mesh with more number of nodal points at both ends of the domain.

3



4 V. GANESH KUMAR AND K PHANEENDRA

Since, the two parameter problem Eq. (2.1) possesses boundary layers at the
ends x = 0 and x = 1, discretise the interval [0, 1] into [0, xm] and [xm, 1] . The
layer is near the end x = 0 in the interval [0, xm] and the layer will be near the end
x = 1 in the interval [xm, 1] . In these two subintervals, we apply the following
numerical scheme on non-uniform mesh. Consider the non uniform higher order
finite difference approximation of first and second derivatives:

y′i = ỹ′i −
σih

2
i

6
y′′′i −

(σi
2 − σi)h3i

24
y
(iv)
i + τ1(i) (3.1)

y′′i = ỹ′′i +
(1− σi)hi

3
y′′′i −

(σi
2 − σi + 1)h2i

12
y
(iv)
i + τ2(i) (3.2)

where, ỹ′i = yi+1−σi2yi−1+(σi
2−1)yi

σi(1+σi)hi
, ỹ′′i = 2[yi+1+σiyi−1−(1+σi)yi]

σ(1+σ)h2
i

τ1(i) = − (σi
4+σi)

120(1+σi)
h4i y

v
i and τ2(i) = − (σi

4−σi)
(1+σi)

h3i y
v
i

Computing y′′′i and yivi using Eq. (2.1), replacing them in Eqs.(3.1) and (3.2), we
get

y′i = ỹ′i − Ci{
f ′i − ε2aiy′′i − k3(i)y′i − b′iyi

ε1
}

−Di{
f ′′i − ε2ai(f ′i − ε2aiy′′i − k3(i)y′i − b′iyi)− k4(i)y′′i − k5(i)y′i − b′′iyi

ε1
}

(3.3)

y′′i = ỹ′′i +Ai

(
f ′i − ε2aiy′′i − k3(i)y′i − b′iyi

ε1

)
−Bi

(
f ′′i − ε2ai(f ′i − ε2aiy′′i − k3(i)y′i − b′iyi)− k4(i)y′′i − k5(i)y′i − b′′iyi

ε1

)
(3.4)

where Ai = (1−σi)hi
3 , Bi =

(σi
2−σi+1)h2

i

12 , Ci =
σih

2
i

6 , Di =
(σi

2−σi)h3
i

24

k1(i) = σi(1 + σi)h
2
i , k2(i) = σi(1 + σi)hi, k3(i) = (ε2a

′
i + bi),

k4(i) = (2ε2a
′
i + bi), k5(i) = (ε2a

′′
i + 2b′i)

Now inserting Eqs. (3.3) and (3.4) in Eq. (2.1) and simplifying we get the follow-
ing tridiagonal relation

Eiyi−1 + Fiyi +Giyi+1 = Ri, i = 1, 2, ..., N − 1 (3.5)

where Ei =
(
2Liσi − σi2Mihi

)
, Gi = (2Li +Mihi),

Fi =
(
Mi(σi

2 − 1)hi − 2Li(1 + σi) +Niσi(1 + σi)h
2
i

)
Li = ε1 − ε2aiAi − ε2ai

2Bi
ε1

+Bik4(i) + ε2ai
2Ci
ε1

− ε2ai
3Di

ε12 + ε2aiDik4(i)
ε1

4
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Mi = −Aik3(i)− ε2aiBik3(i)
ε1

+Bik5(i)+ε2ai+
ε2aiCik3(i)

ε1
− ε2ai

2Dik3(i)
ε12 + ε2aiDik5(i)

ε1

Ni = − ε2aiBib
′
i

ε1
+Bib

′′
i + ε2aiCib

′
i

ε1
− ε2ai

2Dib
′
i

ε12 + ε2aiDib
′′
i

ε1
+ bi −Aib′i

Ri =
(
fi − (Ai + ε2aiBi

ε1
− ε2aiCi

ε1
+ ε2ai

2Di
ε12 )f ′i − (−Bi − ε2aiDi

ε1
)f ′′i

)
k1(i)

The solution of the system of tridiagonal Eq.(3.5) is obtained by using the tridi-
agonal solver Thomas algorithm.

4. Convergence analysis

Truncation error in the proposed scheme is

Ti(hi) =
σi(σi + 1)(σi − 1)

2
aiε2

9
y′′′i h

4
i +O(h5i ) (4.1)

Consider the tridiagonal system Eq.(3.5) in matrix form

UY = V (4.2)

where U = [uij ]for1 ≤ i, j ≤ N − 1 is a tridiagonal matrix with ui,i+1 = Gi, ui,i =
Fi, ui,i−1 = Eiand V = (vi) is a column vector with vi = Ri
We also have

UȲ − Ti(hi) = V (4.3)

where Ȳ = (ȳ0, ȳ1, ..., ȳN )
t

represents original solution

and Ti (hi) = (T0(h0), T1(h1), ..., TN (hN ))
t

is the local truncation error.
From Eq. (4.2) and Eq. (4.3), it is clear that

U
(
Ȳ − Y

)
= Ti(hi) (4.4)

So that the error equation is

UE = Ti(hi) (4.5)

where E = Ȳ − Y = (e0, e1, ..., eN )
t

Let Si be the sum of elements of the ith row of matrix U , then we have

Si =
N−1∑
j=1

mi j = −2σiε1 +
(
ε2aiσi

2 + 2ε2aiσi(1−σi)
3

)
hi +O(h2i ) for i = 1

Si =

N−1∑
j=1

mi j = σi(σi + 1)bih
2
i +

(
σi(σi + 1)(σi − 1)b′i

3

)
h3i +O(h4i )

= βih
2
i+O(h3i ) for i = 2, 3, ..., N − 2 where βi = σi(σi + 1)bi

Si =
N−1∑
j=1

mi j = −2ε1 +
(

(1−σi)ε2ai
3 − ε2ai

)
hi +O(h2i ) for i = N − 1

5



6 V. GANESH KUMAR AND K PHANEENDRA

Since 0 < ε1 � 1, U−1 exists and it has non-negative elements. So that from Eq.
(4.5), it has

E = U−1Ti(hi) (4.6)

and
‖E‖ ≤

∥∥U−1∥∥ . ‖T (h)‖ (4.7)

Let m̄ki be the (ki)
th

element of U−1 . Since m̄ki ≥ 0, from the theory of matrices,
we have

N−1∑
i=1

mki Si = 1 , k = 1, 2, ...., N -1 (4.8)

Therefore,
N−1∑
i=1

m̄ki ≤
1

minSi
1≤ i ≤N−1

=
1

βi
≤ 1

|βi|
(4.9)

We define
∥∥ U−1∥∥ = max

1≤k≤N−1

N−1∑
i=1

| m̄ki | and ‖ T (h) ‖ = max
1≤i≤N−1

| Ti (hi) |

From Eq. (4.1), Eq. (4.6) and Eq. (4.9), we get

ej =

N−1∑
i=1

m̄kiTi(hi), j = 1, 2, 3, . . . , N -1

which implies that
ej ≤ kih2i for j = 1,2,...,N -1 (4.10)

here ki = (σi−1)2ε2ai
9bi

y′′′i is a constant independent of h.

Therefore, using Eq. (4.10), we have ‖E‖ = O
(
h2i
)

Thus the order of convergence of the method on variable mesh is two.

5. Numerical examples

Four test problems are considered to illustrate the proposed method compu-
tationally. The maximum absolute errors in the solution of the problems are
computed using the principle EN,ε1,ε2 = max

0≤i≤N
|y (xi)− yi|. Here y (xi) is an ex-

act solution and the computed solution is given by yi .
Example 1: ε1y

′′ + ε2y
′ − y = 1 with boundary conditions y(0) = y(1) = 1.

y(x) = −1 + (2ek2−2)ek1(x−1)

em−1 + (2e−k1−2)ek2x
em−1 is the exact solution,

where k1 =
−ε2+

√
ε22+4ε1

2ε1
,k2 =

−ε2−
√
ε22+4ε1

2ε1
, m =

−
√
ε22+4ε1
ε1

Tables 1 and 2 show the maximum absolute errors for different values ε1 and
ε2 . The boundary layer behaviour in the solution is shown in Fig 1.

6
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Example 2: ε1y
′′+ε2y

′−y = −x with boundary conditions y(0) = 1 and y(1) =
0. Exact solution of the problem is

y(x) =
(1 + ε2) + (1− ε2)ek2

ek2 − ek1
ek1x

+
(1 + ε2) + (1− ε2)ek1

ek2 − ek1
ek2x + x+ ε2

where k1 = −ε2−
√
ε22+4ε1

2ε1
and k2 = −ε2+

√
ε22+4ε1

2ε1
Tables 3 and Table 4 represent the maximum absolute errors in comparison with
the results of [9] for different values ε1 and ε2. The boundary layer behaviour in
the solution is shown in Fig 2.
Example 3: ε1y

′′ − ε2y′ − y = − cos(πx) with y(0) = y(1) = 0.
Actual solution is given by y(x) = ρ1 cos(πx) + ρ2 sin(πx) + k1e

λ1x + k2e
−λ2(1−x)

here ρ1 = ε1π
2+1

ε22π2+(ε1π2+1)2
, ρ2 = ε2π

ε22π2+(ε1π2+1)2
, k1 = −ρ1(1+e−λ2 )

1−eλ1−λ2

k2 = ρ1(1+e
λ1 )

1−eλ1−λ2 , λ1 = ε2−
√
ε22+4ε1
2ε1

, λ2 = ε2+
√
ε22+4ε1
2ε1

The comparison of the maximum absolute errors are presented in Tables 5 and
6 for diverse values ε1 , ε2. The boundary layer behaviour is shown graphically in
Fig 3.
Example 4: ε1y

′′ − ε2(1 + x)y′ − y = −x with y(0) = 1, y(1) = 0.
Since the exact solution is not available, the maximum absolute errors are calcu-
lated for different values ε1 , ε2 and N using double mesh principle [3], EN,x,ε2 =
max

0≤i≤N

∣∣yNi − y2Ni ∣∣ , where yNi and y2Ni are the numerical solutions with N and 2N

intervals. These results are shown in Tables 7 and 8. The layer behaviour in the
solution of the example is shown in Fig 4.

6. Discussions and Conclusion

A finite difference method is proposed for two parameters SPBVP on non-
uniform mesh which converges uniformly. Using the higher order finite difference
approximations to the first and second derivatives of the problem on geomet-
ric mesh, the discretization equation is acquired. To demonstrate the proposed
scheme, it is implemented on four examples. Numerical results are compared
with the results of other methods available in the literature to justify the method.
We observed that, the proposed method gives better results. From the graphical
representation of the solution of the examples, we noticed that, as perturbation
parameter ε1 decreases for fixed ε2, the width of the layer at both the ends de-
creases.

7
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Table 1. The maximum absolute errors in solution of Example 1 for ε2 = 10−4

ε1 → 10−1 10−2 10−3 10−4

N = 25 2.2780(−7) 1.4573(−5) 1.4171(−3) 5.1920(−2)
N = 26 1.4241(−8) 9.1344(−7) 9.0653(−5) 7.6892(−3)
N = 27 8.902(−10) 5.7257(−8) 5.7050(−6) 5.4533(−4)
N = 28 5.576(−11) 3.5800(−9) 3.5720(−7) 3.5211(−5)
N = 29 3.778(−12) 2.252(−10) 2.2341(−8) 2.2372(−6)
N = 210 2.635(−12) 1.742(−11) 1.4068(−9) 1.4001(−7)

Table 2. The maximum absolute errors in solution of Example 1 for ε1 = 10−2

ε2 → 10−3 10−4 10−5 10−6

N = 25 1.4631(−5) 1.4573(−5) 1.4568(−5) 1.4567(−5)
N = 26 9.1707(−7) 9.1344(−7) 9.1306(−7) 9.1303(−7)
N = 27 5.7504(−8) 5.7257(−8) 5.7232(−8) 5.7229(−8)
N = 28 3.5954(−9) 3.5800(−9) 3.5784(−9) 3.5782(−9)
N = 29 2.262(−10) 2.252(−10) 2.251(−10) 2.251(−10)
N = 210 1.747(−11) 1.742(−11) 1.744(−11) 1.740(−11)

Table 3. Comparison of point wise error in the solution of Example 2 for ε1 = 10−3

ε2 ↓ N = 64 N = 128 N = 256 N = 512 N = 1024

Results by proposed method
10−2 4.7468(−5) 3.1158(−6) 3.2860(−7) 2.7576(−7) 2.8150(−7)
10−3 4.6064(−5) 3.0132(−6) 3.5177(−7) 3.1377(−7) 3.2167(−7)
10−4 4.5451(−5) 2.9746(−6) 3.5375(−7) 3.1782(−7) 3.2599(−7)

Results by[9]
10−2 3.6590(−3) 1.1005(−3) 2.7573(−4) 6.8812(−5) 1.7196(−5)
10−3 3.0262(−3) 7.4023(−4) 1.8406(−4) 4.5953(−5) 1.1484(−5)
10−4 2.9008(−3) 7.0989(−4) 1.7654(−4) 4.4076(−5) 1.1015(−5)

8
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Table 4. Comparison of point wise error in the solution of Example 2 for
ε2 = 10−4

ε1 ↓ N = 64 N = 128 N = 256 N = 512 N = 1024

Results by proposed method
10−1 3.0416(−9) 1.7044(−9) 3.4089(−9) 6.8461(−9) 1.3721(−8)
10−2 4.5591(−7) 3.0933(−8) 1.2412(−8) 2.4900(−8) 5.0228(−8)
10−3 4.5335(−5) 2.8609(−6) 1.9503(−7) 8.2871(−8) 1.6720(−7)

Results by[9]
10−1 1.5725(−5) 3.9408(−6) 9.8514(−7) 2.4628(−7) 6.1570(−8)
10−2 2.8064(−4) 7.0125(−5) 1.7522(−5) 4.3807(−6) 1.0952(−6)
10−3 2.9008(−3) 7.0989(−4) 1.7654(−4) 4.4076(−5) 1.1015(−5)

Table 5. Comparison of maximum absolute error in the solution of example 3for
ε1 = 10−2, N = 128

ε2 ↓ Our method [14] [12] [8]

10−3 2.5236(−8) 4.1924(−5) 6.0243(−6) 8.3832(−5)
10−4 2.5080(−8) 4.1296(−5) 6.1827(−7) 8.2686(−5)
10−5 2.5064(−8) 4.1232(−5) 1.1455(−7) 8.2572(−5)
10−6 2.5062(−8) 4.1226(−5) 7.2269(−8) 8.2561(−5)
10−7 2.5062(−8) 4.1225(−5) 6.8266(−8) 8.2559(−5)

Table 6. Comparison of maximum absolute error in the solution of example 3for
ε1 = 10−4, N = 128

ε2 ↓ Our method [14] [12] [8]

10−3 2.7811(−4) 4.7598(−3) 6.2154(−3) 9.4446(−3)
10−4 2.7240(−4) 4.2856(−3) 1.8330(−3) 9.0436(−3)
10−5 2.7148(−4) 4.2295(−3) 1.1412(−3) 9.0036(−3)
10−6 2.7139(−4) 4.2238(−3) 1.3699(−3) 8.9996(−3)
10−7 2.7138(−4) 4.2232(−3) 1.3650(−3) 8.9992(−3)

9
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Table 7. Comparison of maximum absolute error in the solution of Example 4
for ε2 = 10−4 with the result in [5]

ε1 FDM FEM BS Our method

N = 128
10−1 2.3641(−3) 3.9655(−6) 4.0386(−6) 1.1799(−8)
10−2 3.8548(−3) 7.0093(−5) 6.9830(−5) 4.4486(−8)
10−3 4.0221(−3) 7.0802(−4) 6.9993(−4) 2.6982(−4)
10−4 6.2962(−3) 5.5556(−3) 1.3252(−3) 2.5549(−4)

N = 256
10−1 2.3641(−3) 3.9655(−6) 4.0386(−6) 1.1799(−8)
10−2 1.9270(−3) 1.7574(−5) 1.7521(−5) 3.7983(−8)
10−3 1.9599(−3) 1.7563(−4) 1.7652(−4) 2.1341(−7)
10−4 3.0398(−3) 2.4116(−3) 5.7425(−4) 1.6557(−5)

Table 8. Comparison of maximum absolute error in the solution of Example 4 for
ε1 = 10−2 with the result in [5]

ε2 FDM FEM BS Our method

N = 128
10−3 3.8579(−3) 7.0792(−5) 7.0951(−5) 4.4095(−8)
10−4 3.8548(−3) 7.0093(−5) 6.9830(−5) 4.4486(−8)
10−5 3.8545(−3) 7.0034(−5) 7.0037(−5) 4.4465(−8)
10−6 6.2962(−3) 5.5556(−3) 1.3252(−3) 4.4463(−8)

N = 256
10−3 1.9282(−3) 1.8311(−5) 1.7731(−5) 3.7978(−8)
10−4 1.9270(−3) 1.7574(−5) 1.7521(−5) 3.7983(−8)
10−5 1.9269(−3) 1.7505(−5) 1.7500(−5) 3.7983(−8)
10−6 3.0398(−3) 2.4116(−3) 5.7425(−4) 3.7983(−8)

10
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Figure 1. Graphical representation of the solution for          Figure 2. Graphical representation of the solution         

                       for  Example1 with  𝜀ଶ = 2ି଼                                               Example 2 with  𝜀ଶ = 2ି଼ 

 

 

       

      Figure 3. Graphical representation of the solution           Figure 4. Graphical representation of the numerical     

                       solution for Example 3 with  𝜀ଶ = 2ି଼                               for Example 4 with  𝜀ଶ = 2ି଼ 
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