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Abstract. Research on various sorts of cancer treatment is going on in case

of cancer-immune system through mathematical models. In this study, we

propose cancer treatment models with gene therapy alone and then gene
therapy in combination with radiotherapy and monoclonal antibody ther-

apy (mAbs) separately. Searching of equilibrium points and local stability

analysis is completed both theoretically and numerically for each of the mod-
els. Numerical simulation for appropriate parameter values of each model

is shown for better understanding of the treatment strategy to cure cancer.

Our investigation reveals that gene therapy cannot eradicate cancer having
high growth rate with lower immunotherapy drugs but it may work in a nice

way if a patient tolerates higher dose of immunotherapy drugs. Further, we
have observed that radiogenic therapy and mAbs-gene therapy showed better

results in cancer eradication. The investigation shows that combination of

monoclonal antibody therapy (mAbs) and gene therapy may perform in a
better way to cure cancer than that of radiotherapy and gene therapy.

1. Introduction

Malignant growth is one of the primary causes of mortality within the world
[1]. So, finding an efficient treatment against malignant growth may be a wide
research area within the clinical sciences. If we look back to the history of cancer
treatment; in eighteenth century, surgery was the mostly used treatment method
for early stages of cancer. In 1895 radiation therapy was started, but it resulted
in few cures. In twentieth century, there has been a sensational progression in
chemotherapeutic treatment for cancer. Use of viruses were additionally seen as
beneficial in controlling malignancies in human in an around 1956. Consequently,
gene therapy, immunotherapy and monoclonal antibody therapies were developed
for treatment of cancer patients during 1985 to 2000 [2]. At present, every day
different types of treatments are adopted to conquer the disease. In our literature
work [3] we found that the optimal combination of various therapies provide ef-
fective leads for cure of cancer. In the present investigation, we have combined
gene therapy with radiotherapy and monoclonal antibody therapy separately to
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show the effectiveness of these two types of combinations. As cancer arises due
to multiple genetical and other types of defects so it has always been difficult to
eradicate existing tumours by correcting these defects altogether. Gene therapy
aims to treat or prevent the malignant disease by using therapeutic information
encoded in DNA sequences [4]. Also by generating a high concentration of an
effector protein, gene therapy prevents cancer growth [5].

Radiation therapy is often highly effective for tumour eradication. Radiation is
used to destroy malignant tumours either externally by X- rays and γ - rays or
internally with the use of radioisotopes. Higher doses of radiation can produce bet-
ter tumour control but it also damages normal tissues within the radiation field,
which may severely influence the standard of life of the patient [5]. As of late,
research has shown that the combination of gene and radiation therapy termed
as radiogenic therapy increases cancer curability rate with less detrimental effect
to the normal tissues. Clinical experiments have demonstrated that radiogenic
therapy has many advantages and potential benefits over other treatment strate-
gies. Because both have different toxicity profiles targeting different parts of the
cell cycle in the best possible way. Gene therapy targets the S phase of the cell
cycle while radiotherapy targets most radiosensitive M and G2 phases. Radia-
tions kill tumour cells and at the same time improves transfection proficiency and
transgene reconciliation. Discharge of products from the radiation-damaged cells
get incorporated with tumour antigens produced by immune effector cells drawing
into immunocytes which mediate as an anti-tumour response causing significant
clarification of neoplastic cell death [4].

It is commonly known that cancer cells are resistant to the body’s immune
system. But sometimes, the immune system attacks the cancer cells within the
body by creating a sizable number of antibodies (a protein that sticks to a spe-
cific protein called an antigen) [11]. So, now a days researchers try to design such
antibodies in the clinical lab which mainly target a neoplastic cell antigen. mAbs
is one of such antibodies. Different types of mAbs namely naked mAbs (no drug
or radioactive particle), conjugated mAbs (with chemotherapy drug or radioactive
particle), bi-specific mAbs (two different proteins used at the same time) are de-
veloped for cancer treatment. Altogether, these antibodies are designed in such
a way that they will be capable of binding with antigens easily on the surface of
cancer cells rather than healthy cells; to restore, enhance the immune systems’
attack on cancer cells, to spice up the immune response by strengthening immune
system checkpoints or against cancer cells regrowth [12]. So, we have added gene
therapy alongside mAbs for a better result with fewer side effects.

Many mathematical models are introduced by many authors to investigate effi-
cient drug delivery processes to eradicate cancer. Tsygvintsev et al. [6] introduced
a mathematical model of gene therapy by modifying the Kirschner and Panneta
model [7]. They established stability condition of the model and estimated the
treatment parameters at which cancer gets eradicated. They showed that high
level of the TIL cell will clear the tumour. Local stability analysis and simulation
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for various parameter set have been furnished for this model by Lestari et al. [8].
de Pillis et al. portrayed a mathematical model of colorectal cancer growth and
showed the impact of two mAbs - cetuximab, panitumumAb [9]. In our study, we
considered only the effect of cetuximab. It is already established that with the
utilization of mAb treatment, cancer cells constantly mutated which frequently
results in resistance or complete lack of responsiveness to the targeted therapy
[11]. So, from the above analysis and theoretical observation of radiogenic therapy
and mAbs therapy, we have introduced radiation effect and mAbs effect on the
gene therapy model proposed by Tsygvntsev et al [6].

The paper is organized as follows: in section 2, we discussed model formulation.
Local stability analysis and numerical simulation for our considered three different
model is shown in section 3, section 4 and section 5, respectively. A comparative
conclusion of the paper is given in section 6.

2. Model Formulation

The following considered model (A) is primarily based on Gene Therapy Model
proposed by Tsygvintsev et. al [6]. The model deals with the dynamics of effector
cell (including NK cells, Interleukin-2, LAK, Lymphocytes, T helper cells) and
the cancerous Cells. E(t) and T (t) respectively denotes the number of effector
cells and the number of cancerous cell at any time t > 0. The model proposed by
Tsygvintsev et. al [6] is:

dE

dt
= cT − dE +

pE

E + f
+ u1

dT

dt
= rT (1− bT )− aET

g + T

(A)

where, c is the cancer antigenicity, d is the half life of effector cells E, p is
the proliferation rate of E, f is the Half-saturation for E proliferation term, u1 is
the immuno-therapy term, r is the cancer growth rate, b is the cancer cell capacity
(logistic growth), a is the cancer clearance term, g is the half-saturation for cancer
clearance.

Table 1. Parameter value for the model (A)

Parameters Meaning Values interval Source
c cancer antigenicity 0.05 (1/time) [10−3, 0.5] [6]
u1 Immunotherapy term 1 (cell/time) [10−2, 102] [6]
p proliferation rate of E 0.1245 (1/time) 0.1245 [6]
f half saturation for E proliferation term 10−3 (cells) [10−5, 1] [6]
d half life of effector cells E 0.03 (1/time) 0.03 [6]
r cancer growth rate 0.18 (1/time) [10−1, 2] [6]
b cancer cell capacity 10−9 (1/cells) 10−9 [6]
a cancer clearance term 1 (1/cells) [10−2, 102] [6]
g Half-saturation, for cancer clearance 105 (cells) 105 [6]
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Raul Isea et. al. proposed a mathematical model of cancer under radiotherapy
[10]. The authors applied single dose of radiotherapy directly to the cancer cells
to kill those without affecting the neighboring healthy cells or the immune system.
Based on the Raul Isea et. al [10] model with the single dose of radiotherapy,
we propose a model which is slight modification of the model (A) as follows:

dE

dt
= cT +

pE

E + f
− dE + u1

dT

dt
= rT (1− bT )− aET

g + T
− γT

(B)

where, u1 is the treatment term for external source of immune-effector cells
and γ is the single dose of radiation treatment. We consider that radiation kills
only cancerous cell.

Monoclonal antibody(mAbs) therapy is used broadly in various cancer treat-
ment models, mainly when no other treatment works significantly [9]. So, we
formulate a model based on de Pilli’s mAbs treatment [9] which is slight mod-
ification of the model mentioned in (A). We consider mAbs interact only with
Cancerous cells which results in death of Cancerous cells. The model is as follows:

dE

dt
= cT +

pE

E + f
− dE + u1

dT

dt
= rT (1− bT )− aET

g + T
− u2MT

dM

dt
= −ηM − ρT M

h+M
+ VM (t)

(C)

where, the term −u2MT is the death rate of tumor-cells caused directly by
tumor cells’ interaction with mAbs. The term VM (t) represents mAb treatments.
Because mAbs are not produced naturally in the body, no additional growth terms
are included. The term −ηM represents the natural degradation of the mAb
protein in the body. The term −ρT M

h+M represents the loss of available mAbs as
they bind to tumor cells. mAbs have a very strong binding affinity for their target
growth-factor receptors, and there are many growth factor receptors on every cell,
so we assume that many mAbs are lost with each tumor cell. Also, we assume
that the growth factor receptors are fully saturated when the mAb concentration
is significantly higher than the growth factor receptor concentration. That is, we
can approximate the number of mAbs lost with each tumor cell as the number of
growth-factor receptors on that cell, as long as mAb concentration is not close to
zero [9].
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3. Stability Analysis of the model (A)

3.1. Equilibrium Points: We first search the equilibrium points of the above
model without the dose of radiotherapy i.e the model

dE

dt
= cT +

pE

E + f
− dE + u1

dT

dt
= rT (1− bT )− aET

g + T

(3.1)

For equilibrium points we have,

dE

dt
= 0 =⇒ cT +

pE

E + f
− dE + u1 = 0 (3.2)

dT

dt
= 0 =⇒ rT (1− bT )− aET

g + T
= 0 (3.3)

From equation (3.3),

T1 = 0 ; T2 = A1+
√
B1

2rb ; T3 = A1−
√
B1

2rb

where, A1 = r(1− gb)
B1 = (r(1− gb))2 − 4(aE − rg)rb

For, T1 = 0 we have obtained from equation (3.2),

E1 = A2+
√
B2

2d and E2 = A2−
√
B2

2d

where, A2 = p+ u1 − df
B2 = (p+ u1 − df)2 + 4du1f

Therefore, P1(E1, T1) and P2(E2, T1) are two equilibrium points.

For, T2 = A1+
√
B1

2rb we have obtained from equation (3.2),

E3 = A3+
√
B3

4rbd and E4 = A3−
√
B3

4rbd

where, A3 = (A1 +
√
B1)c+ 2rb(p+ u1 − df)

B3 = ((A1 +
√
B1)c+2rb(p+u1−df))2 +8rbdf((A1 +

√
B1)c+2u1rb)

Therefore, P2(E3, T2) and P3(E4, T2) are two equilibrium points.

For, T3 = A1−
√
B1

2rb we have obtained from equation (3.2),

E5 = A4+
√
B4

4rbd and E6 = A4−
√
B4

4rbd

where, A4 = (A1 −
√
B1)c+ 2rb(p+ u1 − df)

B4 = ((A1−
√
B1)c+2rb(p+u1−df))2 +8rbdf((A1−

√
B1)c+2u1rb)

Therefore, P5(E5, T3) and P6(E6, T3) are two equilibrium points.

From the above analysis we get six equilibrium points out of which P1(E1, T1),
P2(E2, T1) are two cancer free equilibrium points and P3(E3, T2), P4(E4, T2),
P5(E5, T3), P6(E6, T3) are four cancer infected equilibrium points.
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3.2. Local Stability: Linearizing system (3.1) to obtain Jacobian as follows:

J =

[
−d+ pf

(E+f)2 c
−aT
g+T r(1− 2bT )− agE

(g+T )2

]
(3.4)

(1) Cancer free Jacobian matrix at cancer free equilibrium point P1(E1, T1)

JP1 =

[
−d+ pf

(E1+f)2
c

0 r − aE1

g

]
(3.5)

Characteristic equation for (3.5) is

λ2 − α1λ+ β1 = 0

where, α1 = pf
(E1+f)2

− d+ r − aE1

g

β1 = ( pf
(E1+f)2

− d)(r − aE1

g )

Therefore, λ1,1 =
α1±
√
α2

1−4β1

2

(a) If β1 > 0 and α2
1 − 4β1 ≥ 0 then the equilibrium points P1(E1, T1)

in the form of nodes and if α1 < 0 then P1(E1, T1) asymptotically
stable. If α1 > 0 then P1(E1, T1) is unstable.

(b) If β1 > 0 and α2
1 − 4β1 < 0 then the equilibrium points P1(E1, T1)

in the form of spiral and if α1 < 0 then P1(E1, T1) asymptotically
stable. If α1 > 0 then P1(E1, T1) is unstable.

(2) The eigen values of the Jacobian matrix at cancer free equilibrium point
P2(E2, T1) are

λ2,1 =
α2±
√
α2

2−4β2

2

where, α2 = pf
(E2+f)2

− d+ r − aE2

g

β2 = ( pf
(E2+f)2

− d)(r − aE2

g )

(a) If β2 > 0 and α2
2 − 4β2 ≥ 0 then the equilibrium points P2(E2, T1)

in the form of nodes and if α2 < 0 then P2(E2, T1) asymptotically
stable. If α2 > 0 then P2(E2, T1) is unstable.

(b) If β2 > 0 and α2
2 − 4β2 < 0 then the equilibrium points P2(E2, T1)

in the form of spiral and if α2 < 0 then P2(E2, T1) asymptotically
stable. If α2 > 0 then P2(E2, T1) is unstable.

(3) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P3(E3, T2) are

λ3,2 =
α3±
√
α2

3−4β3

2

where, α3 = pf
(E3+f)2

− d+ r(1− 2bT2)− agE3

(g+T2)2
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β3 = ( pf
(E3+f)2

− d)(r(1− 2bT2)− agE3

(g+T2)2
) + caT2

g+T2

(a) If β3 > 0 and α2
3 − 4β3 ≥ 0 then the equilibrium points P3(E3, T2)

in the form of nodes and if α3 < 0 then P3(E3, T2) asymptotically
stable. If α3 > 0 then P3(E3, T2) is unstable.

(b) If β3 > 0 and α2
3 − 4β3 < 0 then the equilibrium points P3(E3, T2)

in the form of spiral and if α3 < 0 then P3(E3, T2) asymptotically
stable. If α3 > 0 then P3(E3, T2) is unstable.

(4) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P4(E4, T2) are

λ4,2 =
α4±
√
α2

4−4β4

2

where, α4 = pf
(E4+f)2

− d+ r(1− 2bT2)− agE4

(g+T2)2

β4 = ( pf
(E4+f)2

− d)(r(1− 2bT2)− agE4

(g+T2)2
) + caT2

g+T2

(a) If β4 > 0 and α2
4 − 4β4 ≥ 0 then the equilibrium points P4(E4, T2)

in the form of nodes and if α4 < 0 then P4(E4, T2) asymptotically
stable. If α4 > 0 then P4(E4, T2) is unstable.

(b) If β4 > 0 and α2
4 − 4β4 < 0 then the equilibrium points P4(E4, T2)

in the form of spiral and if α4 < 0 then P4(E4, T2) asymptotically
stable. If α4 > 0 then P4(E4, T2) is unstable.

(5) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P5(E5, T3) are

λ5,3 =
α5±
√
α2

5−4β5

2

where, α5 = pf
(E5+f)2

− d+ r(1− 2bT3)− agE5

(g+T3)2

β5 = ( pf
(E5+f)2

− d)(r(1− 2bT3)− agE5

(g+T3)2
) + caT3

g+T3

(a) If β5 > 0 and α2
5 − 4β5 ≥ 0 then the equilibrium points P5(E5, T3)

in the form of nodes and if α5 < 0 then P5(E5, T3) asymptotically
stable. If α5 > 0 then P5(E5, T3) is unstable.

(b) If β5 > 0 and α2
5 − 4β5 < 0 then the equilibrium points P5(E5, T3)

in the form of spiral and if α5 < 0 then P5(E5, T3) asymptotically
stable. If α5 > 0 then P5(E5, T3) is unstable.
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(6) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P6(E6, T3) are

λ6,3 =
α6±
√
α2

6−4β6

2

where, α6 = pf
(E6+f)2

− d+ r(1− 2bT3)− agE6

(g+T3)2

β6 = ( pf
(E6+f)2

− d)(r(1− 2bT3)− agE6

(g+T3)2
) + caT3

g+T3

(a) If β6 > 0 and α2
6 − 4β6 ≥ 0 then the equilibrium points P6(E6, T3)

in the form of nodes and if α6 < 0 then P6(E6, T3) asymptotically
stable. If α6 > 0 then P6(E6, T3) is unstable.

(b) If β6 > 0 and α2
6 − 4β6 < 0 then the equilibrium points P6(E6, T3)

in the form of spiral and if α6 < 0 then P6(E6, T3) asymptotically
stable. If α6 > 0 then P6(E6, T3) is unstable.

3.3. Simulation: The set of parameters were being used to see the dynamics
of effector cells and cancerous cells for the model (A) is given in Table 2. The
initial values used in these simulation are E(0) = T (0) = 1000. Based on the

Table 2. Parameter value for the model (A)

Parameters c u1 p f d r b a g
Values 0.05 1 0.1245 10−3 0.03 0.18 10−9 1 105

Figure 1. Gene therapy with low immunotherpeutic value, but
high cancer growth

above parameter set, we get P1(37.4832, 0) and P3(20174.56, 12082.246) as two
biologically valid equilibrium points. The equilibrium point P1 is free of cancer
and showed unstable result and has the type of saddle point. The equilibrium point
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P3 is cancer infected and it is asymptotically stable, incorporates a kind of inward
spiral point i.e. at this point the trajectories are ingoing spirals as time increases,
which suggests that the population of effector cells and tumor cells will develop in
tandem for long time (Figure 1). That means the body with low immunity power
or small treatment immunotherapeutic term cannot eradicated larger tumor from
the body. So, we have to give large amount of treatment term u1 and a or we shall
required another treatment protocol.

4. Stability Analysis of The Model (B)

4.1. Equilibrium Points: For finding the equilibrium points of model (B) we
have,

dE

dt
= 0 =⇒ cT +

pE

E + f
− dE + u1 = 0 (4.1)

dT

dt
= 0 =⇒ rT (1− bT )− aET

g + T
− γT = 0 (4.2)

From equation (4.2),

T ∗1 = 0 ; T ∗2 =
A∗

1+
√
B

∗
1

2rb ; T ∗3 =
A∗

1−
√
B

∗
1

2rb

where, A∗1 = r − γ − grb
B∗1 = (r − γ − grb)2 − 4rb(aE + γg − rg)

For, T ∗1 = 0 we have obtained from equation (4.1),

E∗1 =
A∗

2+
√
B

∗
2

2d and E∗2 =
A∗

2−
√
B

∗
2

2d

where, A∗2 = p+ u1 − df
B∗2 = (p+ u1 − df)2 + 4du1f

Therefore, P ∗1 (E∗1 , T
∗
1 ) and P ∗2 (E∗2 , T

∗
1 ) are two equilibrium points.

For, T ∗2 =
A∗

1+
√
B∗

1

2rb we have obtained from equation (4.1),

E∗3 =
A∗

3+
√
B∗

3

2rbd and E∗4 =
A∗

3−B
∗
3

2rbd

Therefore, P ∗3 (E∗3 , T
∗
2 ) and P ∗4 (E∗4 , T

∗
2 ) are two equilibrium points.

For, T ∗3 =
A∗

1−
√
B∗

1

2rb we have obtained from equation (4.1),

E∗5 =
A∗

4+
√
B∗

4

2rdb and E∗6 =
A∗

4−
√
B∗

4

2rdb

Therefore, P ∗5 (E∗5 , T
∗
3 ) and P ∗6 (E∗6 , T

∗
3 ) are two equilibrium points.

From the above analysis we get six equilibrium points out of which P ∗1 (E∗1 , T
∗
1 ), P ∗2 (E∗2 , T

∗
1 )

are two cancer free equilibrium points and P ∗3 (E∗3 , T
∗
2 ), P ∗4 (E∗4 , T

∗
2 ), P ∗5 (E∗5 , T

∗
3 ), P ∗6 (E∗6 , T

∗
3 )

are four cancer infected equilibrium points.

4.2. Local Stability: Now we check stability analysis of the model at each of
the equilibrium point.
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Linearizing the model (B) to obtain Jacobian as follows:

J∗ =

[
−d+ pf

(E+f)2 c
−aT
g+T r(1− 2bT )− agE

(g+T )2 − γ

]
(4.3)

(1) Cancer free Jacobian matrix at cancer free equilibrium point P ∗1 (E∗1 , T
∗
1 )

JP∗
1

=

[
−d+ pf

(E∗
1+f)

2 c

0 r − aE∗
1

g − γ

]
(4.4)

Characteristic equation for (4.4) is
λ2 − α∗1λ+ β∗1 = 0

where, α∗1 = pf
(E∗

1+f)
2 − d+ r − aE∗

1

g − γ
β∗1 = ( pf

(E∗
1+f)

2 − d)(r − aE∗
1

g − γ)

Therefore, λ∗1,1 =
α∗

1±
√

(α∗
1)

2−4β∗
1

2

(a) If β∗1 > 0 and (α∗1)2−4β∗1 ≥ 0 then the equilibrium points P ∗1 (E∗1 , T
∗
1 )

in the form of nodes and if α∗1 < 0 then P ∗1 (E∗1 , T
∗
1 ) asymptotically

stable. If α∗1 > 0 then P ∗1 (E∗1 , T
∗
1 ) is unstable.

(b) If β∗1 > 0 and (α∗1)2−4β∗1 < 0 then the equilibrium points P ∗1 (E∗1 , T
∗
1 )

in the form of spiral and if α∗1 < 0 then P ∗1 (E∗1 , T
∗
1 ) asymptotically

stable. If α∗1 > 0 then P ∗1 (E∗1 , T
∗
1 ) is unstable.

(2) The eigen values of the Jacobian matrix at cancer free equilibrium point
P ∗2 (E∗2 , T

∗
1 ) are

λ∗2,1 =
α∗

2±
√

(α∗
2)

2−4β∗
2

2

where, α∗2 = pf
(E∗

2+f)
2 − d+ r − aE∗

2

g − γ
β∗2 = ( pf

(E∗
2+f)

2 − d)(r − aE∗
2

g − γ)

(a) If β∗2 > 0 and (α∗2)2− 4β∗2 ≥ 0 then the equilibrium points P2(E2, T1)
in the form of nodes and if α2 < 0 then P2(E2, T1) asymptotically
stable. If α∗2 > 0 then P ∗2 (E∗2 , T

∗
1 ) is unstable.

(b) If β∗2 > 0 and (α∗2)2−4β∗2 < 0 then the equilibrium points P ∗2 (E∗2 , T
∗
1 )

in the form of spiral and if α∗2 < 0 then P ∗2 (E∗2 , T
∗
1 ) asymptotically

stable. If α∗2 > 0 then P ∗2 (E∗2 , T
∗
1 ) is unstable.

(3) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P ∗3 (E∗3 , T

∗
2 ) are

λ∗3,2 =
α∗

3±
√

(α∗
3)

2−4β∗
3

2

where, α∗3 = pf
(E∗

3+f)
2 − d+ r(1− 2bT ∗2 )− agE∗

3

(g+T∗
2 )2 − γ

β∗3 = ( pf
(E∗

3+f)
2 − d)(r(1− 2bT ∗2 )− agE∗

3

(g+T∗
2 )2 − γ) +

caT∗
2

g+T∗
2
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(a) If β∗3 > 0 and (α∗3)2−4β∗3 ≥ 0 then the equilibrium points P ∗3 (E∗3 , T
∗
2 )

in the form of nodes and if α∗3 < 0 then P ∗3 (E∗3 , T
∗
2 ) asymptotically

stable. If α∗3 > 0 then P ∗3 (E∗3 , T
∗
2 ) is unstable.

(b) If β∗3 > 0 and (α∗3)2−4β∗3 < 0 then the equilibrium points P ∗3 (E∗3 , T
∗
2 )

in the form of spiral and if α∗3 < 0 then P ∗3 (E∗3 , T
∗
2 ) asymptotically

stable. If α∗3 > 0 then P ∗3 (E∗3 , T
∗
2 ) is unstable.

(4) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P ∗4 (E∗4 , T

∗
2 ) are

λ∗4,2 =
α∗

4±
√

(α∗
4)

2−4β∗
4

2

where, α∗4 = pf
(E∗

4+f)
2 − d+ r(1− 2bT ∗2 )− agE∗

4

(g+T∗
2 )2 − γ

β∗4 = ( pf
(E∗

4+f)
2 − d)(r(1− 2bT ∗2 )− agE∗

4

(g+T∗
2 )2 − γ) +

caT∗
2

g+T∗
2

(a) If β∗4 > 0 and (α∗4)2−4β∗4 ≥ 0 then the equilibrium points P ∗4 (E∗4 , T
∗
2 )

in the form of nodes and if α∗4 < 0 then P ∗4 (E∗4 , T
∗
2 ) asymptotically

stable. If α∗4 > 0 then P ∗4 (E∗4 , T
∗
2 ) is unstable.

(b) If β∗4 > 0 and (α∗4)2−4β∗4 < 0 then the equilibrium points P ∗4 (E∗4 , T
∗
2 )

in the form of spiral and if α∗4 < 0 then P ∗4 (E∗4 , T
∗
2 ) asymptotically

stable. If α∗4 > 0 then P ∗4 (E∗4 , T
∗
2 ) is unstable.

(5) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P ∗5 (E∗5 , T

∗
3 ) are

λ∗5,3 =
α∗

5±
√

(α∗
5)

2−4β∗
5

2

where, α∗5 = pf
(E∗

5+f)
2 − d+ r(1− 2bT ∗3 )− agE∗

5

(g+T∗
3 )2 − γ

β∗5 = ( pf
(E∗

5+f)
2 − d)(r(1− 2bT ∗3 )− agE∗

5

(g+T∗
3 )2 − γ) +

caT∗
3

g+T∗
3

(a) If β∗5 > 0 and (α∗5)2−4β∗5 ≥ 0 then the equilibrium points P ∗5 (E∗5 , T
∗
3 )

in the form of nodes and if α∗5 < 0 then P ∗5 (E∗5 , T
∗
3 ) asymptotically

stable. If α∗5 > 0 then P ∗5 (E∗5 , T
∗
3 ) is unstable.

(b) If β∗5 > 0 and (α∗5)2−4β∗5 < 0 then the equilibrium points P ∗5 (E∗5 , T
∗
3 )

in the form of spiral and if α∗5 < 0 then P ∗5 (E∗5 , T
∗
3 ) asymptotically

stable. If α∗5 > 0 then P ∗5 (E∗5 , T
∗
3 ) is unstable.

(6) The eigen values of the Jacobian matrix at cancer infected equilibrium
point P ∗6 (E∗6 , T

∗
3 ) are

λ∗6,3 =
α∗

6±
√

(α∗
6)

2−4β∗
6

2

where, α∗6 = pf
(E∗

6+f)
2 − d+ r(1− 2bT ∗3 )− agE∗

6

(g+T∗
3 )2 − γ

β∗6 = ( pf
(E∗

6+f)
2 − d)(r(1− 2bT ∗3 )− agE∗

6

(g+T∗
3 )2 − γ) +

caT∗
3

g+T∗
3

(a) If β∗6 > 0 and (α∗6)2−4β∗6 ≥ 0 then the equilibrium points P ∗6 (E∗6 , T
∗
3 )

in the form of nodes and if α∗6 < 0 then P ∗6 (E∗6 , T
∗
3 ) asymptotically
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stable. If α∗6 > 0 then P ∗6 (E∗6 , T
∗
3 ) is unstable.

(b) If β∗6 > 0 and (α∗6)2−4β∗6 < 0 then the equilibrium points P ∗6 (E∗6 , T
∗
3 )

in the form of spiral and if α∗6 < 0 then P ∗6 (E∗6 , T
∗
3 ) asymptotically

stable. If α∗6 > 0 then P ∗6 (E∗6 , T
∗
3 ) is unstable.

4.3. Simulation: The set of parameters were being used to see the dynamics of
effector cells and cancerous cells for the model (B) is given in Table 3. The initial
values used in these simulation are E(0) = T (0) = 1000.

Table 3. Parameter value for the model (B)

Parameters c u1 p f d r b a g γ(estimated)
based on [10]

Values for simulation 1 0.05 1 0.1245 10−3 0.03 0.18 10−9 1 105 0.1
Values for simulation 2 0.05 1 0.1245 10−3 0.03 0.18 10−9 1 105 0.195
Values for simulation 3 0.05 53 0.1245 10−3 0.03 0.18 10−9 5 105 0.1

(a) Simulation 1 (b) Simulation 2

(c) Simulation 3

Figure 2. Radiogenic therapy
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Based on the parameter set of simulation 1, we have two biologically valid
equilibrium points P1(37.4832, 0) and P3(8401.37, 5018.33). The cancer free equi-
librium point P1 is unstable and behaves as a saddle point in nature. The can-
cer infected equilibrium point P3 is showed asymptotically stable result with in-
ward spiral in nature. i.e. at this point both effector and tumor cells population
showed damped oscillation behavior about zero rather than asymptotes to zero
(Figure 2(A)). Based on the simulation 2, there is only one valid equilibrium point
P1(37.4832, 0) and this point showed nodal sink nature with asymptotically stable
behavior. That means the effector cell population incorporates with the treatment
given can suppressed the tumor growth to zero with time increase (Figure 2(B)).
Simulation 3, showed that the biologically valid equilibrium point P1(1770, 0) is
asymptotically stable with nodal sink nature. That means tumor cells asymptotes
to zero rather than oscillating about zero (Figure 2(C)).

5. Stability Analysis of The Model (C)

To find the equilibrium point of the system (C), we have

cT +
pE

E + f
− dE + u1 = 0

rT (1− bT )− aET

g + T
− u2MT = 0

−ηM − ρT M

h+M
+ VM (t) = 0

(5.1)

Solving above three equations, we get twelve equilibrium points and out of which
one equilibrium point P1(1770.82, 0, 0.346) is biologically valid based on parameter
Table 4.

The jacobian matrix at this point is

JP∗∗
1

=

−d+ pf
(1770.82+f)2 c 0

0 r − 1770.82a
g − 0.346u2 0

0 − 0.346ρ
h+0.346 −η

 (5.2)

The characteristic equation for the above matrix is given by

λ3 − (X + Y + Z)λ2 + (XZ + Y Z +XY )λ−XY Z = 0 (5.3)

where, X = −d+ pf
(1770.82+f)2 ; Y = r − 1770.82a

g − 0.346u2 ; Z = − 0.346ρ
h+0.346 .

Numerical simulation with the initial values E(0) = T (0) = 1000 and stability
analysis showed that around this cancer-free equilibrium point P ∗∗1 , the solution
of the system (5.1) behaves asymptotically stable with nodal sink in nature. That
means in this case also tumour cells asymptotes to zero rather than oscillating
about zero (Figure 3(A)). Figure 3(B) shows the drug administration into the
system in the form of mAbs, which is stable in approx 0.346, after some time of
treatment.
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Table 4. Parameter value for the model (C)

Parameters Meaning Values Source
c cancer antigenicity 0.05 [6]
u1 Immunotherapy term 53 [6]
p proliferation rate of E 0.1245 [6]
f half saturation for E proliferation term 10−3 [6]
d half life of effector cells E 0.03 [6]
r cancer growth rate 0.18 [6]
b cancer cell capacity 10−9 [6]
a cancer clearance term 5 [6]
g Half-saturation, for cancer clearance 105 [6]
u2 Rate of mAb-induced tumor death 5.5× 10−1 [13]
η Rate of mAb turnover and excretion 1.386× 10−1 [14]
ρ Rate of mAb-tumor cell complex formation 8.9× 10−14 [15]
h Concentration of mAbs for half-maximal EGFR binding 4.45× 10−5 [15]

(a) (b)

Figure 3. combination of mAbs and gene therapy

6. Discussion and Conclusion

Without numerical verification of the derived results, analytical studies can
never be completed. In section 3, 4, 5; we presented numerical simulation of some
important situations for each of our considered models of which we derived ana-
lytical results in corresponding sections.

In section 3, we considered treatment through gene therapy, in section 4 through
a combination of gene and radiotherapy and lastly in section 5 through gene and
mAbs therapy.

Figure 1 in section 3 shows that when only gene therapy is used as treatment
method of a system with low treatment term and high cancer growth rate then
tumor and immune cells compete with each other for a long time signifying that

140



AN ANALYSIS OF A CANCER TREATMENT MODEL OF GENE THERAPY 15

cancer cannot be cured through this mechanism.

Figure 2(A) in section 4 shows that for low dosage of both radiotherapy (γ =
0.1) and immunotherapy (u1 = 1) cancer cells and immune cells compete with
each other for a long time signifying inefficiency of this treatment mechanism for
considered parameter values. But the situation gets drastically changed when we
increase the radiotherapy dose to a higher level (γ = 0.195). Figure 2(B) shows
that in this case cancer cells get eradicated in time t = 300. But deficiency of
this treatment mechanism is that along with the tumor cells it reduces the level
of immune cells where the patient can be attack by other opportunistic diseases
making the patients’ survival difficult. Of course, this situation can be avoided
for a set of selected values of the parameter which is shown in Figure 2(C). For
radiotherapy dose (γ = 0.1), immunotherapy dose (u1 = 53) and cancer clearence
term (a = 5) cancer gets eradicated in time t = 250. Point to be noted in this case
is that the immune cells maintain almost a constant level where the patient is safe.

Figure 3(A) and 3(B) in section 5 shows that cancer can be eradicated quickly
(t < 50) if the treatment is carried out in combination of gene therapy and mAbs
therapy and applying the parameter values given in Table 4. Added advantage
of this treatment procedure is that the immune cells attained a higher level when
cancer cells die out.

The above analyses have shown the theoretical behavior in case of different
cancer treatment models. Oncologists may practice the above treatment strategies
in the lab with any living body for a better result. This paper deals with the local
stability and time series analysis of three different treatment models. The side
effects of the above treatment policies and its control will be discussed in near
future. This is our on-going research; the models with continuous radiotherapy,
pulsed radiotherapy and optimal mAbs will be considered in our future works.
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