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Abstract. Here we study the approximate controllability of time dependent impulsive re-
tarded semilinear differential equations with infinite delay and nonlocal conditions, where
some ideas are taking from a previous works for this kind of systems with impulses, nonlocal
conditions and finite delay, this is done using a techniques evading fixed point theorems used
by A.E. Bashirov et al. In this case we have to impose some conditions on the nonlinear term
depending of the last time impulse tp, so that we can prove the approximate controllability
of this system by living the impulses behind on a fixed solution curve in a small interval of
time, and from this position, we are able to reach a ball of center the final state and radius
ε > 0 small enough, at time τ , by assuming that the associated linear control system is
exactly controllable on any interval [t0, τ ], 0 < t0 < τ .
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1. Introduction.

In this paper, the approximate controllability of a time-dependent impulsive semilinear
retarded differential equations with infinite delay and nonlocal is proved without using fixed
point theorem technique, rather than this, we use a technique evading fixed point theorems
used by A.E. Bashirov et al.[3, 4, 5]. In this case we have to impose some conditions on the
nonlinear term depending of the last boost time tp, so that we can prove the approximate
controllability of this system by living the impulses behind on a fixed curve in a short time
interval, and from this position, we are able to reach a neighborhood of the final state on
time τ , by assuming that the corresponding linear control system is exactly controllable on
any interval [t0, τ ], 0 < t0 < τ . Without further ado, this system is giving by the following
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impulsive retarded differential equation with infinite delay and nonlocal condition:

(1.1)


z′(t) = A(t)z(t) + B(t)u(t) + f(t, zt, u(t)), t 6= tk, t > 0

z(s) +K(zτ1 , zτ2 , · · · , zτq)(s) = φ(s), s ∈ R− = (−∞, 0]

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k = 1, 2, · · · , p,
where 0 < t1 ≤ t2 < ... < tp < τ , 0 < τ1 < τ2 < · · · < τq < r < τ , are fixed real
numbers z(t) ∈ Rn, u(t) ∈ Rm, A(t), B(t) are continuous matrices of dimension n × n and
n × m respectively, the control function u belongs to L2([0, τ ];Rm), φ ∈ B, with B being
a particular phase space satisfying the axiomatic theory defined by Hale and Kato (which
will be specified later), zt(s) = z(t + s), zt ∈ B, and finally f : (−∞, τ ] ×B × Rm → Rn,
Jk : (−∞, τ ] × Rn → Rn and K : (B)q → B are smooth enough functions. Under these
conditions, using some ideas from [10, 12], in [2] it is proved that this control system with
infinite delay, impulse, and non local conditions has solutions. Additionally, we assume the
following conditions on the nonlinear term f

(1.2) |f(t, ϕ, u)| ≤ ζ(‖ϕ(−tp)‖), u ∈ Rm, ϕ ∈ B,

where ζ : R+ → [0,∞) is a continuous function. In particular, ζ(ξ) = a(ξ)β + b, with β ≥ 1.
Associated with the semilinear system (1.1), we consider also the linear system

(1.3)

{
z′(t) = A(t)z(t) + B(t)u(t), t ∈ (t0, τ ],
z(t0) = z0.

Also, we shall assume the following hypothesis:
H1) The linear control system (1.3) is exactly controllable on any interval [τ − δ, τ ], for all
δ with 0 < δ < τ .
The hypothesis H1) is satisfied in the case that A(t) = A and B(t) = B are constant matrices
since the algebraic Kalman’s condition(see [11]) for exact controllability of linear autonomous
systems does not depend on the time interval.

Rank[B|AB| · · · |An−1B] = n.

Others examples of time-dependent systems satisfying the hypothesis H1) can be found(see
[9]).
There are several papers on the existence of solutions of semilinear evolution equations with
impulses, with impulses and bounded delay, with bounded delay and non-local condition, and
with non-local conditions and impulses. To mention, one can see [15]. Recently, in [1], the ex-
istence of periodic mild solution of infinite delay evolution equations with non-instantaneous
impulses have been study by using Koratowski’s measure of non-compactness and Sadowski’s
fixed point theorem. In recently work [2], using some ideas from this paper and from [8],
[13],[14], to define a particular phase space B satisfying Hale-Kato axiomatic theory, the
existence of solutions for this type of systems has been proved applying Karakosta’s fixed
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point theorem as in [10, 12]. But, as far as we know, the controllability of this system has
not being studied before.

2. Preliminaries 2

In this section, we shall set some notation and define the phase space B in which our
initial state will take place. Let Φ be the fundamental matrix of the linear system

(2.4) z′(t) = A(t)z(t), t ∈ R.
Then, the evolution operator U(t, s) is define by U(t, s) = Φ(t)Φ−1(s), t, s ∈ R. For τ > 0,

we consider the following bound for the evolution operator

M = sup
t,s∈(0,τ ]

‖U(t, s)‖.

Now, we shall define the function space PWp = PWp((−∞, 0];RN), as it follows:

PWp =
{
z : (−∞, 0]→ RN : z is continuous except on skz ∈ (−∞, 0],

k = 1, 2, . . . , p, the side limits z(s+kz), z(s
−
kz) exist and z(s+kz) = z(skz)}.

Using some ideas from [13, 8, 13, 14], we consider a function h : R→ R+ in such a way that

(1) h(0) = 1,
(2) h(−∞) = +∞,
(3) h is decreasing.

Remark 2.1. A particular function h is h(s) = exp (−as), with a > 0.

Now, we define the following functions space

Chp =

{
z ∈ PWp : sup

s≤0

‖z(s)‖
h(s)

<∞
}
.

Lemma 2.1 (See [2]). The space Chp equipped with the norm

‖z‖hp = sup
s≤0

‖z(s)‖
h(s)

, z ∈ Chp

is a completed metric space.

Now, we shall consider the following larger space PWhτ := PWhτ ((−∞, τ ];RN)

PWhτ =

{
z : (−∞, τ ]→ RN : z

∣∣∣
R−
∈ B and z

∣∣∣
(0,τ ]

is a continuous except at tk,

k = 1, 2, ..., p, where side limits z(t+k ), z(t−k ) exist and z(t+k ) = z(tk)}.
From Lemma 2.1, the following Lemma is obtained
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Lemma 2.2. PWhτ is a completed metric space equipped with the norm

‖z‖ =
∥∥z|R−

∥∥
B

+ ‖z|I‖∞ ,

where ‖z|I‖∞ = sup
t∈I=(0,τ ]

‖z(t)‖.

Our phase space will be

B := Chp,

equipped with the norm

‖z‖hp = ‖z‖B.
It is not hard to verify that the phase space B satisfies the Hale and Kato axiomatic theory
for the phase space of retarded differential equations with infinite delay: For more details
about it, one can see [8, 13, 14].
We assume that the reader is familiar with the concept of exact controllability and approx-
imate controllability, for more detail abut it, one can see [6, 7].

Definition 2.1. (Exact Controllability) The system (1.1) is said to be exactly control-
lable on [0, τ ] if for every φ ∈ B, z1 ∈ Rn, there exists u ∈ L2([0, τ ];Rm) such that the
solution z(t) of (1.1) corresponding to u verifies:

z(0) +K(zτ1 , zτ2 , . . . , zτq)(0) = φ(0) and z(τ) = z1.

Definition 2.2. (Approximate Controllability) The system (1.1) is said to be ap-
proximately controllable on [0, τ ] if for every φ ∈ B, z1 ∈ Rn and ε > 0, there exists
u ∈ L2([0, τ ];Rm) such that the solution z(t) of (1.1) corresponding to u verifies:

z(0) +K(zτ1 , . . . , zτq)(0) = φ(0), and
∥∥z(τ)− z1

∥∥
Rn < ε.

φ(0)−K(zτ1, zτ2, . . . , zτq)(0)

z(τ) = z1

φ(0)−K(zτ1, zτ2, . . . , zτq)(0)

z(τ)

z1

ε

3. Controllability of Linear System

In this section, we shall present some known characterization of the controllability of the
linear system (1.3) without impulses, delays and nonlocal conditions. To this end, we note
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that for all z0 ∈ Rn and u ∈ L2(0, τ ;Rm) the initial value problem

(3.5)

{
y′ = A(t)y(t) + B(t)u(t), y ∈ Rn, t ∈ [τ − δ, τ ],
y(τ − δ) = z0,

admits only one solution given by

(3.6) y(t) = U(t, τ − δ)z0 +

∫ t

τ−δ
U(t, s)B(s)u(s)ds, t ∈ [τ − δ, τ ],

Definition 3.1. Corresponding with (3.5), we define the following matrix: The Gramian
controllability matrix by:

(3.7) Wτδ =

∫ τ

τ−δ
U(τ, s)B(s)B∗(s)U∗(τ, s)ds.

Proposition 3.1. (See [6, 7]) The system (3.5) is controllable on [τ − δ, τ ] if, and only if,
the matrix Wτδ is invertible.
Moreover, a control steering the system (3.5) from initial state z0 to a final state z1 on the
interval [τ − δ, τ ] is given by

(3.8) vδ(t) = B∗(t)U∗(τ, t)W−1τδ (z1 − U(τ, τ − δ)z0), t ∈ [τ − δ, τ ].

i.e.,
The corresponding solution yδ(t) of the linear system (3.5) satisfies the boundary condition:

yδ(τ − δ) = z0 and yδ(τ) = z1.

4. Main Result

In this section, we shall prove the main results of this work, the approximate controllability
of the semilinear retarded system (1.1) with infinite delay, impulses, and nonlocal conditions.
In this regard, according to [2], for all φ ∈ B and u ∈ L2(0, τ ;Rm) the problem (1.1) admits
only one solution z ∈ PWhτ given by
(4.9)

z(t) = U(t, 0)φ(0)− U(t, 0)[(K(zτ1 , . . . , zτq))(0)] +

∫ t

0

U(t, s)B(s)u(s)ds

+

∫ t

0

U(t, s)f(s, z(s− tp), u(t))ds+
∑

0<tk<t

U(t, tk)Ik(tk, z(tk)u(tk)), t ∈ [0, τ ],

z(t) + (K(zτ1 , . . . , zτq))(t) = φ(t), t ∈ (−∞, 0].

Theorem 4.1. If the functions f, Ik, h are smooth enough, condition (1.2) holds and the
linear system (3.5) is exact controllable on any interval [τ − δ, τ ], 0 < δ < τ , then system
(1.1) is approximately controllable on [0, τ ].
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Proof . Given φ ∈ B, a final state z1 and ε > 0, we want to find a control uδ ∈ L2(0, τ ;Rm)
steering the system to a ball of center z1 and radius ε > 0 on [0, τ ]. In indeed, we consider
any fixed control u ∈ L2(0, τ ;Rm) and the corresponding solution z(t) = z(t, 0, φ, u) of the
problem (1.1). For 0 < δ < min{τ − tp, tp, ε

MN
}, we define the control uδ ∈ L2(0, τ ;Rm) as

follows

uδ(t) =

{
u(t), if 0 ≤ t ≤ τ − δ,
vδ(t), if τ − δ < t ≤ τ.

where N = sups∈[0,τ ]{ζ(‖z(s)‖} and

vδ(t) = B∗(t)U∗(τ, t)(Wτδ)
−1(z1 − U(τ, τ − δ)z(τ − δ)), τ − δ < t ≤ τ.

Since 0 < δ < τ − tp, then τ − δ > tp; and using the cocycle property U(t, l)U(l, s) = U(t, s),
the associated solution zδ(t) = z(t, 0, φ, uδ) of the time-dependent inpulsive semeilinear re-
tarded differential equation with infinite delay and nonlocal (1.1), at time τ , can be expressed
as follows:

zδ(τ) = U(τ, 0)φ(0)− U(τ, 0)[(K(zτ1 , . . . , zτq)(0)] +

∫ τ

0

U(τ, s)B(s)uδ(s)ds

+

∫ τ

0

U(τ, s)f(s, zδs , u
δ(s))ds+

∑
0<tk<τ

U(τ, tk)Ik(tk, z(tk), u
δ(tk)).

Therefore,

zδ(τ) = U(τ, τ − δ)

{
U(τ − δ, 0)φ(0)− U(τ − δ, 0)[(K(zτ1 , . . . , zτ1))(0)]

+

∫ τ−δ

0

U(τ − δ, s)B(s)(s)uδ(s)ds

+

∫ τ−δ

0

U(τ − δ, s)f(s, zδs , u
δ(s))ds

+
∑

0<tk<τ−δ

U(τ − δ, tk)Iek(tk, zδ(tk), uδ(tk))

}
+

∫ τ

τ−δ
U(τ, s)B(s)uδ(s)ds+

∫ τ

τ−δ
U(τ, s)f(s, zδs , u

δ(s))ds.

Hence,

zδ(τ) = U(τ, τ − δ)z(τ − δ) +

∫ τ

τ−δ
U(τ, s)B(s)vδ(s))ds

+

∫ τ

τ−δ
U(τ, s)f(s, zδs , v

δ(s))ds.
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So,

zδ(τ) = U(τ, τ − δ)z(τ − δ) +

∫ τ

τ−δ
U(τ, s)B(s)vδ(s)ds

+

∫ τ

τ−δ
U(τ, s)f(s, zδs , v

δ(s))ds.

The corresponding solution yδ(t) = y(t, τ − δ, z(τ − δ), vδ) of the initial value problem (3.5)
at time τ , for the control vδ and the initial condition z0 = z(τ − δ), is given by:

yδ(τ) = U(τ, τ − δ)z(τ − δ) +

∫ τ

τ−δ
U(τ, s)B(s)vδ(s)ds,

and from Proposition 3.1, we get that

yδ(τ) = z1.

Therefore, ∥∥zδ(τ)− z1)
∥∥ ≤ ∫ τ

τ−δ
‖U(τ, s)‖

∥∥f(s, zδs , u
δ(s))

∥∥ ds.
Now, since 0 < δ < tp and τ − δ ≤ s ≤ τ , then s− tp ≤ τ − tp < τ − δ and

zδ(s− tp) = z(s− tp).
Hence, since δ satisfies 0 < δ < min{tp, τ − tp, ε

MN
} and∥∥zδ(τ)− z1

∥∥ ≤ ∫ τ

τ−δ
‖U(τ, s)‖

∥∥f(s, zδs , v
δ(s))

∥∥ ds
≤
∫ τ

τ−δ
‖U(τ, s)‖ ζ(‖z(s− tp)‖ds < MNδ < ε.

A geometric interpretation of this theorem can be seen in the following picture:

z(τ)z(
τ
−
δ)

z
δ (s
−
t p

)
=
z(
s
−
t p

)

yδα(τ) = z1

yδα(τ)

ε

φ(0)− (h(zτ1 , · · · zτq))(0)
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This finishes the proof of our main Theorem.
�

5. Application

As an application of Theorem 4.1, we shall consider an example of a control system
governed by a semilinear time-dependent retarded equation with infinite delay,impulses, and
nonlocal conditions

(5.10)

 z′(t) = A(t)z(t) + B(t)u(t) + f(t, zt, u(t)), t ∈ (0, τ ], t 6= tk
z(s) +K(zτ1 , zτ2 , . . . , zτq)(s) = φ(s), s ∈ [−r, 0],
z(t+k ) = z(t−k ) + Ik(z(tk), u(tk)), k = 1, 2, 3, . . . , p,

with A(t) = a(t)A, B(t) = b(t)B, A and B are n × n and n × m constant matrices,
respectively.

a ∈ L1[0, τ ], b ∈ C[0, τ ] satisfying the following conditions∫ τ

0

a(s)ds 6= 0, b(t) 6= 0, t ∈ [0, τ ]

We suppose that the linear autonomous system y′(t) = Ay(t) +Bu(t) is controllable, which
is equivalent to the Kalman’s rank conditions

Rank[B;AB; · · · ;An−1B] = n.

But, from [9], the Kalman’s rank conditions holds if, and only if, the time-dependent linear
system given by

z′(t) = A(t)z(t) + B(t)u(t), t ∈ [0, τ ]

(A(t) = a(t)A, B(t) = b(t)B) is exactly controllable on [t0, τ ], for all 0 ≤ t0 < τ .
In this example we shall assume that the Kalman’s rank conditions holds. The nonlinear
terms and the impulsive functions are given as follows

f : [0, τ ]×B× Rm → Rn,

f(t, φ, u) =


3
√

sin ‖u‖+ 1 · 3
√
φ1(−tp)

3
√

sin ‖u‖+ 1 · 3
√
φ2(−tp)

... · ...
3
√

sin ‖u‖+ 1 · 3
√
φn(−tp)

 ,
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K : Bq → B,
given by

K(φ1, φ2, · · · , φ1) =

q∑
i=1


sin(φi1)
sin(φi2)

...
sin(φin)

 ,

Ik : Rn × Rm → Rn, k = 1, 2, · · · , p,
given by

Ik(z, u) = cos(
√
‖u‖+ 1)


sin(zk1 )
sin(zk2 )

...
sin(zkn)

 ,

Then

‖f(t, φ, u)‖ ≤
√
n‖φ(−tP )‖2/3+2

√
n sin ‖u‖2/3+2

√
n ≤
√
n‖φ(−tP )‖2/3+3

√
n = ζ(‖φ(−tP )‖),

and since g and Ik, k = 1, 2, · · · , p are smooth enough and conditions and condition (1.2) is
satisfied. Hence, the system (1.1) is approximately controllable on [0, τ ].

6. Final Remark

In this work, the approximate controllability of a control system governed by a retarded
equation with infinite delay, impulses, and non-local conditions is proved. The problem is set
in a phase space that satisfies the axiomatic theory introduced by Hale and Kato to study
delayed equations with infinite delay. Now, the fact that we have nonlocal conditions and
impulses forces us to consider a slightly more general space in the sense that the impulses
that occur in the present are transferred to the historical past, as the present also preserves
properties of the same historical past. In this sense, this problem is very interesting and has
not been studied before, as far as we know. Another important issue is that the technique
we apply evades the use of fixed point theorems, which was used first by Bashirov et al(See
[3, 4, 5]). to study the controllability of equations without impulses, without delays, and
without non-local conditions, and assuming that the non-linear term was bounded. But in
this work, the condition imposed on the last impulse time helps us to go back to a previously
chosen solution curve, from which we can steer the system to a neighborhood of the final
state on time τ , thus proving the approximate controllability of the system.
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