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Abstract. In this work, we study the existence and uniqueness of solutions for retarded
equations with infinite delay, impulses, and nonlocal conditions. We set the problem in a
natural Banach phase space satisfying Hale-Kato axiomatic Theory about the phase space
for retarded equations with unbounded delay. The result about the existence is obtained by
applying Karakosta’s Fixed Point Theorem.

1. Introduction

It is well known that J. Hale and J. Kato wrote a magnificent paper on the phase space
for ordinary retarded differential equations with unbounded delay (see [3]). They made an
Axiomatic Theory on the conditions that the phase space should satisfies for this type of
equations, which allowed them to analyze the existence of solutions and the asymptotic
behavior of this type of equations, of course, without impulses and nonlocal conditions. In
this work, we will use a particular and natural phase space B appropriated to our problem,
since the initial function φ : (−∞, 0] → RN has a fixed number p of points of discontinuity
for which the side limits exist and the function φ is continuous to the right at such points. In
fact, this phase space will satisfy the axioms proposed by Hale and Kato. Without further
ado, we will study the existence and uniqueness of solutions for the next non-autonomous
semi-linear retarded equation, which has infinite delay, impulses, and nonlocal conditions,

(1.1)


z′(t) = A(t)z(t) + f(t, zt), t 6= tk, t > 0,

z(s) + g(zτ1 , zτ2 , · · · , zτq)(s) = φ(s), s ∈ R− = (−∞, 0],

z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k = 1, 2, · · · , p.
Here 0 < t1 < t2 < · · · < tp, 0 < τ1 < τ2 < · · · < τq, the n × n matrix A(t) is continuous,
φ ∈ B, with B being the phase space (which will be specified later) satisfying the axiomatic
theory proposed by Hale and Kato , zt(s) = z(t+ s), zt ∈ B, and finally f : (−∞, τ ]×B→
RN , Jk : (−∞, τ ]× RN → RN and g : (B)q → B are smooth enough functions.

The function zt illustrates the history of the state up to the time t, and also remembers
much of the historical past of φ, caring part of the present to the past (see Fig. 1).
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Figure 1. Graph of the functions zt, φ, and z.

There are several papers on the existence of solutions of semilinear evolution equations with
impulses or with impulses and bounded delay or with unbounded delay, non-local condition
or with non-local conditions and impulses. To mention, one can see [1, 2, 4, 7, 8, 14, 13, 15].
Recently, in [1], the existence of periodic mild solution of infinite delay evolution equations
with non-instantaneous impulses have been studied by using Koratowski’s measure of non-
compactness, and Sadovki’s fixed point theorem. In our work, we will use some ideas from
this paper and from [3, 9, 10] to define a particular phase space B satisfying Hale-Kato
axiomatic theory. Since our problem is under the influence of unbounded delay, impulses,
and nonlocal condition simultaneously, it suggests us to use a new method to achieve the
existence result by applying Karakosta’s Fixed Point Theorem (see [7, 8]).

2. Preliminaries

In this section, we shall establish some useful notation and define the phase space B in
which our initial state will take place. Let’s denote as Φ the fundamental matrix of the linear
system

(2.2) z′(t) = A(t)z(t), t ∈ R,
then the evolution operator V is defined by V(t, s) = Φ(t)Φ−1(s), where t, s ∈ R. For τ > 0,
we consider the following bound for the evolution operator

(2.3) M = sup
t,s∈(0,τ ]

‖V(t, s)‖.

Now, we shall define the function space PWp = PWp((−∞, 0];RN), as follows:

PWp =
{
z : (−∞, 0]→ RN : z ∈ C(J ;RN), J = (−∞, 0]\{s1z, . . . , spz}, skz ∈ (−∞, 0],

k = 1, 2, . . . , p, where z(s+kz), z(s
−
kz) exist and z(s+kz) = z(skz)

}
.
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Retarded equations with infinite delay, impulses, and nonlocal conditions 3

Using some ideas from [10], we consider a function h : R→ R+ such that

a) h(0) = 1,
b) h(−∞) = +∞,
c) h is decreasing.

Remark 2.1. A particular function h is h(s) = exp (−as), with a > 0. See Fig. 2.
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Figure 2. Example of h function described above.

Now, we define the following functions space

Chp =

{
z ∈ PWp : sup

s≤0

‖z(s)‖
h(s)

<∞
}
.

In [1, 10, 9, 3] and other references it is mentioned that this space is a Banach space, but
neither of them gives proof if, so we decided to give proof of it for a better understanding of
the reader.

Lemma 2.2. The space Chp equipped with the norm

‖z‖hp = sup
s≤0

‖z(s)‖
h(s)

, z ∈ Chp,

is a Banach space.

Proof. Let {φn} be a Cauchy sequence in Chp . It is easy to see that the sequences {φn}
converges pointwise to a function φ : (−∞, 0]→ RN . Also, note that,

lim
n→+∞

‖φn − φ‖hp = 0
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So, it is enough to show that φ ∈ Chp. Indeed, let us put

ϕn(s) =
φn(s)

h(s)
for all s ∈ R−, n ∈ N.

Then

ϕ(s) =
φ(s)

h(s)
and lim

n→+∞
‖ϕn − ϕ‖ = 0, uniformly.

Since {ϕn} is a Cauchy sequence in the uniform convergence, there exists N ∈ N such that
for all n ≥ N , skφn = sk ∈ [−N, 0], k = 1, 2, . . . , p, and ϕn is continuous in [−N, 0] except
in {sk}pk=1, where the side limits ϕn(s−k ), ϕn(s+k ) = ϕn(sk) exist. Next, we want to show that

lim
s→s−k

ϕ(s) = ϕ(s−k ) and lim
s→s+k

ϕ(s) = ϕ(s+k ) = ϕ(sk).

Indeed, let {si} ⊂ [−N, 0] be a sequence such that si > sk and limi→∞ si = sk.
Then, by Cantor’s diagonalization process the sequence {ϕi(si)} converges uniformly. Now,
we want to prove that limi→∞ ϕ(si) = L ∈ RN exists.
Let us prove that {ϕ(si)} is a Cauchy sequence. Indeed, we consider the following estimate:

‖ϕ(sj)− ϕ(si)‖ ≤ ‖ϕj(sj)− ϕ(sj)‖+ ‖ϕi(si)− ϕ(si)‖+ ‖ϕj(sj)− ϕi(si)‖,

From the uniform convergence and the fact that {ϕi(si)} is a Cauchy sequence, we obtain
that {ϕ(si)} is a Cauchy sequence. Hence,

(2.4) lim
i→∞

ϕ(si) = L ∈ RN .

Let us prove that this limit doesn’t depend on the sequence {si} ⊂ [−N, 0] such that si < sk
and limi→∞ si = sk. In fact, consider another sequence {τi} ⊂ [−N, 0] such that τi < sk and
limi→∞ τi = sk. Then, applying Cantor’s diagonalization process again, we get that {ϕi(τi)}
converges and

(2.5) lim
i→∞

ϕ(τi) = l ∈ RN .

Also, from Cantor’s diagonalization process, we get that

(2.6) lim
i→∞

ϕi(si) = lim
i→∞

ϕi(τi).

Next, we consider the following estimate

‖L− l‖ ≤ ‖ϕ(si)− L‖+ ‖ϕ(τi)− l‖+ ‖ϕi(si)− ϕ(si)‖
+ ‖ϕi(τi)− ϕ(τi)‖+ ‖ϕi(si)− ϕi(τi)‖.

46



Retarded equations with infinite delay, impulses, and nonlocal conditions 5

From (2.4), (2.5), (2.6) and the uniform convergence, we have that L = l. Therefore
lims→s+k

ϕ(s) = ϕ(s+k ) exists. Analogously, lims→s−k
ϕ(s) = ϕ(s−k ) exists. i.e.,

lim
s→s−k

ϕ(s) = ϕ(s−k ) and lim
s→s+k

ϕ(s) = ϕ(s+k ).

Since, ϕn(s+k ) = ϕn(sk), for all n > N , we get that ϕ(s+k ) = ϕ(sk). On the other hand

ϕ(s) =
φ(s)

h(s)
for all s ∈ R−,

Hence, the following limits exist

lim
s→s−k

φ(s) = φ(s−k ) and lim
s→s+k

φ(s) = φ(s+k ) = φ(sk),

and the proof of the Lemma is completed. �

Our phase space will be

B := Chp,

endowed with the norm

‖z‖hp = ‖z‖B.
Now, we shall consider the following larger space PWhτ := PWhτ ((−∞, τ ];RN)

PWhτ =

{
z : (−∞, τ ]→ RN : z

∣∣∣
R−
∈ B and z

∣∣∣
(0,τ ]
∈ C(J ′;RN), J ′ = (0, τ ]\{t1, . . . , tp},

tk ∈ (0, τ ], k = 1, 2, ..., p, where z(t+k ), z(t−k ) exist and z(t+k ) = z(tk)
}
.

From Lemma 2.2, it follows that,

Lemma 2.3. PWhτ endowed with the norm

‖z‖ =
∥∥z|R−

∥∥
B

+ ‖z|I‖∞ ,

where ‖z|I‖∞ = sup
t∈I=(0,τ ]

‖z(t)‖, is a Banach space.

Remark 2.4. It is not hard to verify that our phase space B satisfies the Hale and Kato
axiomatic theory (stated in e.g. [1]) for the phase space of retarded differential equations
with infinite delay. Thus, B will be a linear space of functions mapping (−∞, 0] into RN

endowed with a norm ‖ · ‖B. For more details about this axiomatization, one can see
[1, 10, 9, 3].

The following Lemma is the key to prove our existence theorem, and its proof is due to
the fact that the function h is defined on the entire real line, this result is stronger than
axiom A1)-ii) from Hale and Kato axiomatic theory for the phase space presented in [1].
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Lemma 2.5. For all function z ∈ PWhτ the following estimate holds for all s ∈ [0, τ ]:

‖zs‖B ≤ ‖z‖PWhτ
.

Proof.

‖zs‖B = sup
θ∈R−

‖zs(θ)‖
h(θ)

= sup
θ∈R−

‖z(s+ θ)‖
h(θ)

= sup
θ∈R−

‖z(s+ θ)‖
h(s+ θ)

· h(s+ θ)

h(θ)

≤ sup
θ∈R−

‖z(s+ θ)‖
h(s+ θ)

= sup
l∈(−∞,s]

‖z(l)‖
h(l)

≤ sup
l∈(−∞,0]

‖z(l)‖
h(l)

+ sup
l∈(0,s]

‖z(l)‖

≤ ‖z
∣∣∣
B
‖+ ‖z

∣∣∣
I
‖∞ = ‖z‖PWhτ

= ‖z‖.

�

3. Main Results

In this section we shall show that, by assuming some conditions on f , Jk and g, the
non-autonomous differential equation (1.1) has a solution on (−∞, τ ], for τ > 0.

In the following proposition, we present the characterization of the solutions of Problem
(1.1). Its proof is base in the variation constant formula for non-homogeneous ordinary
differential equations(See [11]).

Proposition 3.1. Problem (1.1) permits a solution z(·) on (−∞, τ ] if, and only if, z(·)
satisfies the following expression,

z(t) = V(t, 0)[φ(0)− g(zτ1 ...zτq)(0)] +

∫ t

0

V(t, s)f(s, zs)ds

+
∑

0<tk<t

V(t, tk)Jk(tk, z(tk)), t ∈ (0, τ ],

z(t) = φ(t)− g
(
zτ1 , zτ2 , zτ3 , . . . , zτq

)
(t), t ∈ (−∞, 0].
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Now, let us denote by

(RN)q = RN × RN × ...× RN =

q∏
i=1

RN ,

endowed with the norm

‖y‖q =

q∑
i=1

‖yi‖RN , y = (y1, ..., yq)
T ∈ (RN)q

and the norm in the space (B)q is given by

‖y‖qB = max
i=1,2,...,q

{‖yi‖B}

or

‖y‖qB =

q∑
i=1

‖yi‖B

3.1. Existence Theorems. In this subsection we shall assume the hypotheses that will
allow us to prove the first existence theorem. The constant M is defined in (2.3).

(H1) Let K : R+ × R+ → R+ and ψ̃ : R+ → R+ be both continuous and increasing
functions. The following conditions are satified for f : [0, τ ]×B→ RN :

i) ‖f(t, η1)− f(t, η2)‖RN ≤ K(‖η1‖B , ‖η2‖B) ‖η1 − η2‖B , ∀η1, η2 ∈ B,
∀t ∈ I = (0, τ ],

ii) ‖f(t, η)‖RN ≤ ψ̃(‖η‖B), ∀η ∈ B.
(H2) There exist positive constants Lq, rk, k = 1, 2, ..., p such that ∀y, z ∈ RN , t ∈ I:

i) MLqq < M
∑p

k=1 rk <
1
4
, and ‖Jk(t, y)− Jk(t, z)‖RN ≤ rk ‖y − z‖RN .

ii) g(0) = 0 and

‖g(ỹ)− g(z̃)‖B ≤ Lq

q∑
i=1

‖z̃i − ỹi‖B , ∀ỹ, z̃ ∈ (B)q.

(H3) For such τ there exist positive constant α such that(
MLqq +M

p∑
k=1

rk

)
(‖φ̃‖+ α) + τMψ̃(‖φ̃‖+ α) ≤ α

2
,

where φ̃ ∈ PWhτ is such that

(3.7) φ̃ =

{V(t, 0)φ(0), t ∈ (0, τ ],

φ(t), t ∈ R−.
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(H4) For α as in (H3) we have the following inequality

τMK(‖φ̃‖+ α, ‖φ̃‖+ α) +M

p∑
k=1

rk <
1

2
.

We shall use the following well-known result to prove the existence of solutions for (1.1),

Theorem 3.2. (See [5]) (G.L. Karakostas Fixed Point Theorem) Let Z and Y be Banach
spaces and D be a closed convex subset of Z, and let C : D → Y be a continuous operator
such that C(D) is a relatively compact subset of Y , and

T : D × C(D)→ D

is a continuous operator such that the family {T (·, y) : y ∈ C(D)} is equicontractive. Then,
the operator equation

T (z, C(z)) = z

admits a solution on D.

Theorem 3.3. The system 1.1 has at least one solution on (−∞, τ ] under the hypothesis
(H1)-(H3).

Proof. Let’s consider the following operators:

T :PWhτ × PWhτ −→ PWhτ ,

C :PWhτ −→ PWhτ ,

where

T (z, y)(t) =

 y(t) +
∑

0<tk<t

V(t, tk)Jk(tk, z(tk)), t ∈ (0, τ ],

φ(t)− g(zτ1 , ..., zτq)(t), t ∈ R−,
and

C(z)(t) =

 V(t, 0)[φ(0)− g(zτ1 , ..., zτq)(0)] +

∫ t

0

V(t, s)f(s, zs)ds, t ∈ (0, τ ],

φ(t), t ∈ R−.

Moreover, let φ̃ be the function defined in (3.7) and α given as in (H3). We define the the
following closed and convex set

(3.8) D = D(α, τ, φ) =
{
y ∈ PWhτ : ‖y − φ̃‖ ≤ α

}
.

Note that finding a solution of problem (1.1) is equivalent to find solutions of the next
operator equation

T (z, C(z)) = z.
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With the goal to get solutions of such equation, we shall use Karakostas Fixed Point The-
orem. In the following lines, we are going to verify that operators C and T satisfy the
assumptions presented in Theorem 3.2. First, we shall verify that C is continuous and that
C(D) is a relatively compact set. Next, we shall see that {T (·, y) : y ∈ C(D)} is equicontrac-
tive and finally we will check that T (·, C(·))(D) ⊆ D. We divide the proof in the following
Affirmations:

Affirmation 1: C is continuous.
In order to prove this Affirmation, we shall use the hypothesis (H1)-i),(H2)-ii) of (H2) and
Lemma 2.5. We have the following estimate for z, y ∈ PWhτ .

Consider t ∈ (−∞, 0]. Then,

‖C(z)(t)− C(y)(t)‖RN = ‖φ(t)− φ(t)‖RN = 0,

that is, ‖ (C(z)− C(y))|R−

∥∥
B

= 0. Now, if t ∈ (0, τ ], we have that,

‖C(z)(t)− C(y)(t)‖RN(3.9)

≤MLq

q∑
i=1

‖yτi(0)− zτi(0)‖RN +

∫ t

0

‖V(t, s)‖ ‖f (s, zs)− f (s, ys)‖RN ds

≤MLq

q∑
i=1

sup
t∈(0,τ ]

‖z(t)− y(t)‖RN +

∫ t

0

M ‖f (s, zs)− f (s, ys)‖RN ds

≤MLqq‖ (z − y)|I ‖∞ +M

∫ t

0

K (‖zs‖B , ‖ys‖B) ‖zs − ys‖B ds

≤MLqq‖ (z − y)|I ‖∞ +M

∫ t

0

K (‖zs‖ , ‖ys‖) ‖zs − ys‖ ds

≤MLqq‖ (z − y)|I ‖∞ +MτK(‖z‖, ‖y‖)‖z − y‖
≤MLqq‖z − y‖+MτK(‖z‖, ‖y‖)‖z − y‖.(3.10)

Hence, by taking the supremum on I, by (3.9), we get that

‖C(z)− C(y)‖ = ‖ (C(z)− C(y))|R−
‖B + ‖ (C(z)− C(y))|I ‖∞

= ‖ (C(z)− C(y))|I ‖∞
≤ (MLq +MτK(‖z‖, ‖y‖)) ‖z − y‖.

Hence, we conclude that C is locally Lipschitz, which implies that it is continuous.

Affirmation 2: C maps bounded sets of PWhτ into bounded sets PWhτ

It is enough to prove that for anyR > 0, ∃r > 0 s.t. for each y ∈ BR = {z ∈ PWhτ : ‖z‖ ≤ R}
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we have that ‖C(y)‖ ≤ r. Indeed, taking an arbitrary y ∈ BR and baring in mind (H1)-ii),
(H2)-ii), and Lemma 2.5, the following estimates hold

‖C(y)(t)‖RN = ‖φ(t)‖RN , ∀t ∈ (−∞, 0],

from which follows that,

(3.11)
∥∥∥(C(y))|R−

∥∥∥
B

= sup
t≤0

‖C(y)(t)‖RN
h(t)

= sup
t≤0

‖φ(t)‖RN
h(t)

= ‖φ‖B,

and for t ∈ (0, τ ],

‖C(y)(t)‖RN ≤
∥∥V(t, 0)

{
φ(0)− g

(
yτ1 , yτ2 , . . . , yτq

)
(0)
}∥∥

+

∫ t

0

‖V(t, s)f(s, ys)‖RNds

≤ M {‖φ(0)‖RN + Lqq‖y‖}+ τMψ̃(‖y‖B)

≤ M {‖φ(0)‖RN + LqqR}+ τMψ̃(R) = l.

Taking supremum on t ∈ [0, τ ] and putting r = ‖φ‖B + l, we have that

‖C(y)‖ = ‖ (C(y))|R−
‖B + ‖ (C(y))|I ‖∞ ≤ r.

Hence, Affirmation 2 holds.
Affirmation 3: C maps bounded sets of PWhτ into equicontinuous sets of PWhτ .
Let’s consider BR as in Affirmation 2. We shall prove that C(BR), on the interval is (−∞, τ ]
is equicontinuous. Clearly, it is enough to show this on (0, τ ], by definition of C.
Let’s take y ∈ BR. Baring in mind (H1)-ii), (H2)-ii) and Lemma 2.5, we have the following
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estimates,

‖C(y) (t2)− C(y) (t1)‖RN

≤
∥∥∥∥V (t2, 0)

{
φ(0)− g

(
yτ1 , yτ2 , . . . , yτq

)
(0)
}

+

∫ t2

0

V (t2, s) f (s, ys) ds

− V (t1, 0)
{
φ(0)− g

(
yτ1 , yτ2 , . . . , yτq

)
(0)
}
−
∫ t1

0

V (t1, s) f (s, ys) ds

∥∥∥∥
RN

≤‖[V(t2, 0)− V(t1, 0)]
{
φ(0)− g

(
yτ1 , yτ2 , . . . , yτq

)
(0)
}
‖RN

+

∥∥∥∥∫ t1

0

V (t2, s) f (s, ys) ds+

∫ t2

t1

V (t2, s) f (s, ys) ds

−
∫ t1

0

V (t1, s) f (s, ys) ds

∥∥∥∥
RN

≤‖V (t2, 0)− V (t1, 0)‖
(∥∥φ(0)− g

(
yτ1 , yτ2 , . . . , yτq

)
(0)
∥∥
RN
)

+

∫ t1

0

‖[V (t2, s)− V (t1, s)] f (s, ys)‖RN ds+

∫ t2

t1

‖V (t2, s) f (s, ys)‖RN ds

≤‖V (t2, 0)− V (t1, 0)‖

(
‖φ(0)‖RN + Lq

q∑
i=1

‖yi(t)‖RN

)

+ ψ̃(‖y‖B)

∫ t1

0

‖V (t2, s)− V (t1, s)‖ ds+Mψ̃(‖y‖B)

∫ t2

t1

ds

≤‖V (t2, 0)− V (t1, 0)‖ (‖φ(0)‖RN + Lqq‖y‖RN )

+ ψ̃(R)

∫ t1

0

‖V (t2, s)− V (t1, s)‖ ds+Mψ̃(R) (t2 − t1)

≤‖V (t2, 0)− V (t1, 0)‖ (‖φ(0)‖RN + LqqR)

+ ψ̃(R)

∫ t1

0

‖(V (t2, s)− V (t1, s))‖ ds+Mψ̃(R) (t2 − t1) .

Because of continuity of V(t, s), we have that

‖C(y) (t2)− C(y) (t1)‖RN → 0 as t2 → t1,

independently on y ∈ BR.
Affirmation 4: The subset C(D) is relatively compact in PWhτ .
Let us prove Affirmation 4. Let D be the bounded subset of PWhτ defined in (3.8). By
Affirmations 2 and 3, C(D) is bounded and equicontinuous in PWhτ . Let {yn}n∈N ⊆ C(D);
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then

yn

∣∣∣
R−

= φ, ∀n ∈ N.

Hence, yn

∣∣∣
R−

converges uniformly on R−.

Now, putting ϕn = yn

∣∣∣
[0,τ ]

, we get that {ϕn}n∈N ⊆ PW t1..tp , where

PW t1..tp([−0, τ ];RN) = {z : [−r, τ ]→ RN : z is continuous except in the points tk,

and limits exist z(t−k ), z(tk) = z(t+k )},

endowed with the sumpremum norm. Let us put t0 = 0 and tp+1 = τ . Then, applying Arzela-
Ascoli Theorem, the sequence {ϕn}n∈N contains a subsequence {ϕ1

n}n∈N that converges in the
interval [t0, t1]. Now, applying again Arzela-Ascoli Theorem, the sequence {ϕ1

n}n∈N contains
a subsequence {ϕ2

n}n∈N that converges in the interval [t1, t2]. Continuing with this process
we find a subsequence {ϕp+1

n }n∈N of {ϕn}n∈N that converges in each interval [tk, tk+1], with
k = 0, 1, 2, . . . , p. Therefore,

ϕp+1
n = yp+1

n

∣∣∣
[0,τ ]

, converges on [0, τ ].

Consequently, {ϕp+1
n }n∈N = {yp+1

n }n∈N converges uniformly on (−∞, τ ]. Thus, C(D) is rela-
tively compact, and the proof of Affirmation 4 is completed.
Affirmation 5: The family {T (·, y) : y ∈ C(D)} is equicontractive.

Let’s take z, x ∈ PWhτ , y ∈ C(D), and t ∈ (−∞, 0]. By using ii) of (H2), we obtain

1

h(t)
‖T (z, C(y))(t)− T (x,C(y))(t)‖RN ≤

1

h(t)

∥∥g (zτ1 , zτ2 , . . . , zτq) (t)− g
(
xτ1 , xτ2 , . . . , xτq

)
(t)
∥∥
RN

≤
∥∥g (zτ1 , zτ2 , . . . , zτq)− g (xτ1 , xτ2 , . . . , xτq)∥∥B

≤ Lqq
∥∥∥(z − x)|R−

∥∥∥
B

≤MLqq‖z − x‖.

By taking the supremum in t, we have that,

(3.12)
∥∥∥(T (z, C(y))− T (x,C(y)))|R−

∥∥∥
B
≤MLqq‖z − x‖.
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Let t ∈ (0, τ ]. From the hypothesis (H2)-i), we get:

‖T (z, C(y))(t)− T (x,C(y))(t)‖RN ≤

∥∥∥∥∥ ∑
0<tk<t

U (t, tk)Jk(tk, z(tk))−
∑

0<tk<t

U (t, tk)Jk(tk, x(tk))

∥∥∥∥∥
RN

≤
∑

0<tk<t

‖U (t, tk) (Jk(tk, z(tk))− Jk(tk, x(tk)))‖RN

≤M

p∑
k=1

‖(Jk(tk, z(tk))− Jk(tk, x(tk)))‖RN

≤M

p∑
k=1

rk ‖z (tk)− x (tk)‖RN

≤

(
M

p∑
k=1

rk

)
‖ (z − x)|I ‖∞

≤

(
M

p∑
k=1

rk

)
‖z − x‖.

Hence,

(3.13) ‖T (z, C(y))− T (x,C(y))‖ ≤

(
M

p∑
k=1

rk

)
‖z − x‖.

Therefore, from (3.12) and (3.13), we obtain that

‖T (z, C(y))− T (x,C(y))‖,≤ 1

2
‖z − x‖.

which is a contraction independently of y ∈ C(D). So , the family {T (·, y) : y ∈ C(D)} is
equicontractive.
Affirmation 6: Finally, we shall prove that

T (·, C(·))(D(α, τ, φ)) ⊆ D(α, τ, φ)

Let us take z ∈ D(α, τ, φ) and consider t ∈ (−∞, 0]. Then, for t ∈ (−∞, 0], from (H2)-ii)
and (H3)-ii), we obtain

1

h(t)
‖T (z, C(z))(t)− φ̃(t)‖RN ≤ ‖g

(
zτ1 , zτ2 , . . . , zτq

)
(t)‖RN

≤ Lqq‖z‖ ≤MLqq‖z‖ ≤MLqq(‖φ̃‖+ α) ≤ α/2.
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Moreover, for t ∈ (0, τ ], and baring in mind (H1)-ii),(H2)-ii), (H3) and Lemma 2.5, we have
that

‖T (z, C(z))(t)− φ̃(t)‖RN ≤M
∥∥g (zτ1 , zτ2 , . . . , zτq) (0)

∥∥
RN +

∫ t

0

‖V(t, s)f (s, zs)‖RN ds

+
∑

0<tk<t

‖V (t, tk)Jk(tk, z(tk))‖RN

≤MLqq‖z‖+Mτψ̃(‖z‖+M

p∑
k=1

rk‖z‖

≤MLqq(‖φ̃‖+ α) +Mτψ̃(‖φ̃‖+ α) +

(
M

p∑
k=1

rk

)
(‖φ̃‖+ α)

=

(
MLqq +M

p∑
k=1

rk

)
(‖φ̃‖+ α) +Mτψ̃(‖φ̃‖+ α)

≤ α/2.

Hence, T (·, B(·))D(α, τ, φ) ⊆ D(α, τ, φ). Since Affirmation 1, Affirmation 4 and Affirmation
5 hold, the conditions of Karakostas Fixed Point Theorem are satisfied for the closed and
convex set given in (3.8), and the proof of Theorem 3.3 immediately follows by applying
Theorem 3.2. �

Theorem 3.4. With the conditions of Theorem 3.3and now we suppose that (H4) holds.
Then the problem (1.1) has only one solution on the interval (−∞, τ ].

Proof. . Let z1 and z2 are two solutions for problem (1.1). Then, we consider the following
estimate for t ∈ [0, τ ]:

‖z1(t)− z2(t)‖RN ≤ ‖(g(z1τ1 , z
1
τ2
, . . . , z1τq))(0)− (g(z2τ1 , z

2
τ2
, . . . , z2τq))(0)‖RN+∫ t

0

‖V(t, s)(f(s, z1s)− f(s, z2s))‖ds

+
∑

0<tk<t

‖V(t, tk)(Jk(tk,z1(tk))− Jk(tk, z2(tk)))‖

≤

(
Lqq +MτK(‖φ̃‖+ α), ‖φ̃‖+ α) +M

p∑
k=1

rk

)
‖z1 − z2‖.
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From the hypotheses (H1)-(H4), we know that:

Lqq + τMK(‖φ‖+ α), ‖φ‖+ α) +M

p∑
k=1

rk < 1,

which implies that z1
∣∣∣
I

= z2
∣∣∣
I
.

In the same way, we can prove that

‖(z1 − z2)|R−‖B ≤ Lqq‖(z1 − z2)|R−‖B,

Thus,

z1
∣∣∣
R−

= z2
∣∣∣
R−
.

Hence, z1 = z2.
�

Now, we have to consider the following subset D̃ of RN :

(3.14) D̃ = {y ∈ RN : ‖y‖RN ≤ R}, with R = ‖φ̃‖+ α.

Therefore, for all z ∈ D we have z(t) ∈ D̃ for t (−∞, τ ].

Definition 3.5. We shall say that (−∞, s1) is a maximal interval of existence of the solution
z(·) of problem (1.1) if there is not solution of the (1.1) on (−∞, s2) with s2 > s1.

Theorem 3.1. Suppose that the conditions of Theorem 3.4 hold. If z is a solution of problem
(1.1) on (−∞, s1) and s1 is maximal, then either s1 = +∞ or there exists a sequence τn → s1
as n→∞ s.t. z(τn)→ ∂D̃.

Proof. Suppose, for the purpose of contradiction, that there exist a neighborhood N of ∂D̃
such that z(t) does not enter in it, for 0 < s2 ≤ t < s1. We can take N = D̃\B, where B
is a closed subset of D̃, then z(t) ∈ B for 0 < tp < s2 ≤ t < s1. We need to prove that
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lim
t→z+1

z(t) = z1 ∈ B. Indeed, if we consider 0 < tp < s2 ≤ ` < t < s1, then:

‖z(t)− z(`)‖RN ≤ ‖V(t, 0)− V(`, 0)‖‖φ(0)‖RN + ‖V(t, 0)− V(`, 0)‖‖g(zτ1 , zτ2 , . . . , zτq)(0)‖RN

+

∫ `

0

‖V(t, s)− V(`, s)‖‖f(s, zs)‖ds+

∫ t

`

‖(V(t, s)‖‖f(s, zs)‖ds

+‖
∑

0<tk<t

V(t, tk)Jk(tk, z(tk))−
∑

0<tk<t

V(`, tk)Jk(tk, z(tk))‖

≤ (‖V(t, 0)− V(`, 0)‖) (‖φ(0)‖RN + Lqq)

+

(∫ `

0

‖V(t, s)− V(`, s)‖ds+

∫ t

`

‖(V(t, s)‖ds
)

Ψ(R)

+‖V(t, `)− IRN‖
q∑

k=1

‖V(`, tk)‖‖Jk(tk, z(tk)‖

≤ (‖V(t, 0)− V(`, 0)‖) (‖φ(0)‖RN + Lqq)

+

(∫ `

0

‖V(t, s)− V(`, s)‖ds+

∫ t

`

‖(V(t, s)‖ds
)

Ψ(R)

+‖V(t, `)− IRN‖MR

q∑
k=1

rk

Since V(t, s) is uniformly continuous for t ≥ 0, then ‖z(t)−z(l)‖RN goes to zero as l < `→ s1.
Therefore, lim

t→s1
z(t) = z1 exists in RN , and since B is closed, z1 belongs to B. This completes

the proof.
�

Corollary 3.1. In the conditions of Theorem 3.4, if the second part of hypothesis (H1)
has changed to

‖f(t, φ)‖ ≤ µ(t)(1 + ‖φ(0)‖RN ), φ ∈ B, t ∈ R,

where µ(·) is a continuous function on (−∞,∞), then the problem (1.1) have a unique
solution on (−∞,∞).
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Proof.

‖z(t)‖RN ≤ M (‖z(0)‖RN ) +M

∫ t

0

‖f(s, zs)‖ds

+M
∑

0<tk<t

‖Jk(tk, z(tk))‖

≤ M‖z(0)‖RN +

∫ τ

0

Mµ(s)(1 + ‖z(s)‖RN )ds

+M

p∑
k=1

rk‖z(tk))‖R

≤ M

(
‖z(0)‖RN +

∫ τ

0

µ(s)ds

)
+

∫ t

0

Mµ(s)‖z(s)‖RNds

+

p∑
k=1

Mrk‖z(tk))‖RN .

Then, applying Gronwall Inequality for impulsive differential equations (see [6, 12, 13, 14]),
we obtain that

‖z(t)‖RN ≤M

(
‖z(0)‖RN +

∫ τ

0

µ(s)ds

) ∏
t0<tk<t

(1 +Mrk)e
∫ τ
0 Mµ(s)ds,

This implies that ‖z(t)‖RN stays bounded as t → s1 and we apply the Theorem 3.1 we get
the result.

�

4. Conclusion and Final Remark

In this work we prove the existence and uniqueness of solutions of retarded equations
with infinite delay, impulses, and nonlocal conditions; showing that the phase space that
we choose satisfies the axioms proposed by Hale and Kato to study retarded equations
with unbounded delay, but in this case, our phase space is a subspace of the piecewise
continuous functions due to impulses and non-local conditions. Once we have proven the
existence of solutions for this type of equations, we shall study the existence of bounded
solutions, working in the phase space of bounded and continuous functions except for a
fixed number of points p, for which the lateral limits exist and the functions of this space
are continuous on the right of these points; this space is continuously embedded in our
phase space B. Then, we shall study the controllability of control systems governed by such
equations, proving approximate controllability on the one hand, and exact controllability on

59
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the other, depending on the conditions imposed on the non-linear terms and assuming that
the associated linear system is controllable. Our future research will focus on studying the
same results with noninstantaneous impulses, infinite dimensional case, and the stability of
such equations, as well as other aspects of dynamical systems.
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