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Abstract. In the present article, we define a new class of q-analogue type

of Fubini numbers and polynomials and investigate some properties of these

polynomials. We derive recurrence relation, derivative properties, integral
representation, and summation formulas of these polynomials by summation

techniques series. Furthermore, we consider some relationships for q-Fubini

polynomials associated with q-Bernoulli polynomials, q-Euler polynomials,
and q-Genocchi polynomials and q-Stirling numbers of the second kind.

1. Introduction

Throughout this presentation, we use the following standard notions N =
{1, 2, · · · }, N0 = {0, 1, 2, · · · } = N ∪ {0}, Z− = {−1,−2, · · · }. Also as usual Z
denotes the set of integers, R denotes the set of real numbers and C denotes the
set of complex numbers.

Recently, many mathematicians like as (see [1, 8, 9, 10, 11, 12, 13, 14]) have
been introduced to the subject of q-calculus. The applications of q-calculus in var-
ious fields of mathematics, physics, and engineering. The definitions and notations
of q-calculus reviewed here are taken from (see [1]):

The q-analogue of the shifted factorial (a)n is given by

(a; q)0 = 1, (a; q)n =

n−1∏
m=0

(1− qma), n ∈ N.

The q-analogue of a complex number a and of the factorial function is given by

[a]q =
1− qa

1− q
, q ∈ C− {1}; a ∈ C,

[n]q! =

n∏
m=1

[m]q = [1]q[2]q · · · [n]q =
(q; q)n

(1− q)n
, q 6= 1;n ∈ N,

[0]q! = 1, q ∈ C; 0 <| q |< 1.
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2 WASEEM A. KHAN

The Gauss q-binomial coefficient

(
n
k

)
q

is given by(
n
k

)
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

, k = 0, 1, · · · , n.

The q-analogue of the function (x+ y)nq is given by

(x+ y)nq =

n∑
k=0

(
n
k

)
q

qk(k−1)/2xn−kyk, n ∈ N0. (1.1)

The q-analogue of exponential functions are given by

eq(x) =

∞∑
n=0

xn

[n]q!
=

1

((1− q)x; q)∞
, 0 <| q |< 1; | x |<| 1− q |−1, (1.2)

and

Eq(x) =

∞∑
n=0

qn(n−1)/2
xn

[n]q!
= (−(1− q)x; q)∞, 0 <| q |< 1;x ∈ C. (1.3)

Moreover, the functions eq(x) and Eq(x) satisfy the following properties:

Dqeq(x) = eq(x), DqEq(x) = Eq(qx), (1.4)

where the q-derivative Dqf of a function f at a point 0 6= z ∈ C is defined as
follows:

Dqf(z) =
f(qz)− f(z)

qz − z
, 0 <| q |< 1.

For any two arbitrary functions f(z) and g(z), the q-derivative operatorDq satisfies
the following product and quotient relations:

Dq,z(f(z)g(z)) = f(z)Dq,zg(z) + g(qz)Dq,zf(z), (1.5)

Dq,z

(
f(z)

g(z)

)
=
g(qz)Dq,zf(z)− f(qz)Dq,zg(z)

g(z)g(qz)
.

The q-Bernoulli polynomials B
(α)
n,q (x, y) of order α, the q-Euler polynomials

E
(α)
n,q (x, y) of order α and the q-Genocchi polynomials G

(α)
n,q(x, y) of order α are

defined by means of the following generating function (see [1, 11, 12, 13]):

(
t

eq(t)− 1

)α
eq(xt)Eq(yt) =

∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
, | t |< 2π, 1α = 1, (1.6)

(
2

eq(t) + 1

)α
eq(xt)Eq(yt) =

∞∑
n=0

E(α)
n,q (x, y;λ)

tn

[n]q!
, | t |< π, 1α = 1, (1.7)

(
2t

eq(t) + 1

)α
eq(xt)Eq(yt) =

∞∑
n=0

G(α)
n,q(x, y)

tn

[n]q!
, | t |< π, 1α = 1. (1.8)

Clearly, we have

B(α)
n,q = B(α)

n,q (0, 0), E(α)
n,q = E(α)

n,q , G
(α)
n,q = G(α)

n,q .
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SOME RESULTS ON q-ANALOGUE TYPE OF FUBINI 3

Geometric polynomials (also known as Fubini polynomials) are defined as fol-
lows (see [2]):

Fn(x) =

n∑
k=0

{
n
k

}
k!xk, (1.9)

where

{
n
k

}
is the Stirling number of the second kind (see [5]).

For x = 1 in (1.9), we get nth Fubini number (ordered Bell number or geometric
number) Fn [2, 3, 4, 5, 6, 7, 16] is defined by

Fn(1) = Fn =

n∑
k=0

{
n
k

}
k!. (1.10)

The exponential generating functions of geometric polynomials is given by (see
[2]):

1

1− x(et − 1)
=

∞∑
n=0

Fn(x)
tn

n!
, (1.11)

and related to the geometric series (see [3]):(
x
d

dx

)m
1

1− x
=

∞∑
k=0

kmxk =
1

1− x
Fm(

x

1− x
), | x |< 1.

Let us give a short list of these polynomials and numbers as follows:

F0(x) = 1, F1(x) = x, F2(x) = x+2x2, F3(x) = x+6x2+6x3, F4(x) = x+14x2+36x3+24x4,

and

F0 = 1, F1 = 1, F2 = 3, F3 = 13, F4 = 75.

Geometric and exponential polynomials are connected by the relation (see [2]):

Fn(x) =

∫ ∞
0

φn(x)e−λdλ. (1.12)

The goal of this paper is as follows. In section 2, we define generating functions
for q-type Fubini numbers and polynomials and give some properties of these num-
bers and polynomials. In section 3, we derive summation formulas of q-type-Fubini
numbers and polynomials and some relationships between q-Bernoulli polynomi-
als, q-Euler polynomials, and q-Genocchi polynomials and Stirling numbers of the
second kind.

2. q-analogue type of Fubini numbers and polynomials

In this section, we introduce q-type Fubini polynomials Fn,q(x; y) and investi-
gate some basic properties of these polynomials. We begin the following definition
as follows.

Definition 2.1. Let q ∈ C with 0 <| q |< 1, the q-type Fubini polynomials
Fn,q(x; y) of two variables are defined by means of the following generating func-
tion:
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1

1− y(eq(t)− 1)
eq(xt) =

∞∑
n=0

Fn,q(x; y)
tn

[n]q!
. (2.1)

From definition (2.1), we have

Fn,q(x; 1) = Fn,q(x), Fn,q(0; 1) = Fn,q,

where Fn,q are called the q-type Fubini numbers.

Remark 2.1. On setting q −→ 1− in (2.1), the result reduces to the known result
of Kargin [6] as follows:

1

1− y(et − 1)
ext =

∞∑
n=0

Fn(x; y)
tn

n!
. (2.2)

Theorem 2.1. The following series representation for the q-type Fubini polyno-
mials Fn,q(x; y) holds true:

Fn,q(x; y) =
n∑

m=0

(
n
k

)
q

Fk,q(y)xn−k. (2.3)

Proof. Using equation (1.2) and (2.1), we have

∞∑
n=0

Fn,q(x; y)
tn

[n]q!
=

1

1− y(eq(t)− 1)
eq(xt)

=

( ∞∑
k=0

Fk,q(y)
tk

[k]q!

)( ∞∑
n=0

xn
tn

[n]q!

)
.

Applying the Cauchy product rule and equating the coefficients of same powers of
t in both sides of resultant equation, we get representation (2.3). �

Theorem 2.2. For n ≥ 0, the following formula for q-type Fubini polynomials
holds true:

xn = Fn,q(x; y)− yFn(x+ 1; y) + yFn,q(x; y). (2.4)

Proof. We begin with the definition (2.1) and write

eq(xt) =
1− y(eq(t)− 1)

1− y(eq(t)− 1)
eq(xt)

=
eq(xt)

1− y(eq(t)− 1)
− y(eq(t)− 1)

1− y(eq(t)− 1)
eq(xt).

From (1.4) and (2.1), we have

∞∑
n=0

xn
tn

[n]q!
=

∞∑
n=0

[Fn,q(x; y)− yFn,q(x+ 1; y) + yFn,q(x; y)]
tn

[n]q!
.

Finally, comparing the coefficients of tn

n! , we get (2.4). �
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Theorem 2.3. The following formula for q-type Fubini polynomials holds true:

yFn,q(x+ 1; y) = (1 + y)Fn,q(x; y)− xn. (2.5)

Proof. From (2.1), we have
∞∑
n=0

[Fn,q(x+ 1; y)− Fn,q(x; y)]
tn

[n]q!
=

ep(xt)

1− y(eq(t)− 1)
(eq(t)− 1)

=
1

y

[
eq(xt)

1− y(eq(t)− 1)
− eq(xt)

]
=

1

y

∞∑
n=0

[Fn,q(x; y)− xn]
tn

[n]q!
.

Comparing the coefficients of tn

[n]q !
on both sides, we obtain (2.5). �

Theorem 2.4. The following recursive formula for the q-type Fubini polynomials
Fn,q(x; y) holds true:

Dp,q;xFn,q(x; y) = [n]qFn−1,q(x; y). (2.6)

Proof. Differentiating generating function (2.1) with respect to x and y with the
help of equation (1.5), we have

∞∑
n=0

Dq;xFn,q(x; y)
tn

[n]q!
= Dq;x

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

=
1

1− y(eq(t)− 1)
Dq;xeq(xt)

=
t

1− y(eq(t)− 1)
eq(xt)

=

∞∑
n=0

Fn,q(x; y)
tn+1

[n]q!
,

and then simplifying with the help of the Cauchy product rule formulas (2.6)
are obtained. �

Theorem 2.5. The following definite q-integral is valid∫ b

a

Fn,q(x ; y)dqx =
Fn+1 (x , bq ; y)− Fn+1 ,q(x , aq ; y)

[n + 1 ]q
. (2.7)

Proof. Since ∫ b

a

δ

δqx
Fn,q(x ; y)dqx = f (b)− f (a), (see [7]),

in terms of equation (2.7) and equations (1.4) and (1.5), we arrive at the asserted
result ∫ b

a

δ

δqx
Fn,q(x ; y)dqx =

1

[n + 1 ]p,q

∫ b

a

DqFn+1 ,q (x ; y) dqx

=
Fn+1 (x , bq ; y)− Fn+1 ,q(x , aq ; y)

[n+ 1]q
.
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The other can be shown using similar method. Therefore, the complete the proof
of this theorem. �

Theorem 2.6. The following relationship holds true:

Fn+1,q(x; y) = xFn,q

(
x

q
; y

)
qn + y

n∑
k=0

(
n
k

)
q

Fn−k,q(x; y)Fk,q(q
−1; y)qk. (2.8)

Proof. By (1.4), (1.5) and (2.1), we get

∞∑
n=0

Fn+1,q(x; y)
tn

[n]q!
= Dq;t

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

= Dq;t

(
1

1− y(eq(t)− 1)
eq(xt)

)
=

xeq(xt)

1− y(eq(qt)− 1)
+

yeq(xt)eq(t)

(1− y(eq(t)− 1))(1− y(eq(qt)− 1))

= x

∞∑
n=0

Fn,q

(
x

q
; y

)
qn

tn

[n]q!
+ y

( ∞∑
n=0

Fn,q(x; y)
tn

[n]q!

)( ∞∑
k=0

Fk,q(q
−1; y)qk

tk

[k]q!

)
.

Using the Cauchy product and comparing the coefficients of tn

[n]q !
in both sides,

which yields to the desired result. �

Theorem 2.7. The following relation for the q-type Fubini polynomials Fn,q(x; y)
holds true:

(1 + y)Fn,q(x; y) = y

n∑
k=0

(
n
k

)
q

Fn−k,q(x; y) + xn. (2.9)

Proof. Consider the following identity

1 + y

(1− y(eq(t)− 1))yeq(t)
=

1

1− y(eq(t)− 1)
+

1

yeq(t)
.

Evaluating the following fraction using above identity, we find

(1 + y)eq(xt)

(1− y(eq(t)− 1))yeq(t)
=

eq(xt)

1− y(eq(t)− 1)
+
eq(xt)

yeq(t)

(1 + y)

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

= y

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

∞∑
k=0

tk

[k]q!
+

∞∑
n=0

xn
tn

[n]q!
.

Applying the Cauchy product rule in the above equation and then equating the
coefficients of like powers of t in both sides of the resultant equation, assertion
(2.9) follows. �
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SOME RESULTS ON q-ANALOGUE TYPE OF FUBINI 7

3. Main results

First, we prove the following result involving the q-type Fubini polynomials
Fn,q(x; y) by using series rearrangement techniques and considered its special case:

Theorem 3.1. The following summation formula for q-type Fubini polynomials
Fn,q(x; y) holds true:

Fk+l,q(w; y) =

k,l∑
n,s=0

(
k
n

)
q

(
l
s

)
q

(w − x)n+sFk+l−n−s,q(x; y). (3.1)

Proof. Replacing t by t + u in (2.1) and then using the formula [15]:
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
, (3.2)

in the resultant equation, we find the following generating function for the q-type
Fubini polynomials Fn,q(x; y):

1

1− y(eq(t+ u)− 1)

= eq(−x(t+ u))

∞∑
k,l=0

Fk+l,q(x; y)
tk

[k]q!

ul

[l]q!
, (see [11]). (3.3)

Replacing x by w in the above equation and equating the resultant equation to
the above equation, we find

eq((w − x)(t+ u))

∞∑
k,l=0

Fk+l,q(x; y)
tk

[k]q!

ul

[l]q!

=

∞∑
k,l=0

Fk+l,q(w; y)
tk

[k]q!

ul

[l]q!
. (3.4)

On expanding exponential function (3.4) gives

∞∑
N=0

[(w − x)(t+ u)]N

[N ]q!

∞∑
k,l=0

Fk+l,q(x; y)
tk

[k]q!

ul

[l]q!

=

∞∑
k,l=0

Fk+l,q(w; y)
tk

[k]q!

ul

[l]q!
, (3.5)

which on using formula (3.2) in the first summation on the left hand side becomes

∞∑
n,s=0

(w − x)n+stnus

[n]q![s]q!

∞∑
k,l=0

Fk+l,q(x; y)
tk

[k]q!

ul

[l]q!

=

∞∑
k,l=0

Fk+l,q(w; y)
tk

[k]q!

ul

[l]q!
. (3.6)

Now replacing k by k − n, l by l − s and using the lemma (see [13]):
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∞∑
k=0

∞∑
n=0

A(n, k) =

∞∑
k=0

k∑
n=0

A(n, k − n), (3.7)

in the l.h.s. of (3.6), we find

∞∑
k,l=0

k,l∑
n,s=0

(w − x)n+s

[n]q![s]q!
Fk+l−n−s,q(x; y)

tk

(k − n)q!

ul

(l − s)q!

=

∞∑
k,l=0

Fk+l,q(w; y)
tk

[k]q!

ul

[l]q!
. (3.8)

Finally, on equating the coefficients of the like powers of t and u in the above
equation, we get the assertion (3.1) of Theorem 3.1. �

Remark 3.1. Taking l = 0 in assertion (3.1) of Theorem 3.1, we deduce the
following consequence of Theorem 3.1.

Corollary 3.1. The following summation formula for q-type Fubini polynomials
Fn,q(x; y) holds true:

Fk,q(w; y) =

k∑
n=0

(
k
n

)
q

(w − x)nFk−n,q(x; y). (3.9)

Remark 3.2. Replacing w by w + x in (3.9), we obtain

Fk,q(w + x; y) =

k∑
n=0

(
k
n

)
q

wnFk−n,q(x; y). (3.10)

Theorem 3.2. The following summation formula for q-type Fubini polynomials
Fn,q(x; y) holds true:

Fn,q(w; y)Fm,q(W ;Y ) =

n,m∑
r,k=0

(
n
r

)
q

(
m
k

)
q

(w − x)rq

×Fn−r,q(x; y)(W −X)kqFm−k,q(X;Y ). (3.11)

Proof. Consider the product of the q-type Fubini polynomials, we can be written
as generating function (2.1) in the following form:

1

1− y(eq(t)− 1)
eq(xt)

1

1− Y (eq(T )− 1)
eq(XT )

=

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

∞∑
m=0

Fm,q(X;Y )
Tm

[m]q!
. (3.12)

Replacing x by w, X by W in (3.12) and equating the resultant to itself,
∞∑
n=0

∞∑
m=0

Fn,q(w; y)Fm,q(W ;Y )
tn

[n]q!

Tm

[m]q!

= eq ((w − x)t) eq ((W −X)T )
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×
∞∑
n=0

∞∑
m=0

Fn,q(x; y)Fm,q(X;Y )
tn

[n]q!

Tm

[m]q!
,

which on using the generating function (3.7) in the exponential on the r.h.s.,
becomes

∞∑
n=0

∞∑
m=0

Fn,q(w; y)Fm,q(W ;Y )
tn

[n]q!

Tm

[m]q!

=

∞∑
n,r=0

(w − x)rqFn,q(x; y)
tn+r

[n]q![r]q!

×
∞∑

m,k=0

(W −X)kqFm,q(X;Y )
Tm+k

[m]q![k]q!
. (3.13)

Finally, replacing n by n − r and m by m − k and using equation (3.7) in the
r.h.s. of the above equation and then equating the coefficients of like powers of t
and T , we get assertion (3.11) of Theorem 3.2. �

Theorem 3.3. The following summation formula for q-type Fubini polynomials
Fn,q(x; y) holds true:

Fn,q(x+ 1; y) =

n∑
r=0

(
n
r

)
q

Fn−r,q(x; y). (3.14)

Proof. Using the generating function (2.1), we have
∞∑
n=0

Fn,q(x+ 1; y)
tn

[n]q!
−
∞∑
n=0

Fn,q(x; y)
tn

[n]q!

=

(
1

1− y(eq(t)− 1)

)
(eq(t)− 1)eq(xt)

=

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

( ∞∑
r=0

tr

[r]q!
− 1

)

=

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

∞∑
r=0

tr

[r]q!
−
∞∑
n=0

Fn,q(x; y)
tn

[n]q!

=

∞∑
n=0

n∑
r=0

(
n
r

)
q

Fn−r,q(x; y)
tn

[n]q!
−
∞∑
n=0

Fn,q(x; y)
tn

[n]q!
.

Finally, equating the coefficients of the like powers of t on both sides, we get
(3.14). �

Theorem 3.4. For n ≥ 0 and y1 6= y2, the following formula for q-type Fubini
polynomials holds true:

n∑
k=0

(
n
k

)
q

Fn−k,q(x1; y1)Fk,q(x2; y2)

=
y2Fn,q(x1 + x2; y1)− y1Fn,q(x1 + x2; y2)

y2 − y1
. (3.15)
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Proof. The products of (2.1) can be written as
∞∑
n=0

∞∑
k=0

Fn,q(x1; y1)Fk,q(x2; y2)
tn

[n]q!

tk

[k]q!

=
eq(x1t)

1− y1(eq(t)− 1)

eq(x2t)

1− y2(eq(t)− 1)

∞∑
n=0

(
n∑
k=0

(
n
k

)
q

Fn−k,q(x1; y1)Fk,q(x2; y2)

)
tn

[n]q!

=
y2

y2 − y1
eq[(x1 + x2)t]

1− y1(eq(t)− 1)
− y1
y2 − y1

eq[(x1 + x2)t]

1− y2(eq(t)− 1)

=

(
y2Fn,q(x1 + x2; y1)− y1Fn,q(x1 + x2; y2)

y2 − y1

)
tn

[n]q!
.

By equating the coefficients of tn

[n]q !
on both sides, we get (3.15). �

4. Applications

In this section, we derive some relationships for q-type Fubini polynomials re-
lated to q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials
and Stirling numbers of the second kind. We start a following theorem.

Theorem 4.1. Each of the following relationships holds true:

Fn,q(x ; y)

=

n+1∑
s=0

(
n+ 1
s

)
q

[
s∑

k=0

(
s
k

)
q

Bs−k ,q(x )− Bs,q(x )

]
Fn+1−s,q(y)

[n+ 1]q
,

(4.1)

where Bn,q(x) is q-Bernoulli polynomials.

Proof. By using definition (2.1), we have(
1

1− y(eq(t)− 1)

)
eq(xt)

=

(
1

1− y(eq(t)− 1)

)
t

eq(t)− 1

eq(t)− 1

t
eq(xt)

=
1

t

∞∑
n=0

(
s∑

k=0

(
s
k

)
q

Bs−k ,q(x )

)
ts

[s]q!

∞∑
n=0

Fn,q(0 , y)
tn

[n]q !

− 1

t

∞∑
s=0

Bs,q(x )
ts

[s]q !

∞∑
n=0

Fn,q(y)
tn

[n]q !

=
1

t

∞∑
n=0

[
n∑
s=0

(
n
s

)
q

s∑
k=0

(
s
k

)
q

Bs−k ,q(x )

]
Fn−s,q(y)

tn

[n]q !

− 1

t

∞∑
n=0

[
n∑
s=0

(
n
s

)
q

Bs,q(x )

]
Fn−s,q(y)

tn

[n]q !
.
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By using Cauchy product and comparing the coefficients of tn

[n]q !
, we arrive at the

required result (4.1). �

Theorem 4.2. Each of the following relationships holds true:

Fn,q(x ; y)

=

n∑
s=0

(
n
s

)
q

[
s∑

k=0

(
s
k

)
q

Es−k ,q(x ) + Es,q(x )

]
Fn−s,q(y)

[2]q
,

(4.2)

where En,q(x) is q-Euler polynomials.

Proof. By using definition (2.1), we have

(
1

1− y(eq(t)− 1)

)
eq(xt)

=

(
1

1− y(eq(t)− 1)

)
[2]q

eq(t) + 1

eq(t) + 1

[2]q
eq(xt)

=
1

[2]q

[ ∞∑
n=0

(
n∑
k=0

(
n
k

)
q

En−k ,q(x )

)
tn

[n]q!
+

∞∑
n=0

En,q(x)
tn

[n]q!

]

×
∞∑
n=0

Fn,q(y)
tn

[n]q !

=
1

[2]q

∞∑
n=0

[
n∑
s=0

(
n
s

)
q

s∑
k=0

(
s
k

)
q

Es−k ,q(x ) +

n∑
s=0

(
n
s

)
q

Es,q(x )

]

× Fn−s,q(y)
tn

[n]q !
.

Comparing the coefficients of tn

[n]q !
, we arrive at the desired result (4.2). �

Theorem 4.3 . Each of the following relationships holds true:

Fn,q(x ; y)

=

n∑
s=0

(
n+ 1
s

)
q

[
s∑

k=0

(
s
k

)
q

Gs−k ,q(x ) + Gs,q(x )

]
Fn+1−s,q(y)

[2]q[n+ 1]q
,

(4.3)

where Gn,q(x) is q-Genocchi polynomials.
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Proof. By using definition (2.1), we have(
1

1− y(eq(t)− 1)

)
eq(xt)

=

(
1

1− y(eq(t)− 1)

)
eq(xt)

[2]qt

eq(t) + 1

eq(t) + 1

[2]qt
eq(xt)

=
1

[2]qt

[ ∞∑
n=0

(
n∑
k=0

(
n
k

)
q

Gn−k ,q(x )

)
tn

[n]q!
+

∞∑
n=0

Gn,q(x )
tn

[n]q !

]

×
∞∑
n=0

Fn,q(y)
tn

[n]q !

=
1

[2]q

∞∑
n=0

[
n∑
s=0

(
n
s

)
q

s∑
k=0

(
s
k

)
q

Gs−k ,q(x ) +

n∑
s=0

(
n
s

)
q

Gs,q(x )

]

× Fn+1−s,q(y)
tn

[n + 1 ]q !
.

Comparing the coefficients of tn

[n]q !
, then we have the asserted result (4.3). �

Theorem 4.4. For n ≥ 0, the following formula for q-type Fubini polynomials
holds true:

Fn,q(x; y) =

n∑
l=0

(
n
l

)
q

xn−l
l∑

k=0

ykk!S2,q(l, k). (4.4)

Proof. From (2.1), we have

∞∑
n=0

Fn,q(x; y)
tn

[n]q!
=

1

1− y(eq(t)− 1)
eq(xt)

= eq(xt)

∞∑
k=0

yk(eq(t)− 1)k

= eq(xt)

∞∑
k=0

yk
∞∑
l=k

k!S2,q(l, k)
tl

[l]q!

=

∞∑
n=0

xn
tn

[n]q!

∞∑
l=0

yk
l∑

k=0

k!S2,q(l, k)
tl

[l]q!
.

Replacing n by n− l in above equation, we get

∞∑
n=0

Fn,q(x; y)
tn

[n]q!

=

∞∑
n=0

(
n∑
l=0

(
n
l

)
q

xn−l
l∑

k=0

ykk!S2,q(l, k)

)
tn

[n]q!
.

Comparing the coefficients of tn

[n]q !
in both sides, we get (4.4). �
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Theorem 4.5. For n ≥ 0, the following formula for q-type Fubini polynomials
holds true:

Fn,q(x+ r; y) =

n∑
l=0

(
n
l

)
q

xn−l
l∑

k=0

ykk!S2,q(l + r, k + r). (4.5)

Proof. Replacing x by x+ r in (2.1), we have
∞∑
n=0

Fn,q(x+ r; y)
tn

[n]q!
=

1

1− y(eq(t)− 1)
eq((x+ r)t)

= eq(xt)eq(rt)

∞∑
k=0

yk(eq(t)− 1)k

= eq(xt)eq(rt)

∞∑
k=0

yk
∞∑
l=k

k!S2,q(l, k)
tl

[l]q!

=

∞∑
n=0

xn
tn

[n]q!

∞∑
l=0

yk
l∑

k=0

k!S2,q(l + r, k + r)
tl

[l]q!
.

Replacing n by n− l in above equation, we get
∞∑
n=0

Fn,q(x+ r; y)
tn

[n]q!

=

∞∑
n=0

(
n∑
l=0

(
n
l

)
q

xn−l
l∑

k=0

ykk!S2,q(l + r, k + r)

)
tn

[n]q!
.

Comparing the coefficients of tn

[n]q !
in both sides, we get (4.5). �
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