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CERTAIN INTEGRAL INEQUALITIES OF
HERMITE-HADAMARD TYPE FOR H-CONVEX FUNCTIONS

J. GALEANO, J. LLOREDA, J. E. NAPOLES V.*, AND E. PEREZ

ABSTRACT. In this paper, we obtain new inequalities of the Hermite-Hadamard]|
type, in the class of h-convex functions. It is shown that several results re-
ported in the literature are obtained as our particular cases.

1. Introduction

Perhaps one of the most productive mathematical ideas lately, due to its variety
of uses and interrelationships with different applications, is that of the convex
function.

Definition 1.1. A function ¢ : I — R is said to be convex on interval I C R, if
the inequality p(Tu+ (1 —7)v) < T7(u) + (1 — 7)p(v), for u,v € I is fulfilled with
T € [0,1].

We say that ¢ is concave if —¢ is convex.

The area of Integral inequalities has become one of the most dynamic of Mathe-
matical Sciences, both pure and applied, which translates into a constant increase
in the number of researchers and the results obtained in recent years. Within these,
there is an inequality that is considered fundamental and that provides simple
bounds for the integral mean value of a particular class of functions: convex func-
tions, and it is the so-called Hermite-Hadamard inequality (see, e.g., [5, 10, 11]).

Let ¢ : I € R — R be a convex function defined on the interval I of real
numbers and a1, as € I with a; < as. The following inequality

() < L 7 pupau < ABLEH0) (1)

holds. Since its discovery, this inequality has received considerable attention,
some extensions and generalizations of this inequality, with different fractional and
generalized operators and using different convexity operators, can be consulted in
[1,2,7,2,9, 14, 15, 16, 18, 19].

The consequent extensions of concept of the convex functions, which have ap-
peared lately, have transformed it into an extremely complex concept. To reflect
on this, we suggest that the user read the work [18], where a fairly complete
classification of most of the known definitions is made.

Toader in [24] defined m-convexity in the following way:

ay
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Definition 1.2. The function ¢ : [0,0] — R, b > 0, is said to be m-convex, where
m € [0,1], if

@ (Tu+ (1 —7)v) <70(u) +m(l —7)p(v) (1.2)
holds for all u,v € [0,b] and T € [0, 1].

If the above inequality holds in reverse, then we say that the function ¢ is
m-concave.

Definition 1.3. [6] ¢ : [0,b] — [0, +00) with b > 0 belongs to the class P(I)
if it is nonnegative and, for all u,v € I, I C [0,b] and satisfies the following
inequality

p(ru+m(l—7)v) < pu) +¢(v), (1.3)
with 7 € (0,1).

Definition 1.4. [3, 12] Let s € (0,1] be a real number. A function ¢ : [0,b] —
[0,400) with b > 0 is said to be s-convex (in the first sense) if

p(ru+m(l—7v) < °p(u) + (1 - 7°)p(v), (1.4)
for all u,v € [0,b] and 7 € (0,1).

Definition 1.5. [3, 12] Let s € (0,1] be a real number. A function ¢ : [0,b] —
[0, +00) with b > 0 is said to be s-convex (in the second sense) if

p(ru+m(l —71)v) < 7%0(u) + (1 —7)%p(v) (1.5)
for all u,v € [0,b] and 7 € (0, 1).

Definition 1.6. [27] Let h: J C R — R be a positive function . We say that the
real function ¢ : I C R — R is called h-convex function, or that ¢ belongs to the
class SX (h,I), if ¢ is nonnegative and for all u,v € I and w € (0,1) we have

pwu+ (1 —w)v) < h(w)e(u) +h(1 —w)e(v) (1.6)

It is known that fractional calculus, that is, calculus with derivatives and in-
tegrals of non-integer order, despite being as old as classical calculus, has been
gaining attention in the last 40 years and new operators have been defined, which
have proven its usefulness in different applications. In particular, new integral
operators have appeared that are natural generalizations of the classical fractional
Riemann-Liouville integral. In a previous work (see [8]) the authors define a gen-
eralized operator that contains, as particular cases, several of the known fractional
integral operators.

Definition 1.7. The k-generalized fractional Riemann-Liouville integral of order
a with a € R, and s # —1 of an integrable function ¢(u) on [0, 00), are given as
follows (right and left, respectively):

ST u) = 1 “F(r,s)p(T)dr
Trap P = kL (a) /a [F(u, 7))~ % (L7)
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a 1 2 B(t,8)p(T)dr
STE _o(u) = / = 1.8
Fla, 50( ) ka( ) [IF(T U)]liz ( )
with F(7,0) =1, F(u,7) = [ F(0,5)df and F(r,u) = [ F(0,s)d6.
With the functions T' (see [21, 22, 23, 25, 26]) and Ty, defined by (cf. [5]):
I'(z) z/ * e mdr, R(z) >0, (1.9)
0
Ti(z) = / Tl R dr k> 0. (1.10)
0

It is clear that if & — 1 we have I'y(2) — DI(z), Ti(z) = (k)*'T (%) and
Ti(z+ k) = 2T (2). As well, we define the k-beta function as follows

1 [t v
By (u,v) = E/ T?_l(l —T)E_ldT,
0

notice that By (u,v) = +B(%,%) and By(u,v) = %

The next result will be crucial in the future, your proof is in [28].

Lemma 1.8. Let ¢ € SX(h,I), a1,a2 € I with 0 < a; < az < co. Then for any
w € [ay, as),
plar + ag —w) < (W(7) + k(1 = 7))[p(a1) + p(az)] — p(w); (1.11)
with 7 € [a1, az] depends on w.
The main purpose of this paper, using the generalized fractional integral opera-
tor of the Riemann- Liouville type, of Definition 1.7, is to establish several integral

inequalities of Hermite-Hadamard type for h-convex functions, which contain as
particular cases, several of those reported in the literature.

2. Main Results

In the sequel of the paper, I and J are intervals in R, [0,1] C J and functions
h and ¢ are real nonnegative functions defined on J and I , respectively. Let
a1,ae € I with 0 < a1 < as < co. We assume that ¢ € Li[aj,as] such that

SJE +p(u) and SJP%, _(u) are well defined. We define
Ay Qg

P(u) == (a1 + az — u), u € [a1, as)
and

Go(u) :=p(u) + ¢(u), u € [a1,az].
Notice that by using the change of variables w = = “1 , we have that (1.7) becomes
in

- ) = (4 — a1) /01 F(wu+ai(1—w),s)e(wu+ ar (1 —w))dw 2.1)

Faf P T T (@) [F (u, wu + ar (1= w))] |

k

where u > aj.
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Theorem 2.1. Let ¢ € SX(h,I), aj,as € I, with 0 < a1 < as < 0o and ¢ €
Ll[al,ag]. Then

P (#5%) [F(a27a1)]% L 5% a
ah(3)lk(a) = ag —ay JF,aersO( 2) -
2[p(ar) + ¢(az)] ! F(waz + (1 —w)ay, s) o .
- /0 F (e + (L wya)] 0 TN

Proof. Since p € SX(h,I), with 7 = 1/2, u = was+(1—w)ay, v = (1 —w)az+was
y w € [0, 1], we have

() < h (3) p(waz + (1 —w)ay) + A (3) ¢((1 — w)as + way) (2.3)
Multiplying both sides of (2.3) by
(a2 —a1) F(was+ (1 —w)ay,s)
kTk(a) [F(az, was + (1 —w)ar)]' =%
and integrating over (0, 1) with respect to w, and using the identity ¢((1—w)a; +
azw) = plaiw + (1 — w)az), we get

@(a%rb) (az —a1)
ML) Fea) L)

(ag — ay) /1 F(waz + (1 — w)ay, s)p(waz + (1 — w)ay)dw
0

£}

<

klk(a) [F(az, was + a1 (1 —w))]*~%
(a2 —ay) [* Flway + (1 —w)ay,s)p(war + (1 — w)ag)dw
ka(a) /0 [F<a27wa2 + a1(1 _ ))]1_% (2.4)
_ (a2 —a1) /1 F(was + (1 —w)ay, s)p(was + (1 — w)ay )dw
krk(a) 0 [F(ag,wag + al(l w))] %
(az —ay1) [ F(was + (1 —w)ay, $)@(waz + (1 — w)ar)dw
T k@) /0 [F (a2, was + a1 (1 —w))]' =%

We note that

F(ag,wa2+a1(17w))]1_% alaz —aq)
Now, from (2.1) we get
— Lp 1— 1-— a
(ag —ay) / (was + (1 —w)ay, s)e(aw + (1 — w)ag)dw _ SJk +<P(fl2)
0

/1 F(was 4+ (1 —w)ay, s)dw k[F(CLQ,CH)]%.
o |

kT () [F(ag, wag + a1 (1 — w))]lf%

and
az — al / F wa2 + )a17 )SD((]' B w)al + a2w)dw — SJ% 90(612)~
ka ag,wag +a1(1— w))]lf% Faf

Therefore, the equatlon (2.4) becomes in

132



CERTAIN INTEGRAL INEQUALITIES

e (25) [F(ag,a1)]* 1 £ - 1 L=
< SJ‘ k SJ k — SJ k G

ah(3)lk(a) Tax—m Fap#182) + oy Plaz) azg —ay Pl S”(GQ)’l
and the first inequality is proved. The proof of the second inequality follows by

using (1.6) with u = as and v = a; That is,

plwas + (1 —w)ar) < h(w)p(asz) + h(1 —w)p(ar) (2.5)
Multiplying both sides of (2.5) by
(a2 —a1) F(was + (1 —w)as,s)
kTk(a) [F(az, waz + (1 —w)aq)]' =%

and integrating over (0, 1) with respect to w, we get

(ag —ay) /1 F(waz + (1 — w)ay, s)p(waz + (1 — w)ay)dw
kT (a) o [F(az, was + a1 (1 —w))]* =%

(ag — ar)plag) [+ F(was + (1 —w)ay, s)h(w)dw
= kT (@) /0 [F(az, was + a1 (1 —w))]'~%

(az —a1)p(ar) [+ Flwas + (1 —w)ay, s)h(1 — w)dw
+ Tk () /0 [F(ag, waz + ai (1 — w))]lf%

(a2 —a1)[p(az) + p(a1)] 1 F(waz + (1 —w)ay, s) o) ldw
< kT () /0 [F(az, waz + ay(1 —w))]' =% [h(w) + h(1 )] dw,

(2.6) |

then

yﬁﬁwam)g
(a2 — a)[p(az) + p(ar)] [ Flwaz + (1 —w)ai, s) _
kT (a) /0 [F(az, was + ar(1—w))]' [h(w) + (1 w)](dw,)
2.7

Similarly,
s J;a + plaz) <

(a2 — a1)[p(az)
ka(OZ)

+o(a)] b F(wag+ (1 —w)ay,s)
/0 [F(az,wa2+a1(1 _w))}li% [h(w) + h(1 —w)]dw,
(2.8)

Thus, adding (2.7) and (2.8) we obtain the second part of the inequality (2.2).
(]

Remark 2.2. If in the previous result, we consider F' = 1, « = k, and ¢ convex,
that is, h the identity function, then we obtain the classic Hermite-Hadamard

inequality (1.1). In the case that h is of class P(I), then we obtain Theorem 3.1
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of [6] and if h(u) = u®, we obtain Theorem 2.1 of [4]. This Theorem contains as a
particular case Theorem 6 of [27], if we take F' =1 and a = k.

Theorem 2.3. Let ¢,¢ € SX(h,I), a1,a2 € I, with 0 < a; < ay < oo and
@, hi,hy € Li([a1,az]). Then

bia sJiafw(@W(%) <
M(a,b) [*
klk () /0

N(a,b) [*
T @) /

where M(a,8) = p(as)(as)+p(ar)p(ar), N(a,b) = p(ar)(az)+p(as)(ar) and
T(w) = was + (1 — w)ay and B(w) = way + az(1 — w).

Flr(w),s) FOW5) | oh(w)du
[ (az, 7(w)) ]~ * [F(azﬂ(w))]l‘é]hl( Yha(w)d

F(r(w),s) F(6(w), s) .
[F (a2, T(w))]' =% +[]F(az,év(w))]l—i‘]hl( V(1 = w)dw,

Proof. Since p, 9 € SX(h,I), we have

plasw + (1 —w)ar) < hi(w)p(az) + hi(1 —w)p(ar)
Y(azw + (1 —w)ar) < ha(w)p(az) + ha(l — w)ib(ar),

S

for all w € [0,1]. Since ¢ and 1 are nonnegative, so

wlagw + (1 —w)ar)p(asw + (1 —w)ay) <
hi(w)ha(w)p(az)i(az) + hi(w)ha(1 — w)p(az)y(ar)
+ h1(1 —w)ha(w)p(ar)y(az) + hi(1 — w)ha(1 — w)p(ar)y(ar).

Multiplying both sides of (2.9) by

1 F(wag + (1 —w)aq, s)
Tk () [F(ag,waQ + (1 - w)al)]lf%

and integrating over (0, 1) with respect to w, we obtain
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1 /1 F(waz + (1 — w)ay, s)p(waz + ( Jar) ¥ (wa w)ay ) dw
kl"k(a) 0

[F(az,waeral(l— w))]! f: <

(a2 —aq) ! F(was + (1 —w)aq, s)
lan)ion) e [ g (st

(ag —a1) (b F(way+ (1 —w)ay,s) — w)dw
i) e L T wha(1 —w)d

(ag —a1) (b F(was+ (1 —w)as,s)
+ %(al)lﬁ(az) kI‘k(oz) /0 [F(ag,wag + 0,1(1 _ w))]l’% h1<1 - w)h2(w)dw

(az—a1) [t F(waz+ (1 —w)ay,s)
+ ¢(a1)i(ar) FTx (@) /O Fla, was + ar(l - w))] —zhi (1 —w)ha(1 —w)dw
M(a,b) [ F(r(w), s) (( ), ) wduw
S ka(a)/O [F(GQ,T(w))]l 3 + ( )1 ]hl( )hQ( )d
N(a,b) (']  F(r(w),s) (( ), s) y e
+lcma)/o Flan, (@)% | [Fla, 0(w))] :]’“( Jhal —w)dw,

(2.10)

with 7(w) = was + (1 — w)a; and 8(w) = wa; + az(1 — w) and where M (a,b) =
@(C&g}):/)(az) + ¢(a1)¥(ar) and N(a,b) = @(a1)¥(az) + (az)y(ar).

1 a
L pla)len) <

M (a,b) 1 F(r(w),s) F(O(w), s)
kL (@) /0 [F(ag, 7(w))]'~* ’ [F(az,H(w))]l‘i] ha(w)ha(w)d
N@,b) ] Fr(w),s) F(O(w), s) o
* ka(Oé)/o [F(ag, 7(w))]~* * [F (az, 0(w))] ;3] hi(w)he(1 — w)d
Therefore the result is obtained. O
Remark 2.4. If in the previous result we do F = 5 and o = k, then it reduces

to Theorem 7 of [27]. If, additionally, ¢ and ) are convex functions, this result
contains as a particular case the Theorem 1, 1) of [20].
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Theorem 2.5. Let ¢,¢ € SX(h,I), ai,a2 € I, with 0 < a; < ag < oo and
905¢5h13h2 € Ll([al,CLQD. Then

P (e25) ¢ (25%) [Flaz, )] * 1

2 . s % a
a(az — ay)h(3)h2(3)Tk(a) az — ay Thar Geola2) <
U e [ EG@w),s) F(O(w), s) S
krk(a){M( ’b)/o [F(ag, 7(w))]~ % + [F (a2, 0(w)) 1_;;] hi(w)ha(w)d
F(r(w), s) F(O(w), s)

+ N(a,b) /01

where, T(w) = wag + (1 — w)a; and 8(w) = way + as(1l — w).

=R

[IF(agT(w))]k

1-— 1-—
Proof. We can write a2 —g G _ Gaw (2 war w);u +way ,

(252)e(252

:@<a2w+(l—w)a1 N (l—w)ag—i—wal) Xd}(agw—l—(l—w)al N (1—w)a2+wa1)

2 2 2 2

< hl(%)hQ(%) [[‘P(aﬂ” + (1 —w)ar) + (1 —w)az + wal)]
X [Y(azw + (1 — w)ar) + ¥ ((1 — w)az + wal)]]

< hi(3)ha(3) [np(agw + (1 —w)a)Y(azw + (1 —w)ay)
(

+ o(was + (1 —w)ar)Y((1 — w)as + way)
+ (1 — w)ag + way )Y(was + (1 — w)ay)

+ ({1 = wan + wan) (1 = whan + way)|

< in(B)ha(h){ plazur + (1 = w)ar)plazu + (1~ w)ar)

+ ({1 = waa + wan)p((1 - w)az +war)

+ (8t [ w)p(oa) + (1 = w)plan)] 1a(1  wblaa) + ha(w)(or)

+ [P (1 = w)p(az) + hi(w)e(ar)] [ha(w)(az) + ha(l — w)i(ay)] }

for all w € [0,1]. Thus we get
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< (3 etazw + (1~ war)s(ezw + (1 - w)ar)
—|—<p((1—w)a2—|—wa1)1/)((1—w)a2—|—wa1)} (2.11)
+ hl(é)hg(é){ [hl(w)hg(l — w) + hl(l — w)hg(w)] N(CL, b)

+ [h1(w)ha(w) + hi(1 — w)ha)(1 — w)]| M (a, b)}

Multiplying both sides of (2.11) by
1 F(wag + (1 —w)aq, s)
kT (a) [F(ag, wag 4+ (1 —w)ay)]' =%

and integrating over (0, 1) with respect to w, we obtain

o (25) ¢ (252) [Flaz,an)]* ma(3)h2(d) 2

a(az — a)h(3)Tk(a) as —ay Tap Gola2) <
h(Dha(3) [ M(ab) [ Flr(w),s) F(f(w),s) w)ha(w)dw
KTx(a) {kfk(a)/o [F (az, 7(w))]~ F +[F(a2,9(w))]l—2]hl( Jhz(w)d

N(a,b) [* F(r(w),s) F(O(w),s)
* ka(a)/o [F(az, 7(w))]'~# ’ [ (az, 0(w))]'~

with 7(w) = wag + (1 — w)ay and O(w) = wa; + az(1 — w). Consequently the
theorem is proved. O

=3
k

] ha(w)ha(1 — w)}dw

Remark 2.6. If in the previous result we do F' = % and o = k, then it reduces

to Theorem 8 of [27]. If, in addition, ¢ and 1) are convex functions, this result
contains as a particular case the Theorem 1, 2) of [20]. In the case that they are s-
convex functions in the second sense, then the previous result reduces to Theorem
7 of [13].

Theorem 2.7. Let ¢ € SX(h,1I), a1,a2 € I with 0 < a1 < az < 00 and ¢ €
Li[ay,as] and @ : [a1,as] — R is nonnegative, integrable and symmetric about
(a1 + a)/2. Then

1 a a
h(l)QO(aQ;al) SJFk’aii—d)(aQ) S SJFk’ai%—GSDw(a2)
2

ottt pl) [ ) (6w (o),
kL (o) ay [F(%w]l—z az —ay az — ay
Proof. Since ¢ € SX(h;I) and ¢ : [a1,a2] — R is nonnegative, integrable and
symmetric about (a1 + a2)/2 and using the Lemma 1.8; we have

(2.12)
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h(lé) v (25) SJia;wmz) = h(%)klw /:2 @ (al ;CLQ) [g((jzsiﬁwg dw
“im L, # ()
L
_ krkl(a) /: ;Er;";x(_wg ¢ (a1 + as — w) ¥(as + az — w)dw
* kF:(a) /a [F(l;(ju @;]Sl)‘i plwplw)du
B T
“mt L o £
= Iy Geuloa),
and the first inequality is proved.
Now reasoning similarly, we get
VE Gt = iy [ i}f;)iﬁf(f b
i [ P b [ et
v mm ) []F(f :j;;)—z pw)(w)du
_ kl“:(a) /: ;EZQSL?(EU% o (ay + az —w) + w(w)}dw
S s 2 U G R e D L
Thus, we obtain the inequality (2.12). O

Remark 2.8. If in the previous result, we consider F' = 1, a = k, then it reduces
to Theorem 5 and Theorem 6 of [28].

138



CERTAIN INTEGRAL INEQUALITIES

3. Concluding Remarks

This paper gives new inequalities of the Hermite-Hadamard type, in the class of
h-convex functions, some related inequalities (fractional or not) are also obtained
as particular cases of our results.

From the results obtained, we can point out two open problems:

1) Using the operators of the Definition 1.7, we can generalize different results
already reported in the literature, selecting different kernels and even new opera-
tors can be used, for example [17].

2) If we use other notions of convexity, (h, m)-convexity, s-convexity and others,
the results obtained can be extended.
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