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Abstract. The main purpose of this article is to prove existence and uniqueness of the solutions for
a semilinear evolution equation with non-instantaneous impulses, delay and nonlocal conditions. As
an application we consider the Benjamin-Bona-Mahony equation (BBM) . The results are obtained
by using Karakostas �xed point theorem and nonlinear functional analysis. In the second part we
establish the approximate controllability of the controlled BBM equation. This is done applying a
technique that pull back the control solution to a �xed curve in a short time interval.

1. Introduction

Impulsive dynamic systems are a type of hybrid systems for which the trajectory admits disconti-
nuities at certain instants due to sudden jumps of the state called pulses (see more in [3,21]). Dynamical
behavior of many systems in real life can be characterized by abrupt changes that appear suddenly,
such as heartbeats, drug �ows, the value of stocks, impulse vaccination, and bonds on the stock market
(see [1, 25]). In literature, there are two kind of impulses, one is instantaneous impulses where the
duration of these sudden changes is very small in comparison with the total duration of the whole pro-
cess. Another one is non-instantaneous impulses where the impulsive action starts abruptly at a certain
moment of time and remains active on a �nite time interval. In real life problems there is no impulse
which happens instantaneously, howsoever the time of the action is little, it is always a considerable
interval of time.

Control theory is one of the most fundamental and important issues for impulsive di�erential
equations which consists of �nding a controls steering the system from an arbitrary initial state to a
�nal state in a �nite interval of time. In the last few decades, many authors worked on existence,
stability and controllability results for impulsive dynamic systems, see for instance [4,7,12,14�16,22,24]
and the references therein.

In this paper, the interest is a semilinear evolution equation with non-instantaneous impulses, delay
and nonlocal conditions. Our mathematical motivation is to extend the existence and uniqueness results
proved by H. Leiva Communications in Mathematical Analysis(2018) [17] by adding non-instantaneous
impulses. Also to extend the controllability result for BBM equation done by H. Leiva Systems and
Control Letters, (2017) [18] by adding non-local conditions and non-instantaneous impulses. Motivated
by the above facts, we study the existence and uniqueness of solutions for the following semilinear
evolution equation with non-instantaneous impulses, delay and nonlocal conditions

z′ = −Az + F (t, zt), t ∈ ∪Ni=0 (si, ti+1] ,

z(s) +H(zτ1 , . . . , zτq )(s) = φ(s), t ∈ [−r, 0],

z(t) = Gi(t, z(t−i )), t ∈ t ∈ ∪Ni=1 (ti, si] ,

(1.1)
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2 HUGO LEIVA, WALID ZOUHAIR, AND DALIA CABADA

where A is a sectorial operator such that −A : D(A) ⊂ X → X is a generator of a strongly continuous
analytic semigroup (S(t))t≥0 on a Banach space X , 0 = s0 = t0 < t1 ≤ s1 < . . . < tN ≤ sN < tN+1 = T,
0 < τ1 < τ2 < . . . < τq < r < T are �xed real numbers, the function zt ∈ C([−r, 0];X η) is de�ned
by zt(s) = z(t + s) with s ∈ [−r, 0] and Gi : (ti, si] × X η −→ X η, H : PWη

rq −→ PW
η
[−r,0], and

F : [0, T ]×PWη
[−r,0] −→ X are smooth functions, and the spaces X η, PWη

rq and PW
η
[−r,0] are de�ned

below.
Our results will be applied to prove existence and uniqueness of solution for the following BBM

equation with non-instantaneous impulses, delay and non-local conditions



zt + aÃzt + bÃz = −z(t− r, x)zx(t− r, x) (t, x) ∈ ∪Ni=0 (si, ti+1]× [0, π],

+f(t, z(t− r, x)),

z(t, 0) = z(t, π) = 0, t ∈ [0, T ],

z(s, x) + h(z(τ1 + s, x), . . . , z(τq + s, x)) = φ(s, x), (t, x) ∈ [−r, 0]× [0, π],

z(t, x) = Gi(t, z(t
−
i , x)), (t, x) ∈ ∪Ni=1(ti, si]× [0, π],

(1.2)

where X = L2[0, π], a ≥ 0 and b > 0 are constants, Ã : D(Ã) ⊂ X → X is the operator given by

Ãψ = −ψxx whose domain is de�ned as

D(Ã) := {ψ ∈ X : ψ,ψx are absolutely continouos, ψxx ∈ X , ψ(0) = ψ(π) = 0},

and (D(−Ã))1/2 = X 1/2 = H1
0 .

For the controllability of BBM equation, the following system is considered

zt + aÃzt + bÃz = 1ωu(t, x)− z(t− r, x)zx(t− r, x) (t, x) ∈ ∪Ni=0 (si, ti+1]× [0, π],

+f(t, z(t− r, x), u),

z(t, 0) = z(t, π) = 0, t ∈ [0, T ],

z(s, x) + h(z(τ1 + s, x), . . . , z(τq + s, x)) = φ(s, x), (t, x) ∈ [−r, 0]× [0, π],

z(t, x) = Gi(t
−
i , z(t, x), u(t, x)), (t, x) ∈ ∪Ni=1(ti, si]× [0, π],

(1.3)

with the same details described in (1.2) including that ω is an open nonempty subset of [0, π]. 1ω denotes
the characteristic function of the set ω, and the distributed control function u belongs to L2([0, T ];X ).
In order to establish the approximate controllability of the system (1.3), we use a technique that consists
of considering a solution curve and with a speci�ed control move the corresponding solution to such a
�xed curve. Then use the linear controllability system to get closer to the �nal state.

The manuscript is structured as follows. section 2 introduces preliminary facts and some notations.
In section 3, we discuss the existence and uniqueness for system (1.1). In section 4, we shall apply
our previous results to system (1.2). Finally section 5 is devoted to establish the controllability result
for the purposed system (1.3).

2. Preliminaries

We suppose that the operator A is a sectorial operator in X , and therefore −A is the generator of
a strongly continuous compact semigroup {S(t)}t≥0 on X with 0 ∈ ρ(A). Thus, the fractional operator
Aη with η ∈ (0, 1] is well de�ned. Moreover, Aη is a closed operator whose domain is a Banach space
endowed with the following norm

‖z‖η = ‖Aηz‖, ∀z ∈ D(Aη) = X η.
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BBM EQUATION WITH NON INSTANTANEOUS IMPULSES, DELAY AND NON LOCAL CONDITIONS 3

We know that X η is dense in X . Furthermore, if the resolvent of A is compact. Then for all η ∈ (β, 1]
with β > 0 the embedding X η → X β is compact.
Next, we consider the following properties for the strongly continuous semigroup {S(t)}t≥0, generated
by −A.
There exist M ≥ 1, Mη ≥ 0 and α > 0 such that

‖S(t)‖ ≤M, for t ≥ 0,

‖AηS(t)‖ ≤ Mη

tη
e−αt, for t, > 0,

AηS(t)z = S(t)Aηz, for z ∈ X η,
S(t)z ∈ D(A), z ∈ X , t > o.

for more details see [8, 9, 23].
A normal space to work with impulsive di�erential systems is given by

PWη
[−r,T ] = {z : [−r, T ]→ X η : z

∣∣∣
[−r,0]

∈ PWη
[−r,0], z

∣∣∣
[0,T ]
∈ C([0, T ] \ {ti}Ni=1;X η),∃ z(t+k ),

z(t−k ) s.t. z(tk) = z(t−k )},
endowed with the norm

‖z‖ = sup
t∈[−r,T ]

‖z(t)‖η,

with PWη
[−r,0] given as follows:

PWη
[−r,0] = {Φ : [−r, 0]→ X η : Φ is piece-wise continuous},

endowed with the norm
‖Φ‖ = sup

s∈[−r,0]
‖Φ(s)‖η.

Also, we shall denote the Banach space X ηq as follows

X ηq = X η ×X η × · · · X η︸ ︷︷ ︸
q times

=

q∏
i=1

X η,

endowed with the norm

‖y‖ηq =

q∑
i=1

‖yi‖η , y = (y1, y2, . . . , yq)
T ∈ X η,

and the space PWη
rq given as follows:

PWη
rq = {g : [−r, 0]→ X ηq : g is piece-wise continuous},

endowed with the norm

‖y‖q = sup
t∈[−r,0]

‖y(t)‖ηq = sup
t∈[−r,0]

(
q∑
i=1

‖yi(t)‖η

)
, ∀y ∈ PWη

rq.

To prove the existence of solutions we need the following results.

De�nition 2.1. Let y be a function belongs to PWη
[0,T ], and i = 0, 1, 2, . . . , N we de�ne the function

ỹi ∈ C([ti, ti+1];X η) such that

ỹi(t) =

{
y(t), for t ∈ [ti, ti+1),
y(t−i+1), for t = ti+1.

(2.1)

ForW ⊂ PWη
[0,T ] and i = 0, 1, 2, . . . , N , we de�ne W̃i = {ỹi : y ∈W}. Using the following Ascoli-Arzela

Theorem we can get a characterization of compactness in PWη
[0,T ] (see Theorem 1.1.1 from [13]).
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4 HUGO LEIVA, WALID ZOUHAIR, AND DALIA CABADA

Theorem 2.1. A set W ⊂ PWη
[0,T ] is relatively compact in PWη

[0,T ] if, and only if, each set W̃i with

i = 0, 1, 2, . . . , N is relatively compact in C([ti, ti+1];X η) where t0 = 0 and tN+1 = T . Note that the

space PWη
[0,T ] is correspond to the following space PWη

[−r,T ]

∣∣∣
[0,T ]

.

Theorem 2.2. (G. L. Karakostas [10]) Let Z and Y be Banach spaces and D be a closed convex
subset of Z, let C : D → Y be a continuous operator such that C(D) is a relatively compact subset of
Y , and

Ψ : D × C(D)→ D (2.2)

a continuous operator such that the family {Ψ(·, y) : y ∈ C(D)} is equicontractive. Then the operator
equation

Ψ(z, C(z)) = z, (2.3)

admits a solution on D.

3. Existence and uniqueness result

In this section, the proof of the existence and uniqueness of solutions for system (1.1) is presented.
A characterization for its solution is given through the following de�nition,

De�nition 3.1. A function z(·) ∈ PWη
[−r,T ] is called a mild solution for the system (1.1) if it satis�es

the following integral-algebraic equation

z(t) =



φ(t)−H(zτ1 , . . . , zτq )(t), t ∈ [−r, 0],

S(t){φ(0)−H(zτ1 , . . . , zτq )(0)} t ∈ [0, t1],

+

∫ t

0

S(t− s)F (s, zs)ds,

Gi(t, z(t−i )), t ∈ (ti, si], i = 1, 2, . . . , N,

S(t− si)Gi(si, z(t−i )) t ∈ (si, ti+1] , i = 1, 2, . . . , N,

+

∫ t

si

S(t− s)F (s, zs)ds.

(3.1)

Now, we suppose the following hypotheses on F , H, and Gi in the aim of demonstrating the existence
of solutions

I) The function F : [0, T ]× PWη
[−r,0] → X satis�es the following conditions

a) ‖F (t, ν1)− F (t, ν2)‖ ≤ N (‖ν1‖, ‖ν2‖)‖ν1 − ν2‖, ν1, ν2 ∈ PWη
[−r,0].

b) ‖F (t, ν)‖ ≤ ξ(‖ν‖), ν ∈ PWη
[−r,0],

where N : IR+ × IR+ → IR+ and ξ : IR+ → IR+ are continuous and non-decreasing functions of
their arguments.

II) There exist constants lq, hi > 0, i = 1, 2, . . . , N such that
a) For t ∈ [−r, 0], y ∈ PWη

[−r,0] the mapping H(y)(t) is completely continuous.

‖H(y)(t)−H(v)(t)‖η ≤ qlq‖y − v‖q, ∀y, v ∈ PWη
rq
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BBM EQUATION WITH NON INSTANTANEOUS IMPULSES, DELAY AND NON LOCAL CONDITIONS 5

‖H(0)‖ ≤ γ1, such that γ1 ≥ 0, and

Mqlq ≤Mhi <
1

2

b) for all i = 1, 2, 3, · · · , N and y, z ∈ X η, l, t ∈ (ti, si] we have that

‖Gi(l, y)− Gi(t, z)‖η ≤ hi{|l − t|+ ‖y − z‖η},
and ‖Gi(l, 0)‖ ≤ γ2 with γ2 ≥ 0.

III) For µ > 0, ti+1 ∈ (0, T ] and i = 1, 2, 3, · · · , N the following inequality is satis�ed:

Mhi[‖φ̃‖+ µ] +Mγ +
Mη(ti+1)1−η

1− η
ξ(‖φ̃‖+ µ) ≤ µ,

such that γ = max(γ1, γ2), and the function φ̃ is given as follows:

φ̃(t) =


φ(t), t ∈ [−r, 0],
S(t)φ(0), t ∈ [0, t1],
0, t ∈ (ti, si],
0, t ∈ (si, ti+1].

(3.2)

IV) The next inequality is satis�ed for µ and for ti+1 ∈ (0, T ]

Mhi +Mη
(ti+1)1−η

1− η
N (‖φ̃‖+ µ, ‖φ̃‖+ µ) < 1.

Note that the spaces where our problem is set, the value of η is η = 1/2. However, in order to
make our result more general, we use throughout this paper the η-notation spaces.

Theorem 3.1. If the assumptions I) − III) hold, the system (1.1) has at least one mild solution on
[−r, T ].

Proof Let us assume that I)− III) hold and de�ne the following two operators:

Ψ : PWη
[−r,T ] × PW

η
[−r,T ] → PW

η
[−r,T ],

and

C : PWη
[−r,T ] → PW

η
[−r,T ],

given as follows

Ψ(z, y)(t) =


φ(t)−H(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0],
y(t) + S(t){φ(0)−H(zτ1 , . . . , zτq )(0), t ∈ [0, t1],
Gi(t, z(t−i )), t ∈ (ti, si],
y(t) + S(t− si)Gi(si, z(t−i )), t ∈ (si, ti+1],

and

C(y)(t) =



φ(t), t ∈ [−r, 0],∫ t

0

S(t− s)F (s, ys)ds, t ∈ [0, t1],

0, t ∈ (ti, si],∫ t

si

S(t− s)F (s, ys)ds, t ∈ (si, ti+1],
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6 HUGO LEIVA, WALID ZOUHAIR, AND DALIA CABADA

with i = 1, 2, · · ·N . Take into account that the composition of the previous operators results in the
solution of the system (1.1). Hence, our problem for �nding at least a mild solution of the system (1.1)
is equivalent to solve the �xed-point problem given by the following equation:

Ψ(z, C(z)) = z. (3.3)

Next, we make use of Karakostas �xed point theorem (Theorem 2.2) to solve this problem. In this
regard, let us verify that Ψ and C satisfy the conditions required by Theorem 2.2 which is done by the
following steps.

Step 1: C is a continuous operator.
Let z, y ∈ PWη

[−r,T ] and t ∈ (si, ti+1] with i = 0, 1, 2, · · ·N , by assumption I), we obtain

‖C(z)(t)− C(y)(t)‖η ≤
∫ t

si

‖AηS(t− s)[F (s, zs)− F (s, ys)]‖ds

≤
∫ t

si

Mη

(t− s)η
N (‖zs‖, ‖ys‖)‖zs − ys‖ds

≤ Mη
((ti+1)− si)1−η

1− η
N (‖z‖, ‖y‖)‖z − y‖

≤ Mη
(ti+1)1−η

1− η
N (‖z‖, ‖y‖)‖z − y‖

≤ Mη
T 1−η

1− η
N (‖z‖, ‖y‖)‖z − y‖.

On the other side, when t ∈ (ti, si] with i = 1, 2, 3, · · ·N or t ∈ [−r, 0], we have the following
estimate

‖C(z)(t)− C(y)(t)‖η = 0.

Thus, C is continuous. Moreover, C is locally Lipschitz.

Step 2: C maps bounded sets of PWη
[−r,T ] into bounded set of PWη

[−r,T ].

Let BR = {z ∈ PWη
[−r,T ] : ‖z‖ ≤ R}. Thus, to show that C maps bounded sets of PWη

[−r,T ] into

bounded set of PWη
[−r,T ] it is enough to show that for any R > 0 there exists δ > 0 such that

‖C(y)‖ ≤ δ for each y ∈ BR.
Let R > 0 and take y ∈ BR, then we have the following estimates holds:
If t ∈ [−r, 0]

‖C(y)(t)‖η = ‖φ(t)‖η ≤ ‖φ‖ = δ1,
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BBM EQUATION WITH NON INSTANTANEOUS IMPULSES, DELAY AND NON LOCAL CONDITIONS 7

If t ∈ (si, ti+1] with i = 0, 1, 2, · · ·N , by assumption I), we obtain

‖C(y)(t)‖η ≤
∫ t

si

‖AηS(t− s)F (s, ys))‖ds

≤
∫ t

si

Mη

(t− s)η
ξ(‖ys‖)ds

≤ Mη
(ti+1 − si)1−η

1− η
ξ(‖y‖)

≤ Mη
(ti+1)1−η

1− η
ξ(R)

≤ Mη
T 1−η

1− η
ξ(R)

= δ2.

If t ∈ (ti, si] with i = 1, 2, · · ·N , ‖C(y)(t)‖η = 0. Taking δ = max{δ1, δ2}, we obtain that ‖C(y)‖ ≤ δ for
all y ∈ BR.

Step 3: C maps bounded sets into equicontinuous sets of PWη
[−r,T ].

Let R > 0 and take y ∈ BR where BR is given as in the previous step. Then, we have to prove that the
family of functions C(BR) is equicontinuous on the interval [−r, T ].
Let i = 0, . . . , N and 0 ≤ π1 < π2, then we have the following estimates:
In [−r, 0], C(y(t)) = φ(t), which is trivially equicontinuous. On the other side, when π1, π2 ∈ (si, ti+1]
with 0 < π1 < π2, we have

‖C(y)(π2)− C(y)(π1)‖η ≤
∫ π1−ε

si

‖Aη[S(π2 − s)− S(π1 − s)]F (s, ys)‖ds

+

∫ π1

π1−ε
‖Aη[S(π2 − s)− S(π1 − s)]F (s, ys)‖ds

+

∫ π2

π1

‖AηS(π2 − s)F (s, ys)‖ds

≤ ‖S(π2 − π1 + ε)− S(ε)‖
∫ π1−ε

si

‖AηS(π1 − s− ε)F (s, ys)‖ds

+ Mη
ξ(‖y‖)
1− η

[(π2 − π1 + ε)1−η − (π2 − π1)1−η + (ε)1−η]

+ Mη
ξ(‖y‖)
1− η

(π2 − π1)1−η

≤ ‖S(π2 − π1 + ε)− S(ε)‖Mη
ξ(R)

1− η
(π1 − ε)1−η

+ Mη
ξ(R)

1− η
[(π2 − π1 + ε)1−η − (π2 − π1)1−η + (ε)1−η]

+ Mη
ξ(R)

1− η
(π2 − π1)1−η.

By the de�nition of C(·), for all π1, π2 ∈ (ti, si], we have

‖C(y)(π2)− C(y)(π1)‖η = 0.
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8 HUGO LEIVA, WALID ZOUHAIR, AND DALIA CABADA

Since the semigroup (S(t))t≥0 is uniformly continuous away from zero and by the previous estimates,
we obtain the equicontinuity of C(BR) on [0, T ]. Indeed, it is equicontinuous on [−r, T ].

Step 4: C maps bounded sets into relatively compact sets in PWη
[0,T ].

Let W = {C(y) : y ∈ BR}, since C(y)(t) = φ(t) for t ∈ [−r, 0], we only consider W ⊂ PWη
[0,T ]. Hence,

by Theorem 2.1 is enough to prove that W̃i = {C(ỹi) : y ∈ BR} is relatively compact in C([ti, ti+1];X η)
for all i = 0, 1, 2, . . . , N , where t0 = 0 and tN+1 = T .

If t ∈ (ti, si] with i = 1, 2, 3, · · ·N , we have

W (t) =

{
0

}
. (3.4)

Clearly, the set W̃i given in (3.4) is relatively compact in X η. Now, if t ∈ [si, ti+1], with i = 0, 1, 2, · · · , N ,
we consider the set

Ũi(t) = W̃i(t),

Ũi =

{
ũi(t) =

∫ t

si

S(t− s)F (s, ỹs) ds : y ∈ BR
}
.

Consider ε ∈ (0, t), and the set

Ũi,ε =

{
ũi,ε(t) =

∫ t−ε

si

S(t− s)F (s, ỹs) ds : y ∈ BR
}

=

{
ui,ε(t) = S(ε)

∫ t−ε

si

S(t− ε− s)F (s, ỹs)ds : y ∈ BR
}
,

By the compactness of S(ε), we get that Ũi,ε is relatively compact in Xn. Thus, Ũi(t) is relatively
compact in X η for all ε > 0. On the other hand, we have

‖ũi(t)− ũi,ε(t)‖η ≤
∫ t

t−ε
‖AηS(t− s)F (s, ỹs)‖ds

≤
∫ t

t−ε

Mηξ(‖y‖)
(t− s)η

ds

≤ Mη
ξ(‖y‖)
1− η

(ε)1−η

≤ Mη
ξ(R)

1− η
(ε)1−η.

Hence, we have a sequence of relatively compact sets arbitrarily close to Ũi, therefore Ũi is relatively
compact in X η.
Step 5:The family {Ψ(·, y) : y ∈ C(D)} is equicontractive
D is a closed and convex set de�ned in (3.5). Let v, w ∈ PWη

[−r,T ]. For t ∈ [−r, 0] we have

‖Ψ(v, C(y))(t)−Ψ(w, C(y))(t)‖η ≤ ‖H(vτ1 , vτ2 , . . . , vτq )(t)−H(wτ1 , wτ2 , . . . , wτq )(t)‖
≤ qlq‖v − w‖.

For t ∈ [0, t1], we have

‖Ψ(v, C(y))(t)−Ψ(w, C(y))(t)‖η ≤ ‖AηS(t)[H(vτ1 , vτ2 , . . . , vτq )(t)−H(wτ1 , wτ2 , . . . , wτq )(t)]‖
≤ Mqlq‖v − w‖.
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For t ∈ (ti, si] with i = 1, 2, 3, · · ·N , we get

‖Ψ(v, C(y))(t)−Ψ(w, C(y))(t)‖η ≤ ‖Gi(t, v(t−i ))− Gi(t, w(t−i ))‖η
≤ hi‖v − w‖.

For t ∈ (si, ti+1] with i = 1, 2, 3, · · ·N , we have the following estimate

‖Ψ(v, C(y))(t)−Ψ(w, C(y))(t)‖η ≤ ‖AηS(t− si)[Gi(si, v(t−i ))− Gi(si, w(t−i ))]‖
≤ Mhi‖v − w‖.

Since qlq ≤Mqlq ≤ hi ≤Mhi, by assumption II), we obtain

‖Ψ(v, C(y))(t)−Ψ(w, C(y))(t)‖ ≤Mhi‖v − w‖ ≤
1

2
‖v − w‖ ∀t ∈ [−r, T ].

Thus, it is a contraction independently of y ∈ C(D).
Step 6: Ψ(·, C)D(µ, T, φ) ⊂ D(µ, T, φ).
Consider the following closed and convex set

D = D(µ, T, φ) = {y ∈ PWη
[−r,T ] : ‖y − φ̃‖ ≤ µ}, (3.5)

Let us prove that,

Ψ(·, C)D(µ, T, φ) ⊂ D(µ, T, φ).

Let z ∈ D(µ, T, φ) and t ∈ [−r, 0]. Then,

Ψ(z, C(z))(t) = φ(t)−H(zτ1 , zτ2 , . . . , zτq )(t).

For t ∈ [0, t1], we have

Ψ(z, C(z))(t) = S(t){φ(0)−H(zτ1 , . . . , zτq )(0)}+

∫ t

0

S(t− s)F (s, zs)ds.

For t ∈ (ti, si], i = 1, 2, · · · , N, we have

Ψ(z, C(z))(t) = Gi(t, z(t−i )).

For t ∈ (si, ti+1], i = 1, 2, · · · , N, we have

Ψ(z, C(z))(t) = S(t− si)Gi(si, z(t−i )) +

∫ t

si

S(t− s)F (s, zs)ds.

Hence, using the assumption III) in each sub-interval on [−r, T ], we obtain the following estimates

If t ∈ [−r, 0], we get

‖Ψ(z, C(z))(t)− φ̃(t)‖η = ‖H(zτ1 , zτ2 , . . . , zτq )(t)‖η
≤ qlq‖z‖+ γ1 ≤ qlq(‖φ̃‖+ µ) + γ1 < µ.
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If t ∈ [0, t1], we get

‖Ψ(z, C(z))(t)− φ̃(t)‖η ≤ M‖H(zτ1 , zτ2 , . . . , zτq )(0)‖η +

∫ t

0

‖AηS(t− s)F (s, zs)‖ds

≤ Mqlq‖z‖+Mγ1 +

∫ t

0

Mη

(t− s)η
‖F (s, zs)‖ds

≤ Mqlq(‖φ̃‖+ µ) +Mγ1 +
Mη(t1)1−η

1− η
ξ(‖z‖)

≤ Mqlq(‖φ̃‖+ µ) +Mγ1 +
Mη(t1)1−η

1− η
ξ(‖φ̃‖+ µ)

< µ.

If t ∈ (ti, si],i = 1, 2, · · · , N, we get

‖Ψ(z, C(z))(t)− φ̃(t)‖η ≤ ‖Gi(t, z(t−i ))‖η
≤ hi‖z‖+ γ2

≤ hi(‖φ̃‖+ µ) + γ2

< µ.

If t ∈ (si, ti+1], i = 1, 2, · · · , N, we get

‖Ψ(z, C(z))(t)− φ̃(t)‖η ≤ ‖AηS(t− si)[Gi(si, z(si))]‖+

∫ t

si

‖AηS(t− s)F (s, zs)‖ds

≤ M‖Aη[Gi(si, z(si))]‖+

∫ t

si

Mη

(t− s)η
‖F (s, zs)‖ds

≤ M(hi‖z‖) +Mγ2 +
Mη(ti+1 − si)1−η

1− η
ξ(‖z‖)

≤ Mhi(‖φ̃‖+ µ) +Mγ2 +
Mη(ti+1)1−η

1− η
ξ(‖φ̃‖+ µ)

≤ µ.

Therefore, The conditions of Theorem2.2 are satis�ed, it follows that the equation Ψ(z, C(z)) = z has
at least one mild solution, which means that at least there exist a solution for the system (1.1).

Next, we present the following uniqueness result

Theorem 3.2. Additionally to the assumptions of Theorem 3.1, let us assume that IV ) holds. Then
the system (1.1) has an unique solution on [−r, T ].

Proof . Suppose that z1 and z2 are two solutions to (1.1).
For t ∈ [−r, 0], we have

‖z2(t)− z1(t)‖η ≤ ‖H(z2,τ1 , z2,τ2 , . . . , z2,τq )(t)−H(z1,τ1 , z1,τ2 , . . . , z1,τq )(t)‖η ≤ qlq‖z2 − z1‖η.

Additionally, t ∈ (ti, si] with i = 1, 2, 3, · · ·N , we have

‖z2(t)− z1(t)‖η ≤ ‖Gi(t, z2(t))− Gi(t, z1(t))‖η ≤ hi‖z2 − z1‖η.
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And, t ∈ [0, t1], we get

‖z2(t)− z1(t)‖η ≤ ‖AηS(t)[H(z2,τ1 , z2,τ2 , . . . , z2,τq )(t)−H(z1,τ1 , z1,τ2 , . . . , z1,τq )(t)]‖

+

∫ t

0

‖AηS(t− s)[F (s, z2,s)− F (s, z1,s)]‖ds

≤
(
Mqlq +Mη

(t1)1−η

1− η
N (‖φ̃‖+ µ, ‖φ̃‖+ µ)

)
‖z2 − z1‖. (3.6)

Lastly, if t ∈ (si, ti+1] with i = 1, 2, 3, · · ·N , similarly, it yields

‖z2(t)− z1(t)‖η ≤ ‖AηS(t− si)[Gi(si, z2(si))− Gi(si, z1(si))]‖

+

∫ t

si

‖AηS(t− s)[F (s, z2,s)− F (s, z1,s)]‖ds

≤
(
Mhi +Mη

(ti+1)1−η

1− η
N (‖φ̃‖+ µ, ‖φ̃‖+ µ)

)
‖z2 − z1‖ (3.7)

Combining (3.6), (3.7) and using assumptions II) and IV ) we obtain z1 = z2.

4. Application To The Benjamin-Bona-Mahony Equation

In this section we shall apply our previous results to the BBM equation with non-instantaneous
impulses, delay and nonlocal conditions (1.2). In this regard, we �rst present the abstract formulation
of the problem, then we establish the existence and uniqueness of the solution. Throughout this paper
we use the following notations: 0 < λ1 < λ2 < ... < λn → ∞ are the eigenvalues of the operator
Ãψ = −ψxx where Ã is a sectorial operator. According to [17] −Ã : D(Ã) ⊂ X → X is the generator of

a Strongly continuous analytic semigroup (S(t))t≥0 on X . Moreover, the operator Ã and the semigroup
(S(t))t≥0 can be represented as follows:

Ãz =

∞∑
n=1

λn〈z, φn〉φn, z ∈ X ,

where {φn} is an orthonormal set of eigenvectors of Ã and 〈·, ·〉 is the inner product in X . Thus, the

strongly continuous semigroup (S(t))t≥0 generated by −Ã is compact and given by

S(t)z =

∞∑
n=1

e−n
2t〈z, φn〉φn, z ∈ X .

As a consequence, we have the following estimate:

‖ S(t) ‖≤ e−t, t ≥ 0.

Consequently, system (1.2) can be written as an abstract functional di�erential system with non-
instantaneous impulses in X :

z′ + aÃz′ + bÃz = F(t, zt), t ∈ ∪Ni=0 (si, ti+1] ,

z(s) +H(zτ1 , . . . , zτq )(s) = φ(s), t ∈ [−r, 0],

z(t) = Gi(t, z(t−i )), t ∈ ∪Ni=1 (ti, si] ,

(4.1)

where the function zt ∈ C([−r, 0];X 1/2) is de�ned by zt(s) = z(t + s) with s ∈ [−r, 0] and Gi :

(ti, si] × X 1/2 −→ X 1/2, H : PW1/2
rq −→ PW

1/2
[−r,0] and F : [0, T ] × PW1/2

[−r,0] −→ X , are de�ned as

follows
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F(t, φ)(x) = φ(−r, x)φx(−r, x) + f(t, φ(−r, x)) in [0, π],

H(zτ1 , . . . , zτq )(s)(x) = h(z(τ1 + s, x), . . . , z(τq + s, x)) in [0, π],

Gi(t, z(t−i ))(x) = Gi(t, z(t
−
i , x)) for i = 1, . . . , N in [0, π].

Note that the spaces here are the same spaces de�ned in the previous section with η = 1/2. Now, we

have that (I + aÃ) = a(Ã − (− 1
a )I) and − 1

a ∈ ρ(Ã), where ρ(Ã) is the resolvent set of Ã, then the
operator:

I + aÃ : D(Ã)→ X
is invertible with bounded inverse

(I + aÃ)−1 : X → D(Ã).

Hence, for z ∈ X and t ∈ [0, T ] the system (4.1) can be presented as follows:
z′ + b(I + aÃ)−1Ãz = (I + aÃ)−1F(t, zt), t ∈ ∪Ni=0 (si, ti+1] ,

z(s) +H(zτ1 , . . . , zτq )(s) = φ(s), t ∈ [−r, 0],

z(t) = Gi(t, z(t−i )), t ∈ ∪Ni=1 (ti, si] ,

(4.2)

Additionally, (I + aÃ) and (I + aÃ)−1 can be written in terms of the eigenvalues of Ã

(I + aÃ)z =

∞∑
n=1

(1 + aλn)Enz,

(I + aÃ)−1z =

∞∑
n=1

1

1 + aλn
Enz,

where {En} is a set of orthogonal projections in X given by Enz = 〈z, φn〉φn such that z =
∑∞
n=1Enz.

Hence, if we put B = (I + aÃ)−1 and F (t, φ) = (I + aÃ)−1F(t, φ), the systems (4.2) can be written as
follows 

z′ + bBÃz = F (t, zt), t ∈ ∪Ni=0 (si, ti+1] ,

z(s) +H(zτ1 , . . . , zτq )(s) = φ(s), t ∈ [−r, 0],

z(t) = Gi(t, z(t−i )), t ∈ ∪Ni=1 (ti, si] ,

(4.3)

In what follows, we formulate a simple proposition.

Proposition 4.1. [19] The operators bBÃ is the generator of astrongly continuous analytic semigroup

S(t) = e−bBÃt, given by the following expressions

bBÃz =

∞∑
n=1

bλn
1 + aλn

Enz,

S(t)z = e−bBÃtz =

∞∑
n=1

e
−bλn
1+aλn

tEnz.

Moreover, the following estimate holds

‖ S(t) ‖≤ e−βt, t ≥ 0,

where

β = inf
n≥1

{
b λn

1 + a λn

}
=

b

1 + a
.

Then, the system (4.3) can be presented as an abstract Cauchy problem with Non-instantaneous im-
pulses
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z′ = −Az + F (t, zt), t ∈ ∪Ni=0 (si, ti+1] ,

z(s) +H(zτ1 , . . . , zτq )(s) = φ(s), t ∈ [−r, 0],

z(t) = Gi(t, z(t−i )), t ∈ ∪Ni=1(ti, si].

(4.4)

with A = bBÃ.

Finally, if we assume that the functions F,H and Gi satisfy the assumptions I) − IV ). Then the
system (4.4) has only one mild solution on [−r, T ]. Moreover, we have can prove the following result:

Proposition 4.2. The functions F de�ned above satisfy:

‖F (t, φ1)− F (t, φ2)‖ ≤ K{‖φ1 − φ2‖C + L}‖φ1 − φ2‖C ,
‖F (t, φ)‖ ≤ K‖φ‖2C + 4K‖a‖L∞‖φ‖C + 4K‖b‖L∞

√
µ(Ω),

where

|f(t, z)− f(t, w)| ≤ L|z − w|, t ∈ [0, τ ], z, w ∈ IR,
K = ‖(I + aÃ)−1‖ and

√
µ(Ω) = 1.

5. Controllability Result

Analogous to the abstract formulation of the existence problem, the control problem (1.3) can be
presented as follows 

z′ = −Az + Bu(t) + F (t, zt, u), t ∈ ∪Ni=0 (si, ti+1] ,

z(s) +H(zτ1 , . . . , zτq )(s) = φ(s), t ∈ [−r, 0],

z(t) = Gi(t, z(t−i ), u(t)), t ∈ ∪Ni=1(ti, si].

(5.1)

where A = bBA and B = BBω.
Before studying the controllability of the nonlinear system (5.1), we begin by stating the controllability of
the unperterbed linear system. We notice that for an arbitrary initial state w0 ∈ X and u ∈ L2(0, T ;U),
U = L2(0, π) the initial value problem{

w′ = −Aw + Bu(t), t ∈ (t0, T ],
w(t0) = w0,

(5.2)

admits only one mild solution given by

w(t) = w(t, t0, w0, u) = S(t− t0)w0 +

∫ t

t0

S(t− s)Bu(s)ds, t ∈ [t0, T ], 0 ≤ t0 ≤ T. (5.3)

De�nition 5.1. (Approximate Controllability) The system (5.1) is said to be approximately control-
lable on [t0, T ], if for all z0, z

1 ∈ X , an initial state and a �nal state respectively, and ε > 0 there exists
u ∈ L2(0, T ;U) such that the mild solution z(t) of (5.1) corresponding to u veri�es∥∥z(T )− z1

∥∥
X < ε,

where ∥∥z(T )− z1
∥∥
X =

(∫ π

0

∣∣z(T, x)− z1(x)
∣∣2 dx

)1/2

.

De�nition 5.2. For τ ∈ [0, T ) we de�ne the controllability map for the system (5.2) as follows:
GTτ : L2(T − τ, T ;U))→ X de�ned by

GTτu =

∫ T

T−τ
S(T − s)Bu(s)ds, u ∈ L2(T − τ, T ;U), (5.4)
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Its adjoint operator G∗Tτ : X → L2(T − τ, T ;U) is given by

(G∗Tτz)(t) = B∗S∗(T − t)z, t ∈ [T − τ, T ]. (5.5)

The Gramian controllability operator is given by:

QTτ = GTτG
∗
Tτ =

∫ T

T−τ
S(T − t)BB∗S∗(T − t)dt. (5.6)

Lemma 5.3. The following statements are equivalent to the approximate controllability of the linear
system (5.2) on [T − τ, T ],

a) Rang(GTτ ) = X .
b) Ker(G∗Tτ ) = {0}.
c) 〈QTτz, z〉 > 0, z 6= 0 in X .
d) limα→0+ α(αI +QTτ )−1z = 0.
e) For all z ∈ X we have GTτuα = z − α(αI +QTτ )−1z, where

uα = G∗Tτ (αI +QTτ )−1z, α ∈ (0, 1].

So, limα→0GTτuα = z and the error ETτz of this approximation is given by the formula

ETτz = α(αI +QTτ )−1z, α ∈ (0, 1].

Remark 5.1. The foregoing Lemma implies that the family of linear operators
Ψα : Z →W , de�ned for 0 < α ≤ 1 by

Ψαz = G∗Tτ (αI +QTτ )−1z, (5.7)

is an approximate inverse for the right of the operator GTτ , in the sense that

lim
α→0

GTτΨα = I. (5.8)

in the strong topology.

The above characterization holds in general for a linear bounded operator G : W → Z between Hilbert
spaces W and Z (see [5, 6, 20]).

Lemma 5.4. [16] Given an initial state w0 and a �nal state z∗ we can �nd a sequence of controls
{uδβ}0<β≤1 ⊂ L2(T − δ, T ;U)

uδβ = G∗Tδ(βI +GTδG
∗
Tδ)
−1(z∗ − S(T )w0), β ∈ (0, 1],

such that the solutions ω(t) = ω(t, T − δ, w0, u
δ
β) of the initial value problem{

ω′ = −Aω + Buδβ(t), W ∈ Z, t > 0,

ω(T − τ) = w0,
(5.9)

satis�es
lim
β→0+

ω(T, T − δ, ω0, u
δ
β) = z∗.

e.i.,

lim
α→0+

ω(T ) = lim
α→0+

{
S(T )w0 +

∫ T

T−δ
S(T − s)Buδβ(s)ds

}
= z∗.

Now, we are ready to prove the interior approximate controllability of the BBM equation with
non instantaneous impulses, delay and non-local conditions (5.1). Our main assumptions will be the
following

V) According to the above section, we suppose that F , H, and Gi, i = 1, . . . , N are smooth enough,
such that for all φ ∈ PWη

[−r,0] and u ∈ L2 (0, T ;U) the problem (5.1) has only one mild solution on
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[−r, T ]. And there exists ϕ ∈ L2(IR+) which for all (t, φ, u) ∈ [0, T ] × PWη
[−r,0] × L2(0, T ;U), the

following inequality holds

‖F (t,Φ, u)‖X ≤ ϕ(‖Φ(−r)‖X ), (5.10)

De�nition 5.5. For all φ ∈ PWη
[−r,0] and u ∈ L

2(0, T ;U) a function z(·) ∈ PW [−r,T ] is a mild solution

for the system (5.1) if it satis�es the following integral-algebraic equation

z(t) =



φ(t)−H(zτ1 , . . . , zτq )(t), t ∈ [−r, 0],

S(t){φ(0)−H(zτ1 , . . . , zτq )(0)} t ∈ [0, t1],

+

∫ t

0

S(t− s)
(
Bu(s) + F (s, zs(−r), u(s))

)
ds,

Gi(t, z(t−i ), u(t)), t ∈ (ti, si], i = 1, 2, . . . , N,

S(t− si)Gi(si, z(t−i ), u(si)) t ∈ (si, ti+1] , i = 1, 2, . . . , N,

+

∫ t

si

S(t− s)
(
Bu(s) + F (s, zs(−r), u(s))

)
ds.

(5.11)

By the previous de�nition the evaluation in T of the mild solution for the system (5.1) leads us to
the following expression

z(T ) = S(T − sN )GN (sN , z(t
−
N ), u(sN )) +

∫ T

sN

S(T − s)
(
Bu(s) + F (s, zs(−r), u(s))

)
ds

Theorem 5.1. If the function F satis�es assumption (5.10), the system (5.1) is approximately con-
trollable on [0, T ]. Precisely, Given φ ∈ PWη

[−r,0], a �nal state z∗ and ε > 0, there exists 0 < δ <

min{T − sN , T − r, r, ε
2Q} small enough,were Q = mint∈[0,T ]{‖S(t)‖ϕ(‖z(t)‖)}, such that there exists a

control ũε ∈ L2(0, T ;U), in such a way that the corresponding solution zε of (5.1) satis�es

‖zε(T )− z∗‖ ≤ ε.

Proof. Consider any u ∈ L2(0, T ;U) and the corresponding solution z(t) = z(t, φ, u) of the initial value
problem (5.1). For β ∈ (0, 1] we de�ne the control ũε ∈ L2(0, τ ;U) as follows

ũε(t) =

{
u(t), if 0 ≤ t ≤ T − δ,

uδ(t), if T − δ < t ≤ T,
(5.12)

where uδ is the control giving by Lemma5.4 that steers the unpeturbed linear system (5.2) from the
initial state z(T − δ) to the �nal state z∗ on [T − δ;T ]. The corresponding solution zε = z(t, sN , ũ

ε) of
the initial value problem (5.1) at time T can be written as follows

zε(T ) = S(T − sN )GN (sN , z
ε(t−N ), ũε(sN ))

+

∫ T

sN

S(T − s)
(
Bũε(s) + F (s, zεs(−r), ũδβ(s))

)
ds

= S(δ)

{
S(T − sN − δ)GN (sN , z

ε(t−N ), u(sN )) +

∫ T−δ

sN

S(T − s− δ)
[
Bu(s)

+F (s, zεs(−r), u(s))

]
ds

}
+

∫ T

T−δ
S(T − s)

[
Buδ(s) + F (s, zεs(−r), uδ(s))

]
ds,
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then

zε(T ) = S(δ)z(T − δ) +

∫ T

T−δ
S(T − s)

[
Buδ(s) + F (s, zεs(−r), uδ(s))

]
ds.

On the other hand, the corresponding solution wδ(t) = w (t, T − δ, z(T − δ), uδ) of the unperterbed
linear system (5.2) at time T is given by

wδ(T ) = S(δ)z(T − δ) +

∫ T

T−δ
S(T − s)Buδ(s)ds, (5.13)

therefore,

zε(T )− wδ(T ) =

∫ T

T−δ
S(T − s)F (s, zε(s− r), uδ(s))ds,

by the assumption (5.10), we obtain∥∥zε(T )− wδ(T )
∥∥ ≤∫ T

T−δ
‖S(T − s)‖ ‖F (s, zε(s− r), uδ(s))‖ds,

≤
∫ T

T−δ
‖S(T − s)‖ϕ(‖zε(s− r)‖)ds.

Now, since 0 < δ < r and T − δ ≤ s ≤ T , then 0 ≤ s− r ≤ T − r < T − δ then

zε(s− r) = z(s− r).

Therefore, for such small δ, we obtain∥∥zε(T )− wδ(T )
∥∥ ≤ ∫ T

T−δ
‖S(T − s)‖ϕ(‖z(s− r)‖)ds

≤ δQ <
ε

2
.

Furthermore, from Lemma 5.4 there exist a solution of the linear system (5.2) wδ such that

‖wδ(T )− z∗‖ ≤ ε

2
.

Therefore,

‖zε(T )− z∗‖ ≤
∥∥zε(T )− wδ(T )

∥∥+
∥∥wδ(T )− z∗

∥∥
<
ε

2
+
ε

2
= ε.

This completes the proof of the Theorem. �

6. Conclusions and Remarks

In this work, the existence and uniqueness results were proved for a semilinear non-instantaneous
impulsive system with delay and non-local conditions. As an application we considered the Benjamin-
Bona-Mahony equation (1.2). The used technique is based on Karakostas' �xed-point theorem, which
merited transforming the problem of existence of solutions into the problem of existence of a �xed point
for a certain operator that satis�es a speci�ed conditions. Also, the approximate controllability for the
system (1.3) were established using Bashirov technique [2].

In real-life problems, it is not possible to cover each aspect of the dynamical system separately
with instantaneous or non-simultaneous impulses. This is the main reason behind dealing with both
impulses in one system, see for instance [11]. It would be of much interest to investigate our system in
this case.
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