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ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC WAVE
EQUATION WITH PAST HISTORY, DISTRIBUTED DELAY
AND BALAKRISHNAN-TAYLOR DAMPING TERMS

ABDELBAKI CHOUCHA

ABSTRACT. A nonlinear viscoelastic wave equation with Balakrishnan-Taylor
damping, infinite memory and distributed delay terms is studed. By consid-
ered the kernel h : Ry — Ry satisfying

h(t) < €WH(A(D), Vte Ry,
where £ and H are functions satisfying some specific properties, and under
this very general hypothesis on the behavior of h at infinity and by drop

the boundedness hypothesis in the history data, we show the stability of the
system.

1. Introduction

Let H = Q x (71,72) X (0,00), in the present work, we consider the following
wave equation

Upp — (Co + G ||[Vul|3 + o(Vu, VUt)LZ(Q)>Au(t) —|—/ h(0)Au(t — o)do
0

B e (8) 2y (8) + / 1Ba(8) e (t — )™ >ug(t — 5)ds = 0.

u(w, ) = ug(@), w(2,0) = uwi(x), in O
u(z, —t) = folz,t), in Qx (0,72)
u(z,t) =0, in 92 x (0,00)

where Q € RY is a bounded domain with sufficiently smooth boundary 0.
Co, (1,0, P1 are positive constants, m > 1 for N = 1,2, and 1 < m < % for
N > 3.

71 < T are non-negative constants such that 35 : [11, 2] — R represents distribu-
tive time delay, h is positive functions.

(1.1)

Physically, the relationship between the stress and strain history in the beam
inspired by Boltzmann theory called viscoelastic damping term, where the kernel
of the term of memory (finite or infinite) is the function h. There are many works
that talk about this topic with a lot of new and innovative results, especially the hy-
potheses on the kernel and the initial conditions. See ([2],[6],9],[12],[13],[14],[16],[17],
[18],[19].[21],[23][25],[26]).
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ABDELBAKI CHOUCHA

In [4], Balakrishnan and Taylor they proposed a new model of damping called it
the Balakrishnan-Taylor damping , as it relates to the span problem and the plate
equation. For more depth, here are some papers that focused on the study of this
damping ([4],[5] [8],[12],[16],[17],[20],[22],[26] ).

The effect of the delay often appear in many applications and pratical prob-
lems and turns a lot of systems into different problems worth studying. Re-
cently, the stability and the asymptotic behavior of evolution systems with time
delay especially the distributed delay effect has been studed by many authors.
See([7],[9],[10],[12],[13],[24]).

Based on all of the above, the combination of these terms of damping (Infinte
memory, Balakrishnan-Taylor damping and the distributed delay terms ) in one
particular problem, especially with the addition of the past history and the dis-

T2

tributed delay ( |B2(s)|[ue(t — 8)|™ 2uy(t — s)ds) we believe that it constitutes

a new problem wglrthy of study and research different from the above that we will
try to shed light on it.

The rest of work is organized as follows: In section 2, we recall some preliminaries
and assumptions. In section 3, we prove the main stability result in both cases
where H is linear and nonlinear. Finally, we give a conclusion in Section 4.

2. Preliminaries

For studying our problem, in this section we will need some materials.
Firstly, to achieve our goal, we suppose the following assumptions:
(H1) h: Ry — R, is a nonincreasing C! function satisfing

h(0) >0, ,ho = / h(o)do, Co—ho=1>0. (2.1)
0
(H2)There exists a C! function H : R, — R satisfing H(0) = H'(0) = 0.

The function H (t) is linear or it is an increasing strictly convex function of class
C?(Ry) on (0,7], r < h(0), such that

h'(t) < —£(t)H(h(t)), Vt > 0. (2.2)
where £(t) is a C! function satisfying
£(t) >0, &(t) <0, Vt>0. (2.3)
(H3) B2 : [11, 2] — R is a bounded function satisfing
/ |B2(s)|ds < Bi. (2.4)

Let us indroduce
(how)(t) == /Q / h(@)(t) — (t — o) *dods.

and

M) = (Co T+ GlIVal} + o (Tult), wmm).
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VISCOELASTIC WAVE EQUATION WITH PAST HISTORY

Lemma 2.1. (Sobolev-Poincare inequality [1]). Let 2 < ¢ < oo(n = 1,2) or
2<q< 2% (n>3). Then, Jc. = (2, q) > 0 such that

lully < el Vullz, Yu € Hg(€).
Secondly, as in [24], taking the following new variables
y('ra Ps S, t) = ’U,t(SC, t— S,D)

which satisfy

syt(:c,p,s,t)erp(x,p,s,t) :Oa (2 5)
y(z,0,s,t) = w(x, t). ’

Set an auxiliary variable as in [15]
n' (z,0) =u(z,t) —u(z,t—0),0>0.
Then,
m; (@, 0) + 1, (2, 0) = ue (2,1). (2.6)
So, problem (1.1) can be written as

Upp — (l + G| Vul|3 + o(Vu, vut)L2(Q)>Au(t) —|—/ h(g)Ant(g)dQ
0

+51\Ut(t)|m’2m(t)+/ B2()ly(2, 1,5, 8)| " *y(@, 1, 5,t)ds = 0. (2.7)

5yu(@, 9, 5,8) + (@, p,5,) = 0
i (x,0) +mg (2, 0) = we (2,1)
where
(z,p,8,t) € 2 x(0,1) x (11, 72) X (0,00).
with the intial data and boundary conditions
u(z, —t) = ug(x), ur(x,0) =ui(x), in Q
y(z, p,s,0) = fo(z, ps), in Qx(0,1) x (0,72)

uw(z,t) =nt (z,0) =0, z€ 99, t,0e€ (0,00), (2:8)
' (2,0) =0, V¢t >0, n°(z,0) =m0 (0) =0, Yo >0,
Now, we give the energy functional.
Lemma 2.2. The energy functional E, defined by
1 1 o C1
B = g+ 5 (@ [ o) I9u + S Ivues
1 m—1 [t [T .
+5(hoVu)(t) + —— s|B2(s)lly(z, p, 5,t)|mdsdp.
m 0 1
(2.9)

satisfies
B () < ol + 50 0 V00 - 5 (G {Ivuonz}) <o, @10

where vo = B1 — [1* |Ba(s)|ds > 0.

T
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Proof. Taking the inner product of (2.7); with wu;, then integrating over Q, we find
(e (t), ue (1)) p2(0) — (Mi(t)Au(t), u(t)) L2 (o)
([ @A (@ (O) ey + Bulfal™ P v 2o
+ [ 1ot 15, D 15,0, w0 g0y ds = 0.
E (2.11)

where
Mi(t) = (z GVl +a<w<t>,wt<t>>m).

A calculation direct, gives

() (0200 = 3 5 (913, (212)
using integration by parts, we find
—(My(t)Au(t), ue(t)) L2(0)
= —( (l + GlIVull3 + o (Vu(t), Vut(t))m(n))Au(t)a ug(t)) r2(0)

= <Z+C1||Vu||§—&—J(Vu(t),Vut(t))Lz(gz))/QVu(t).Vut(t)dx

= (14 GIVuIE + o (Tu0) Voo ) 5] [ utPac)

= (e Srvuiz)iwuoig) + S 4 {iwuoia)

By (2.6) and integration by parts, we have

(2.13)

([ oar e mee = [ Vu [~ bV (dods

- /0 ho) /Q Vu Vi (o)dzdo

/OO‘” he) /Q(V”f + Vi) V' (o) dwde
/ /VntVn( Ydzdo
/ / (0)Vn V' (V)dVdz

L.,
_ 5@(hovu)() S o Vu)(b).  (2.14)
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VISCOELASTIC WAVE EQUATION WITH PAST HISTORY

Now, multiplying the equation (2.7)2 by —y|B2(s)|, and integrating over Qx (0, 1) x
(11,72), and using (2.5)2, we get

& e st
- 4m—n// /uMwwW*%@@m
/// |Ba(8)| = y(z, p, 8, )| " dsdpda
= = [T QyzOsm vl 1,0 ) dsda
- mﬁl(/ atsds) [ o)t
m [ e e s
- mg”([lwxﬁwywwnm

m—1 [T m
ST [ Bl 1) s (215)
m ),
and by Young’s inequalitie, we have
T2

/ |52(s)|(|y(x,1,s,t)|m_2y(x,1,s,t),ut(t)> ds (216)

T1 L2(Q)

1 2 -1 [T

< ([ s 1+ Pt [ ol o) .

By replacement (2.12)-(2.16) into (2.11), we find (2.9) and (2.10). Hence, by
(2.2)—(2.4), we get E is a non-increasing function. This completes of the proof. O

Let the vector function U = (u,us,y,n')7.

Theorem 2.3. Suppose that (2.1)-(2.4) are satisfied. Then, for any Uy € H,
there exists a unique solution U of problem (2.7)-(2.8) such that

UeCRy,H).
If Uy € Hq, then U satisfies
UecCHRy, H)NC(Ry, Hy).

where
H = H}Q) x L*(Q) x L*(Q,(0,1), (11,72)) x Ly.
H, = {U cH/ucuc H*NHY, u € Hé(Q),y,yp € L*(Q,(0,1), (11, 7)),

n' € Lp,n'(z,0) = 0,y(z,0,s,t) = ut}.
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3. Stability result

In this section, we state and prove the asymptotic behavior of the system (2.7)-
(2.8). For this goal, we need the following lemmas.
As in [23], we set for any 0 < k < 1,

Lemma 3.1. Assume that condition (2.1)-(2.2) holds.

/Q (/OOO h(o)(u(t) — u(t — Q))dQ)de < Crlgou)(t). (3.1)
where
o = [
g(t) = rkh(t)—H(t).
Proof.
[ ([ morw - oyie)
- / (/;h u(t) —u(t - ))d9>2d:c
N /( too\/nhtz_g;)y(tg\/”ht_ —W(t—o)
(u(t) — u( ))dg)de
(3.2)
by Young’s inequality, we obtain (3.1). 0

Lemma 3.2. (Jensens inequality). Let H : [a,b] — R be a conver function.
Assume that the functions f : Q — [a,b] and g : Q@ — R are integrable such that

g(x) >0, for any x € Q and / g(x)dx =k > 0. Then
o

H(~ [ f@)g@)iz) <~ [ H(f@)g@)dz. (3.3)
(i [, rrenaz) < |

Lemma 3.3. As in [18], there exist a positive constant B such that

-/ | " 1)V (o) Pdedz < Bu(t), (3.4)

:/Ooo h(t—i—g)(l—i—/QVug(ac, Q)dx)dg.

where
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VISCOELASTIC WAVE EQUATION WITH PAST HISTORY

Proof. Since E(t) is decreasing function and using (2.9), then for ¢, o > 0,

/Q|V77 (0)]*dx = /Q(Vu(a?,t) —u(x,t — 0)*dx

< 2/ Vu2(x,t)da:+2/ Vu?(z,t — g)dx
< Zsup/ Vu?(x, o)dx + 2 Vu (z,t — o)dx
0>0
< 7+2/Vu (z,t— o)d (3.5)
then
I(t) < 7(/ 0)do + 2/ h(g)/ Vu?(z,t — o)dxdo
Q
< T(/ t+gdg+2/ h(t+g)/QVu(2)(x,g)dxdg
< Bult). (3.6)
where 3 = max{ 4El(0) ,2} and p(t) = [i5 h(t+ 0)(1+ [, Vud(z, 0)dz)do. O
Now, we set
g 4
() = /Qu(t)w(t)dm + 5 IVu®)lz (3.7)
and
[ [ ho) ) - utt - 0)deds (3.8)
a Jo
and
1 T2
| [ s s . s 0)zdsdp.
(3.9)

Lemma 3.4. The functional U(t) defined in (3.7) satisfies, for any e,8; > 0
c
V(t) < Jlwlls — 1 —eler+e2) = 6) [ Vull3 = Gl Vaullz + 5, Crlgo Vu)(t)

+C(€)(IIUtII2+/Tz |B2(s) |y, 1, s t)lmd8> (3.10)
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Proof. A differentiation of (3.7) and using (2.7)1, gives

W' (t) HutH%Jr/uttudx+a|\VuH§/VutVudac
Q Q

luell3 = Coll Vull3 = Gl Vull3 —A1 /Q [ue| " P ugudz

J1
Jr/QVu(t)/O h(o)Vu(t — o)dodzx
J2
-/ ey 1, D12y, 1,5, udsdz . (311)
QJr

J3

We estimate the last 3 terms of the RHS of (3.11). Applying Hoélder’s, Sobolev-
Poincare and Young’s inequalities, (2.1) and (2.9), we find

J1

IN

B [ullm + e(@)lluellm

B e IVullz' + c(e)ludll

(m—2)/2
copep (F2) IVl + el

ect || Vul|3 + c(e) Jug ™. (3.12)

A

IN

IN

and, By Lemma 3.1, we get for any 6; > 0

no< (] " h(o)do)]| Vul3 - /Q vu() | " h(o)(Vult) - Vu(t — ))dods
< (G~ 1+ 6|Vl + gmgowxw. (3.13)
Similarly to J;, we have
o< calVul o) [ Bl s 0l (319
Combining (3.12)-(3.14) and (3.11), we obtain (3.10). O

Lemma 3.5. The functional ®(t) defined in (3.8) satisfies, for any 0,082,035 >0

¥ < —(ho—63)||ut||§+5(<o+h3)Vu||%+<15|wné

20E(0)
l

weld) (ol + [ 1506 ot 1,153 ).

+62

1d 2
<2dtVu||3) + ¢(0,02,03)Cr(g 0 Vu)(t)

(3.15)
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VISCOELASTIC WAVE EQUATION WITH PAST HISTORY

Proof. A differentiation of (3.8) and using (2.7)1, gives

o'()

/ Ups /00 h(o)(u(t) — u(t — 0))dodx
Q 0
8 o0

_/Qutat(/o h(g)(u(t)—u(t—g))dg>dx

~ @+alvel) [ vu / " W) (Vult) - Vult - o))dodz

J1
+U/QVuVutda:./QVu/0 h(0)(Vu(t) — Vu(t — o0))dodz
T

[ ([ vt o). ([ wiowut) - Tute - o)ie) s

J3
0 [ fudm2u ( | meun - vute - g))dg) e
Ja

*//2|[32(S)||y(1’71,S,t)|m72y(17717S7t)
QJr

X /000 h(o)(Vu(t) — Vu(t — g))dg) dodzx

Js

_ /Q utgt(/ooo h(o)(ult) — u(t — Q))dg> dz . (3.16)

Je

We estimate the terms of the RHS of (3.16). Applying Holder’s, Sobolev-Poincare
and Young’s inequalities, (2.1), (2.9) and Lemma 3.1, we find

1
Al < (G QI (81Vul + 5Culao T
E(0
< sl Vuld+ oG vult+ (£ + SO ¢ (g0 vuy),
40 416
(3.17)
and
2 a
Jy < 520</VuVutdx) [Vl + ——Cy(g 0 Vu)(t)
Q 462
20E(0) (1 d o o
< O (GLIVuE) 4 FoGevi, @)
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= [ ([ ntovunae) ([T aeeu - o - Vaye) s
—/Q (/000 h(0)(Vu(t) — Vu(t — g))dg) 2dw
< SR2|Vull + (1 4 j{s)cﬁ(go Vau)(t), (3.19)
| Tl < ()| Vue|™ + 68" / (/ h(o)(u(t) — u( t—@))d9>mdx
< 0 IVuly+ 6(5%;@[‘”1215“1“”-2)) Culg o Va1
< (&) [Vl + SesCl(g o V) (8), (3.20)

Similarly, we have
Js < c(O)|ly(z, 1,8, )| + dcaCl(g o Vu)(t), (3.21)

and, to estimate Jg, we have

5[ o)

% (/_too h(t — o)(u(t) — u(@))@)

= /t B (t — o) (u(t) — u(o))do

([ - o

/0 W (0) (u(t) — u(t — 0))do + hou(£),

by (2.2), gives
c

J6 S 7(h0 — 53)“’&,5”% + gcﬁ(g o Vu)(t) (322)
A substitution of (3.17)-(3.22) into (3.16), we get (3.15). O
Lemma 3.6. The functional ©(t) defined in (3.9) satisfies

1 T2
O < [ [ slBalo)lly(ep.sit)rdsdp
0 1

N / 2 B2 (s)|-ly (2,1, 8,8) [nds + Bullue (B[ (3:23)
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VISCOELASTIC WAVE EQUATION WITH PAST HISTORY

Proof. By differentiating of ©(t), and using (2.7)2, we have

- | / / =8y (s) [y (5, p, 5, 1) dsdpda
- -/ / / e~ 8(5)|-ly(z, p, 5, )" dsdpd

[ /32<s>|[eS|y<x,1,s,t>|m—|y<x,o,s7t>|m dsd.
QJr

o'(t)

Applying y(x,0,s,t) = w(x,t), and e™* < e % < 1, for any 0 < p < 1, and we
set 71 = e~ "2, we obtain

1 T2
oM < = [ [ [ e ps 0l dsdpds
0 T1

—. /Q / 1B2(8) |y (, 1, 5,1)| " dsda + / a(o)lds /Q ™ (1),

using (2.4), we find (3.23).
O

Now, we define the functional
t
yim [ [ 5= 0 ule>dods (3:24)
aJo

where f(t) = [~ h
Lemma 3.7. Assume that (2.1)-(2.2) hold. Then, the functional F3 satisfies,

F'(t) < —%(hoVu)(t)—|—3(<0—l)/QVu2dx

1 oo
+§/ / h(o)(Vu(t) — Vu(t — 0))*dodz. (3.25)
i
Proof. 1t follows from the proof of Lemma 3.4 in [23] and Lemma 3.7 in [19]. O

We are now ready to prove the following result.

Theorem 3.8. Assume (2.1)-(2.4), there exist positive constants 7;,1 = 1,2,3 and
74(t) be a positive function, such that the energy functional given by (2.9) satisfies

¢)H. d
E(t) S 7_11;[2—1(7_2 + 73 fO 4(T4( ) (g)) §>7 (326)
Jo &
where
Hy(t) = tH'(eot), Hs(t) = tH'~'(t), Hy(t) = Ha(t), (3.27)

which are convexr and increasing functions on (0, 7]
Proof. Firstly, we introduce the functional

Q(t) = NE(t)+N1\IJ(t) +N2<I>(t) +N3(")(t), (328)
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for some positive constants N, N;,i = 1,2, 3 to be determined.
A differentiation of (3.33), using 2.10, the Lemmas 3.4, 3.5 and 3.6

G'(t) = NE'(t)+ N1V'(t) + No®'(t) + N3O/ (t)
< —{N2<ho . Nl}m% - {Ngga _ Nzcla}nw%

(I = (1 +02) = 81) — Nad(Go +h§>}||w||§

{ 2
e )
|
{

+4 Nic(d1) + Nac(6, 02, 53)}Cﬁ(g o Vu)(t) + g(h' o Vu)(t)
0N = Nicle) = Nacld) - Nag f

(¥ = Micte) - N2c<6>) et s s )

1
1 T2
Now [ [ sl2(6) e .5, 0) Frdsd. (3.29)
0 T1
At this stage, we choose the various constants so that the values inside the paren-

theses are positive.
First, setting

ho l l IN ho
3 9 € 4(01 —|—62)7 1 4’ 2 27 2.

Thus, we arrive at
G0 < ~"Nalul - v -0 ) 17l
2
-2 oo + ) )1l - 7 (5 19l )
FN3e(8,01,02,05)Culg o Vu)(0) + 5 (H 0 Vu) (1)
- ('YON — Nac(d,¢) — Nsﬁl) (e |7
(0 = actae)) [ Bt s 0l )

1 T2
Ny / / 5182(5)]. Iy, p, 5, )| dsdp. (3.30)
0 1

Next, we choose ¢ so small that

5<m1n{h lho}
47 8(¢o + h3)
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VISCOELASTIC WAVE EQUATION WITH PAST HISTORY
Then, we pick Ny large enough such that
lh
N (52 = 66+ 1)) > o = (G~ 1),

then we choose N3 large enough such that
’leg - N20(5, 6) > 0.

Therefore, (3.30) becomes, for positive constants d;,i = 1,2,3,4

No(1d ?
gt) < —dillull3 - dz||Vullz — 4ho|Vull3 — —= 5= [ Vull3
8 \2dt
N N
— (2 - dgcﬁ) (goVu)(t) + TK(h o Vu)(t) (3.31)

1 T2
(10N — )llurl|™ — ds / / ol32(5)\- Iy s py 5, )| dsdp.
0 T1

As L@) < h(p), it follows from the Lebesgue Dominated Convergence

rh(e)—h(e
o0 h2
lim kC, = lim / “7(9)05@ -0 (3.32)
K—0+ k=0t Jo  kh(0) — h(p)
Consequently, there exists 0 < kg < 1 such that if Kk < kg, then
1
kCy < — (3.33)
ds

On the other hand, from (3.7)-(3.9), by using Holder, Young’s and poincare in-
equalities, we get

o) - NE@)| < 2

N-
< (Il + I Tu13) + o S Ivut

N2 . Crlg o Vu)(2)

N,
2+ 3

1 T2
Ny [ [ s 52 (5) o s, ) Frdsdp. (330)
0 T1

Using the fact that e7?° < 1 and (2.2), we find

60) - NEO] < 5 (@I + e Vu)I3) + o ITul

N: Nac
+ 5 @3 + == Ca(h o Vu)(t)

1 T2
+N3/ / se”P%|Ba(s)|ly(z, p, s, ) |lmdsdp
0 T1

C(N1, Ny, N3)E(t) = CLE(t). (3.35)

IN

that is
(N-CHE{X)<G{t)<(N+C)E(t) (3.36)
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Now, by choosing N large enough, and set kK = 1 such that

1 1
N-C;>0,, N—c>0, = N—— >0, k= — < Ko,

we find

for some k9 > 0, and
s E(t) <G(t) <cgE(t),Vt>0

for some c5, cg > 0, we have
G(t) ~ E(t).

Secondly, we consider the following two cases.

Case 3.9. H is linear. Multiplying (3.37) by &£(t), we find

E(G' (1) < ~kaE(OB(D) + JEO)(ho Vu) 1)
The last term in (3.39), we have

(1) RO -
Lnovum = £ /Q / h(0) |V (o) 2dodz

— // \Vn Qdex
+ 80 / / m;@nvwgwdmx

To estimate I, using (2.9),

L o< / / £(0)h(0) V! (o) 2doda
= —f// 0)|Vn'(0)|*dodx

< _ZE/( )
and by (3.4), we get
Lo< Zeu)
Hence,
§(1)G" (1) < —k26£(t) E(t) — QE’( )+ Bu(t),
where § = £ and v(t) = £(t)p(t).
Using ¢/(t) < 0, we have

G1 (1) < —kal(H)E(t) + Bu(t),
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with

G:(6) = (G (6) + 5 B(0) ~ B(1),

we have
ksE(t) < Gi(t) < ks E(t), (3.45)
then, from (3.44) for all T' > 0, we have

T T
ko E(T) /O fdt <k /0 () E(t)dt

< GI(0)=Gi(T)+ 3 / o(t)dt
< an+ﬂA E(t)p(t)dt.
Hence
1 (G1(0) + B [y ettt
5 < o ( e )

Since H is linear, we deduce that Hy, Hy and H, are linear functions. Then, we
can write

9O 4 B (T eyttt
—1 k‘g k‘g 0
E(T) < A\ H; ( e )

which gives (3.26) with 7 = Ay, 7o = gz(zo), T3 = % , and 74(t) = 1. This

completes the proof.

(3.46)

Case 3.10. H is nonlinear. First, According (3.25) and (3.37). Let the func-
tional

Ga(t) = G(t) + F(t)
is positive and satisfies, for some k3 > 0 and V¢ > 0,

%ms—%ﬂﬂ+;élwmmwww—WM—@V@m, (3.47)

by using (3.4), this gives us

b [ By < 60000+ 5 [ noas
< G2(0) + g /tu(';)dg. (3.48)
0
Therefore
[ B < Kol (3.49)

where kg = max{ gi(go) , %} and po(t) =1+ fg u(s)ds.
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Corollary 3.11. From (2.9) and (3.49), we have

/ /|Vu — Vu(t — o)[*dzdo
< //Vu — Vu(t — o)dxdo
< /E E(t — o)d

< ? /0 Bly)dy < (). (3.50)

Now, we define {(t) by

/ / |Vu(t) — Vu(t — o)|*dxdo (3.51)
where B(t) = HO(Ot) and 0 < By < min{1, %}.
Then, by (3.49), we have
() <1, vt>0, (3.52)

we further assume that ((¢) > 0, V¢ > 0.
Also, we define another functional I" by

/ B (o / |Vu(t) — Vu(t — o)|*dzdo (3.53)
Clearly, I'(t) < —cE’(t). Since H(t) is strictly convex on (0, r] and H(0) = 0, then
H(\z) < XH(z), 0<A<1, ze(0,r] (3.54)
By using (2.3) and (3.52), we get
') = t_l/tgt /B )| Vu(t) — Vu(t — o0)|*dzdo
> s | CO@EOE) [ B0 - Vut - o dsde
> B(igc)t)/ /B )| Vu(t) — Vu(t — o)|*dzdo
£(®) 1 2
> (s / COM(e) [ BOITut) - Vult - o) dade )
_ 0 t u(t) — Vu(t — o)|*dx
= 57 (80 [ 1) [ 1)~ Tu(e - o)Pasdo)

_ 2(()11< / /|w ~ Vu(t - o) d:cdg> (3.55)

where H is a C%-extension of H, that is strictly increasing and strictly convex on
R.. From (3.55), we get

/ /\w — Vu(t — o)Pdedo < th)H”(B(?(g(t)) (3.56)
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Substituting (3.56)and (3.4) into (3.37), we get for some kg > 0

ko -1 (BHI(?)
B < 0 )+k6u(t) (3.57)

Now, for g9 < r, we define the function Iy (t) by

=

G@t) < —koE(t)+

Kut) = T (a)B ?g;”) G(t) + E(1) (3.58)

which is equivalent to E(t). In view of E'(t) < 0,H >0,and H >0, and using

(3.57), we conclude that
Kl = €0<B(t)E’(t) B'(t)E(t )>H/, (eOB(;)(]g)(t)>g(t)

(t)
E(0) E(0)

A
|
o~
N
S8
=
=
N
o
o
oy
=
= Q
=
N——
+
o~
<)
=
=
=
7 N
o
o
o
=
S|
=
N——

(
e (S () o

B(t)
As in [3] , we define the conjugate function of H by H , which satisfies
AB<H (A)+ H (B) (3.60)
((B(t)I'(t))/(£(t))) , and using

For A = H (eo(B(t)E(t))/(E(0)))) and B = H

(3.59), we get

Ki(t) < ~kBWH (608(;)(13)(15)) + kou(t) H' <506(3£)( )>
ko g (77 (o BOE(W) Bt (1)
+W;H (H 7 E(0) ) B{) (t) + E'(t)
K BOFEW) <505’(t)E(t)> +k6F(t)+E/(t) o)

B E0)
Multiplying (3.61) by &(¢), we see that

CORLE) < —katEMT (eoB(E”g)“) k()T (

keé(t) BOE(t)— [ BOE(®)
B = B0) H(

)
< _k2§(t)E(t)F/ (5(]8(25)@)) + k6§(t)/i(t)ﬁl (6{)B(t)E(t)>
(

E(0)
S () w0 o

£(t)

BH)E(t)
E(0) )

+

+keT'(1) + (1) E' (1)

+

T E0)
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where we used the fact that as

eo(BO)E(t)/E(0)) <r, H (o(BH)E(t)/E(0))) = H' (0(B(t)E()/E(0))),

and we define the functional ICy(t) by
Ko (t) = £(t)K1(t) + cE(t) (3.63)

It is easy to obtain that Ko(t) ~ E(t), i.e., there exist two positive constants m;
and ms such that

mlng(t) S E(t) S mQICQ(t), (364)

we obtain

N

K0 = -se0 gt (2200 ?) +reono (22050

g(t ) B t)E{ ) (. BA)E®R)

= —Papgaiie + ke (t)u(t)H' | €0 (3.65)
B(t) £(0) £(0)

where ﬁd = (kQE(O) - €0k6) and H2( ) = tHI (E()t).

Choosing g¢ so small such that 85 > 0, since H5(t) = H' (eot) +eotH" (e0t) , then,

using the strict convexity of H on (0,r]|, we know that H}(t), Hz(t) > 0 on (0, 1].

Using the generalized Young inequality (3.60) on the last term in (3.65)

with A= H’ (ao%g)(tv and B = £8(t), we find

o (GH8) - g ) ()
< ot (A28} + s (1 (22020

< gt (Bmn)
)

)
1) B(t)E(t) , B(t)E(t)
B(t)( E(0) )H ( E(0) )
< B((St)H4<I?B(t) ())+gj§0)ﬂg< 5(25)(’5)).(3.66)

Combining (3.65) and (3.66) and we select § small enough such that 83 —deg > 0,
we obtain

K0 < —ﬁf(“H( “( )(“)+ B“)m( 5B<t>u<t>). (3.67)
(t

B(t) (t)
Whereﬂ4:ﬂ375€0>0, Hg(t):tH/ 1 )andH4():H3()

Since E' < 0 and B’ < 0, then Hg(%) is decreasing. Hence, for 0 <t < T,

we have
B(T)E(T) Bt)E(t)
(X ) <2 (e ) (09
Combining (3.67) with (3.68) and multiplying by B(t), we get
By + e (D000 ) <ssom (Lsouw). @)
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Since B’ < 0, then for any 0 <t < T

(BK2)'(t) + Ba&(t)Ha (B(?(g)m) SE(t )m(l?zs(t)u(t)). (3.70)

By integration of (3.70) over [0, T] and we use B(0) = 1, we have

H, (E(O)>/O €l < =2 /g H4<k6 or ())dt. (3.71)

Therefor,
BOEM) _ 52+ 6 H4<’%B< Hu(t))dt
Hoy < . (372)
E0 e
Then,
(B(T)E(T)) e ( S 4 Jo S0 Ha( kas( Dt >>dt> -
5 . .
E(0) fo
Hence
ICQ(O) k
+ t)Hy (25 B(t dt
B < £9 H{1< Al € 4( B)ult) ) (3.74)
B(T) fo
which gives (3.26) with 7, = %, Ty = K;—EP), T3 = % , and 74(t) = %B(t).
This ends the proof of Theorem 3.8.
(Il

4. conclusion

In this work, we impose a several dissipations (Infinite memory, distributed de-
lay and Balakrishnan-Taylor damping terms) on the viscoelastic wave equation.
This type of damping mechanisms is found to be effective in various other systems
and problems especially (Infinite memory or distributed delay terms) like Timo-
shenko (see [10],[19]), porous system (see [13]), Bress (see[9]), Kirchhoff equation
([8],[12],[20]) and others. Under this very general hypothesis on the behavior of
h at infinity and by drop the boundedness hypothesis in the history data, we ob-
tain a general decay result. We strongly believe that the same result holds if the
damping terms is moved to the Kirchhoff equation or coupled system of nonlinear
viscoelastic wave equation.
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