Submitted: 18th July 2021

Revised: 23rd August 2021

CHARACTERISTIC SUBGROUPS OF A FINITE ABELIAN P-GROUP $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$

SARITA AND MANJEET JAKHAR

ABSTRACT. In this paper, we study the following points:- (i) list all characteristic subgroups of a finite abelian 2-group $\mathbb{Z}_2 \times \mathbb{Z}_{2^n}$ when $n \in \mathbb{Z}^+$ and $n \geq 2$ (ii) list all characteristic subgroups of a finite abelian p-group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ when $n \in \mathbb{Z}^+$ and $n \geq 2$ when p is an odd prime (iii) lattices of characteristic subgroups of a finite abelian 2-group $\mathbb{Z}_2 \times \mathbb{Z}_{2^n}$ when $n \in \mathbb{Z}^+$ and $n \geq 2$ and (iv) Lattices of characteristic subgroups of a finite abelian p-group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ when $n \in \mathbb{Z}^+$ and $n \geq 2$ when p is odd prime.

1. Introduction

A subgroup N of a group G is called a characteristic subgroup if $\phi(N) = N$ for all automorphisms ϕ of G. This term was first used by *Frobenius* in 1895. In 1939, Baer [2] considered the following question "When do two groups have isomorphic subgroups lattices?" Since this is a very difficult problem. In 2011, Brent L. Kerby and Emma Rode [3] consider the related question "Lattices of characteristic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^2} \times \mathbb{Z}_{p^4}$ isomorphic to lattices of characteristic subgroups of $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^5}$ for any prime p". In 2017, Amit Sehgal and Manjeet Jakhar [7] consider the related question "Lattices of characteristic subgroups of $\mathbb{Z}_n \times \mathbb{Z}_n$ isomorphic to lattices of characteristic subgroups of \mathbb{Z}_n^{n} . We will now consider the problem of lattices of characteristic subgroups of a finite abelian p-group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ when $n \in \mathbb{Z}^+$ and $n \geq 2$ when p prime.

2. List of subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$

We know that group $\mathbb{Z}_p \times \mathbb{Z}_{p^n} = \{x^i y^j | x^p = y^{p^n} = e, xy = yx, i = 0, 1, \cdots, p - 1, j = 0, 1, \cdots, p^{n-1}\}$ is an abelian group of order p^{n+1} . So converse of Lagrange's theorem is true for this group. So possible order of subgroup are $1, p, p^2, \cdots, p^{n+1}$. There is only one subgroup of order 1 which is $\{e\}$ and there exist only one subgroup of order p^{n+1} which is group itself. Here, all subgroups are subgroups from abelian group, so they must be abelian. Also group of order p must cyclic subgroup because order of the group is prime. Now we have to search for cyclic subgroups whose order are p, p^2, \cdots, p^{n+1} and abelian subgroups which are not cyclic of order $p^2, p^3, \ldots, p^{n+1}$

²⁰⁰⁰ Mathematics Subject Classification. Primary 20K01; Secondary 20K27.

Key words and phrases. Subgroup; Cyclic Subgroup; Characteristic Subgroup; Group of all automorphisms;

2.1. List of cyclic subgroups of order p from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$. We count elements of order p in $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ as ((no. of elements of order p from $\mathbb{Z}_p) \times$ (no. of elements order 1 or p from \mathbb{Z}_{p^n})+ (no. of elements order 1 from $\mathbb{Z}_p) \times$ (no. of elements order p from \mathbb{Z}_{p^n})) = $(p-1) \times p + 1(p-1) = p^2 - 1$. Hence, the number of cyclic subgroups of order p are $\frac{p^2-1}{\phi(p)} = p+1$. The list of these p+1 subgroups is $\langle xy^{jp^{n-1}} \rangle$ where $j = 1, 2, \cdots, p$ and $\langle y^{p^{n-1}} \rangle$

2.2. List of cyclic subgroups of order p^k from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ where $2 \leq k \leq n$. We count elements of order p^k in $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ as ((no. of elements of order 1 or p from $\mathbb{Z}_p) \times$ (no. of elements order p^k from \mathbb{Z}_{p^n}) = $p \times p^{k-1}(p-1) = p^{k+1}-p^k$. Hence, the number of cyclic subgroups of order p^k are $\frac{p^{k+1}-p^k}{\phi(p^k)} = p$. The list of these p subgroups is $\langle x^j y^{p^{n-k}} \rangle$ where $j = 1, 2, \cdots, p$ and $k = 2, 3, \cdots, n$

2.3. List of abelian subgroups which are not cyclic subgroups of order p^k from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ where $2 \leq k \leq n$. By fundamental theorem of finite abelian group, we know that number of non-isomorphic abelian groups of order p^k are p(k), out of which only one group is cyclic. So abelian group have p(k) - 1 subgroups which are not cyclic.

Theorem 2.1. [5] Number of internal direct product of cyclic subgroups of two cyclic subgroups of order p is $p^2 + p$ from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$

Theorem 2.2. [5] Number of internal direct product of cyclic subgroup of order p^{k_1} with subgroup isomorphic to $\mathbb{Z}_{p^{k_2}} \times \mathbb{Z}_{p^{k_3}} \times \cdots \times \mathbb{Z}_{p^{k_s}}$ is 0 from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ where $s \geq 3$, $k_i \geq 1$ and $\sum_{i=1}^{s} k_i \leq (n+1)$. In other words, group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ does not possess any subgroup of rank more than two.

Proof. If A is any cyclic subgroups of order p^{k_1} from $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ and B is a subgroup isomorphic to $\mathbb{Z}_{p^{k_2}} \times \mathbb{Z}_{p^{k_3}} \times \cdots \times \mathbb{Z}_{p^{k_s}}$ where $s \geq 3$ from $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$, then $A \bigcap B \neq \{e\}$ because there are only p+1 cyclic subgroups of order p in $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ and A contains a unique subgroup of order p and B contains at-least p + 1 cyclic subgroups of order p. So cyclic subgroup of order p must contain in B if B is possible. So, internal direct product of cyclic subgroup of order p^{k_1} with subgroup isomorphic to $\mathbb{Z}_{p^{k_2}} \times \mathbb{Z}_{p^{k_3}} \times \cdots \times \mathbb{Z}_{p^{k_s}}$ from $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ is not possible.

Hence, we conclude that the abelian p-group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ does not possess any subgroup of rank three or more.

Theorem 2.3. Number of internal direct product of cyclic subgroup of order p^{k_1} with cyclic subgroup of order p^{k_2} with $k_1, k_2 > 1$ is 0 from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$.

Proof. We know that $\langle x^j y^{p^{n-k}} \rangle$ with $j = 1, 2, \dots, p$ are only cyclic subgroups of order p^k where $k = 2, 3, \dots, n$. Further, all these subgroups contains only one subgroup of order p which is $\langle y^{p^{n-1}} \rangle$. Hence, internal direct product between cyclic subgroup of order p^{k_1} with cyclic subgroup of order p^{k_2} with $k_1, k_2 > 1$ is not possible because intersection of these subgroups is not identity.

From last two theorems, we conclude that the only possible non-cyclic subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$ where $k = 1, 2, \cdots, n$

Theorem 2.4. [5] Number of internal direct product of cyclic subgroup of order pwith subgroup isomorphic to Z_{p^k} where $1 < k \ge n$ is p^2 from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$

Theorem 2.5. [5] Number of internal direct product of cyclic subgroup of order pwith subgroup isomorphic to Z_{p^2} is p^2 from group $\mathbb{Z}_p \times \mathbb{Z}_{p^2}$

Theorem 2.6. [5] Number of subgroups from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ is 1.

Further, only subgroup which is isomorphic to $Z_p \times Z_p$ is $\langle x, y^{p^{n-1}} \rangle$.

Theorem 2.7. [5] Number of subgroups from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$ where $1 < k \leq n$ is 1.

Proof. Number of subgroups from group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$ where $1 < k \leq n$ is $N = \frac{C}{D}$ (say) where C and D are defined as follows: C = Number of internal direct product of two cyclic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ which are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$ and D = Number of internal direct product of two cyclic subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$ which are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$. Therefore, we get $N = \frac{C}{D} = \frac{p^2}{n^2} = 1$.

Further, only subgroup which is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{p^k}$ is $\langle x, y^{p^{n-k}} \rangle$ for all $k = 2, 3, \dots, n$.

Finally list of subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ given below:-(i) $H_1 = \langle e \rangle \cong \mathbb{Z}_1$ (ii) $H_{j+1} = \langle xy^{jp^{n-1}} \rangle \cong \mathbb{Z}_p$ where $j = 1, 2, \cdots, p$ (iii) $H_{p+2} = \langle y^{p^{n-1}} \rangle \cong \mathbb{Z}_p$ (iv) $H_{kp+2+k} = \langle x, y^{p^{n-k}} \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_{p^k}$ where $k = 1, 2, \cdots, n$ (v) $H_{j+(k-1)p+1+k} = \langle x^j y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ with $j = 1, 2, \cdots, p$ and $k = 2, 3, \cdots, n$

Hence, we get the list of np + n + 2 number of subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ which is same as result $\tau(p^n)\tau(p)\phi(1) + \tau(p^{n-1})\tau(1)\phi(p)$ in [1, 4].

3. List of Automorphisms of Group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ where $n \geq 2$

We know that $\mathbb{Z}_p \times \mathbb{Z}_{p^n} = \{x^i y^j | x^p = y^{p^n} = e, xy = yx, i = 0, 1, \dots, p-1, j = 0, 1, \dots, p^{n-1}\}$ is an abelian group of order p^{n+1} . This group is generated by two elements x and y where order of x is p and y is p^n .

We map y into an element of order p^n and elements of order p^n are obtained from product of elements of order 1 or p from \mathbb{Z}_p (say α) and elements of order p^n from \mathbb{Z}_{p^n} (say β). Assume $\alpha = x^{i_1}$ with $o(\alpha) = 1$ or p and $\beta = y^{j_1}$ with $o(\beta) = p^n$. So, there is no condition on i_1 and $(j_1, p^n) = 1$. So $y \mapsto x^{i_1}y^{j_1} \Rightarrow y^{p^{n-1}} \mapsto y^{j_1p^{n-1}}$. So, image of y depends upon values of i_1 and j_1 , here possibilities for i_1 and j_1 are p and $p^{n-1}(p-1)$ respectively. Hence, the possibilities for y are $p^n(p-1)$

So every element of order p of the type $y^{j_1p^{n-1}}$ from $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ is already mapped. So x maps into an element of order p from $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ other than elements of the type $y^{j_1p^{n-1}}$. Hence, x maps to $x^{i_2}y^{j_2p^{n-1}}$ where $(i_2, p) = 1$ and there is no condition on j_2 . So, map of x depends upon values of i_2 and j_2 . Here possibilities for i_2 and j_2 are p-1 and p respectively. Hence, the possibilities for y are p(p-1).

Finally, we define an automorphism $f : \mathbb{Z}_p \times \mathbb{Z}_{p^n} \mapsto \mathbb{Z}_p \times \mathbb{Z}_{p^n}$ as $f(y) = x^{i_1}y^{j_1}$ and $f(x) = x^{i_2}y^{j_2p^{n-1}}$ where $i_1, i_2, j_2 = 1, 2, \cdots, p$ with $(i_2, p) = 1$ and $j_1 = 1, 2, \cdots, p^n$ with $(j_1, p^n) = 1$. Hence, the total number of automorphisms are $p^{n+1}(p-1)^2$ which is same as result in [6].

4. List of the Characteristic Subgroups of Group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$

Theorem 4.1. Let $\mathbb{Z}_p \times \mathbb{Z}_{p^n} = \{x^i y^j | x^p = y^{p^n} = e, xy = yx, i = 0, 1, \cdots, p-1, j = 0, 1, \cdots, p^{n-1}\}$, then list of characteristic subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ when $n \ge 2$ given below:-(i) $H_1 = \langle e \rangle \cong \mathbb{Z}_1$ (ii) $H_{p+2} = \langle y^{p^{n-1}} \rangle \cong \mathbb{Z}_p$ (iii) $H_{kp+1+k} = \langle y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ $k = 2, 3, \cdots, n-1$ (iv) $H_{kp+2+k} = \langle x, y^{p^{n-k}} \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_{p^k}$ where $k = 1, 2, \cdots, n$ (v) (only for case when p is even prime) $H_{(k-1)p+2+k} = \langle xy^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ with $k = 2, 3, \cdots, n-1$

Proof. Case 1:- Subgroups H_1, H_{kp+2+k} where $k = 1, 2, \cdots, n$

Out of np + n + 2 subgroups, n + 1 subgroups namely $H_1 = \langle e \rangle$, $H_{kp+2+k} = \langle x, y^{p^{n-k}} \rangle$ where $i = 1, 2, \dots, n$ have property that they are not isomorphic to any other subgroups of the group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$. Hence, image of these subgroups cannot be changed with any of the group automorphisms of the group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$, so they are characteristic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$.

Case 2:- Subgroups $H_{j+1} = \langle xy^{jp^{n-1}}$ where $j = 1, 2, \cdots, p$

Subgroups $H_{j+1} = \langle xy^{jp^{n-1}} \cong \mathbb{Z}_p$ with $j = 1, 2, \cdots, p$ are not characteristic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ if we choose automorphism $f(x) = xy^{p^{n-1}}$ and f(y) = ythen $f(xy^{jp^{n-1}}) = f(xy^{(j+1)p^{n-1}} \notin H_{j+1}$ because $j \neq j + 1 \pmod{p}$

Case 3:- Subgroups $H_{p+2} = \langle y^{p^{n-1}} \rangle$

Subgroups $H_{p+2} = \langle y^{p^{n-1}} \rangle \cong \mathbb{Z}_p$ is a characteristic subgroups of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ because we can choose any automorphism, then $f(y^{p^{n-1}}) = y^{j_1 p^{n-1}} \in H_{p+2}$, hence we get $f(H_{p+2}) = H_{p+2}$.

Case 4:- Subgroups $H_{j+(k-1)p+k+1} = \langle x^j y^{p^{n-k}} \cong \mathbb{Z}_{p^k}$ with $j = 1, 2, \dots, p-1$ and $k = 2, 3, \dots, n-1$ when p is odd prime Finally, we define an automorphism $f : \mathbb{Z}_p \times \mathbb{Z}_{p^n} \to \mathbb{Z}_p \times \mathbb{Z}_{p^n}$ as $f(y) = x^{i_1}y^{j_1}$ and $f(x) = x^{i_2}y^{j_2p^{n-1}}$ where $i_1, i_2, j_2 = 1, 2, p$ with $(i_2, p) = 1$ and $j_1 = 1, 2, \cdots, p^n$ with $(j_1, p^n) = 1$.

Value of $i_2 = 1, 2, \dots, p-1$, then $(i_2, p) = 1$ and i_2 has at-least two values. Hence there exists at-least one i_2 such that $i_2 \not\equiv j_1 \pmod{p}$

 $\begin{array}{l} \Longrightarrow \ ji_2 \not\equiv jj_1 \ (\text{mod } p). \\ f(x^j y^{p^{n-k}}) = x^{i_2 j} y^{j_2 j p^{n-1}} y^{j_1 p^{n-k}} \\ = x^{i_2 j} y^{p^{n-k} (p^{k-1} j_2 j+j_1)} = x^{i_2 j+p^{k-1} j_2 j^2} y^{p^{n-k} (p^{k-1} j_2 j+j_1)} \\ = (x^j)^{i_2 + p^{k-1} j_2 j} (y^{p^{n-k}})^{p^{k-1} j_2 j+j_1} \not\equiv (x^j y^{p^{n-k}})^{p^{k-1} j_2 j+j_1} \ \text{because} \ ji_2 \not\equiv jj_1 \ (\text{mod} p). \\ \text{Hence} \ f((x^j y^{p^{n-k}})) \notin H_{j+(k-1)p+k+1} \ \text{for any} \ j = 1, 2, \cdots, p-1 \ \text{and} \ k = 2, 3, \cdots, n-1. \ \text{So, subgroups} \ H_{j+(k-1)p+k+1} \ \text{is not characteristic subgroup of} \\ \mathbb{Z}_p \times \mathbb{Z}_{p^n}. \end{array}$

Case 5:-Subgroups $H_{j+(n-1)p+1+n} = \langle x^j y^1 \rangle \cong \mathbb{Z}_{p^k}$ with $j = 1, 2, \cdots, p$

Finally, we define an automorphism $f : \mathbb{Z}_p \times \mathbb{Z}_{p^n} \mapsto \mathbb{Z}_p \times \mathbb{Z}_{p^n}$ as f(y) = xyand f(x) = x, so $f(x^j y) = x^j xy = x^{j+1}y \neq x^j y$ because $j \not\equiv j + 1 \pmod{p}$. Hence $f(x^j y) \notin H_{j+(n-1)p+n+1}$ for any $j = 1, 2, \cdots, p$. So, subgroups $H_{j+(n-1)p+n+1}$ is not characteristic subgroup of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$.

Case 6:-Subgroups $H_{3k} = \langle x^j y^{2^{n-k}} \rangle \cong Z_{2^k}$ with $k = 2, 3, \cdots, n-1$

Finally, we define an automorphism $f: \mathbb{Z}_2 \times \mathbb{Z}_{2^n} \mapsto \mathbb{Z}_2 \times \mathbb{Z}_{2^n}$ as $f(y) = x^{i_1} y^{j_1}$ and $f(x) = xy^{j_2 2^{n-1}}$ where $i_1, j_2 = 1, 2$ and $(j_1, 2^n) = 1$. Subgroups $H_{3k} = \langle x^j y^{2^{n-k}} \rangle \cong \mathbb{Z}_{2^k}$ is a characteristic subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_{2^n}$ because we can choose any automorphism and map then $yx^{i_1}y^{j_1} \Longrightarrow y^{2^{n-k}} \mapsto y^{j_1 2^{n-k}}$ where $(j_1, 2^n) = 1$ and $f(x) = xy^{j_2 2^{n-1}}$. On basis of value j_1 , we say that $x^{j_1} = x$. So, we get $f(xy^{2^{n-k}}) = xy^{2^{n-1}j_2}y^{2^{n-k}j_1} = xy^{2^{n-k}(j_2 2^{k-1}+j_1)} = x^{(j_2 2^{k-1}+j_1)}y^{2^{n-k}(j_2 2^{k-1}+j_1)} = (xy^{2^{n-k}})^{(j_2 2^{k-1}+j_1)} \in H_{3k}$. Hence, we get $f(H_{3k}) = H_{3k}$.

Case 7:-Subgroups $H_{(p+1)k+1} = \langle y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ with $k = 2, 3, \cdots, n-1$

Subgroups $H_{p+(k-1)p+k+1} = \langle y^{p^{n-k}} \rangle \cong \mathbb{Z}_{p^k}$ is a characteristic subgroup of $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ because we can choose any automorphism, and then $y \mapsto x^{i_1} y^{j_1} \Longrightarrow y^{p^{n-k}} \mapsto y^{j_1 p^{n-k}}$. So we get $f(H_{(p+1)k+1}) = H_{(p+1)k+1}$. \Box

5. Lattice of Characteristic Subgroups of group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ where p is prime

Now we write two already known results which are very useful to form characteristic subgroup lattice for group $\mathbb{Z}_p \times \mathbb{Z}_{p^n}$ where p may be even or odd prime. **Theorem 5.1.** [8] Characteristic property is transitive. That is, if N is characteristic subgroup of K and K is characteristic subgroup of G, then N is characteristic subgroup of G.

Theorem 5.2. Characteristic subgroup of a group $\mathbb{Z}_p \times \mathbb{Z}_p$ are $\tau(p) = 2$ and which are $\{e\}$ and group itself.

Fig-1 Lattices of characteristic subgroups when p is odd prime

CHARACTERISTIC SUBGROUPS OF A FINITE ABELIAN P-GROUP $\mathbb{Z}_p\times\mathbb{Z}_{p^n}$

Fig-2 Lattices of characteristic subgroups when p is even prime

6. Further Research

References

- 1. Admasu, F.S. and Sehgal, A.(2021). Counting subgroups of fixed order in finite abelian groups. *Journal of Discrete Mathematical Sciences and Cryptography*, 24(1), 263-276.
- Baer, R., (1939). The Significance of the System of Subgroups for the Structure of the Group. American Journal of Mathematics, 61(1), 1-44.
- Kerby , B.L. and Rode , E. (2011). Characteristic subgroups of finite abelian groups Communications in Algebra, 39(4), 1315 – 1343.

SARITA AND MANJEET JAKHAR

- Sehgal, A.and Kumar, Y.,(2013). On Number of Subgroups of finite Abelian Group Z_m ⊗ Z_n. International Journal of Algebra, 7(19), 915-923.
- 5. Sehgal, A., Sehgal, S. and Sharma, P.K., (2015). The number of subgroups of a finite abelian p-group of rank two. *Journal for Algebra and Number theory Academia*, 5(1), 23-31.
- Sehgal, A., Sehgal, S. and Sharma, P.K., (2015). The number of automorphism of a finite abelian group of rank two. *Journal of Discrete Mathematical Sciences and Cryptography*, 19(1), 163-171.
- 7. Sehgal, A. and Jakhar, M., (2017). Characteristic Subgroups of a finite Abelian Group $Z_n \times Z_n$. Annals of Pure and Applied Mathematics, 14(1), 119-123.
- 8. Gallian, J. A., Contemporary Abstract Algebra, Norosa, 1999.

Sarita: Research Scholar, Department of Mathematics, NIILM University, Kaithal-136037, India

 $Email \ address: \ \tt{sehgalsarita70gmail.com}$

MANJEET JAKHAR: DEPARTMENT OF MATHEMATICS, NIILM UNIVERSITY, KAITHAL-136037, INDIA *Email address*: dr.manjeet.jakhar@gmail.com