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Abstract. This paper deals with non-fragile fault-tolerant control for
discrete-time networked control systems (NCS) with data packet dropout

and transmission delays induced by communication channels. We model the

discrete-time NCSs with data packet dropout and transmission delays which
are assumed to be randomly time-varying in Bernoulli distributed sequences.

This paper’s main objective is to design a non-fragile fault tolerant output

feedback controller such that for all admissible uncertainties and actuator
failure cases, the resulting closed-loop form of considered NCS is robustly

asymptotically stable. All the conditions are established in linear matrix in-

equality (LMI), easily solved using standard numerical software. Finally, we
give four numerical examples with their simulation results, where we show

the illustrations of our theoretical findings. We also validate and compare
our results with existing literature of the proposed non-fragile reliable con-
trol scheme.

1. Introduction

The NCS is a control system in which plants, sensors, controllers, and actuators
can be interconnected via communication networks [4, 7, 8, 9, 28]. The NCS plays
an essential role in computer and networking technologies. It has found successful
applications in various research areas such as robotic manipulators, spacecraft,
human surveillance systems, vehicle industry, aerospace systems, traffic systems,
mobile robots,... just mention some applications. In recent years, NCS has become
more significant and has many outstanding advantages of the network architec-
tures, including reduced system wiring, plug-and-play devices, increased system
agility, cost-effectiveness, simplicity in installation, maintenance, and high relia-
bility. However, due to the network’s advantages, major issues in NCS have been
raised due to the effects of network-induced delays and data packet dropouts on
the system performance. The network induced is a time-varying delay that af-
fects the accuracy of timing-dependent computing and can degrade the control
performance. The data packet dropout leads to complete information of the NCS
becomes unavailable. In both cases, the controller or actuator has to decide, with
incomplete information, what control signals to output. From these problems,
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many existing control technologies may become infeasible for specific networked
control applications. Therefore, the stability analysis and control design of the
NCS with a network-induced delay and packet dropout has attracted much at-
tention, and, subsequently, several papers published to investigate this problem,
see [20, 22, 23]. Truong and Ahn [21] proposed a robust variable sampling period
controller for a network control system with random time delays and packet losses.
In [13], Peng et al. studied the problem of output feedback stabilization of control
systems, for a discrete-time state-space, with a network-induced delay and packet
dropout using Lyapunov’s stability theory and LMI approach. Liu and Yang [10]
developed a new dynamic output feedback controller design for NCS subject to
communication delays and an event-triggered scheme.

The instability and the performance deterioration of NCS due to the time-
varying delay were investigated by many authors [12, 17, 27]. Another source of
performance degradation in NCS is uncertainty. Thus, the description of NCS
inevitably contains modeling errors and changing environments which can also
affect the stability and performance of the NCS [15]. Therefore, robust control for
NCS subject to time delay and uncertainties is becoming a vital research topic.
Particularly with the rapid development of the LMI approach. In fact, there is
an increased number of results on various types of systems with time delays and
parameter uncertainties [4, 10]. Sakthivel et al. [18] derived the reliable, robust
stabilization problem for a class of uncertain Takagi-Sugeno fuzzy systems together
with randomly occurring time delays.

In practical systems, the actuators aging, zero shift, electromagnetic interfer-
ence, and nonlinear amplification frequency in different fields are the sources of
actuator faults in the system model [1, 25]. In particular, when the fault occurs
in the dynamical system, the conventional controller will become conservative and
may not satisfy certain control performance indexes, then the closed-loop system
becomes unstable. Therefore, a high degree of fault tolerance control is essential
for the systems’ overall better performance. We should mention that a reliable
control system can automatically accommodate system failures and maintain the
overall system stability and acceptable performance when existing some abnormal
actuators failures in the system model [18]. Based on Lyapunov function tech-
niques, the problem of a robust, reliable controller for vehicle suspension systems
by using an input delay approach in terms of LMI has been reported in [15].

Recently, the non-fragile control issue is considered for some real-time systems.
It is shown that without considering the relatively small uncertainties in controller
implementation, the robust controller design could even make the closed-loop sys-
tem unstable. Such controllers are often named ”fragile”. Therefore, it is neces-
sary and essential that any controllers in the system should be able to tolerate
some level of controller gain variations, and we ensure that the closed-loop system
maintains the stability and performance level. In this case, the non-fragile control
concept is how to design a feedback control that will be insensitive to some error
in gains of feedback loop [11, 17, 23, 26]. Very recently, Liu et al. [11] discussed
non-fragile H∞ filter design for a class of continuous time delayed Takagi-Sugeno
fuzzy systems with randomly occurring gain variations to the implementation of
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the filter. Using Lyapunov stability theory, the authors in Zhang et al. [26] ad-
dressed non-fragile distributed filtering for fuzzy systems with a multiplicative gain
variation.

Sampled-data control theory has many applications in systems and control ar-
eas. A periodic clock drives a sampled-data controller, and on each clock edge,
it samples its inputs, changes state, and updates its outputs. Thus, with the
rapid development of computer hardware, the sampled-data control technology
has shown superiority over other control approaches [16]. Peng et al. [12] dis-
cussed event-triggered output-feedback H∞ control for NCS with the time-varying
delay with a network-induced delay and packet dropout in the sampling period.
Robust variable control for networked control systems based on sampling period
techniques has been obtained in Truong and Ahn [21]. However, to the best of the
authors’ knowledge, no result has been reported on asymptotic stabilization for
the uncertain NCS under reliable non-fragile sampled-data control with random
delay.

This paper focuses on a new class of non-fragile reliable discrete-time uncertain
NCS with time-varying delays. The effect of both variation range and distribu-
tion probability of the time delay is taken into account in the proposed approach,
which is mainly different from the traditional methods and will lead to less con-
servative results. Our results take some well-studied models as special cases. We
translate the distribution probability of the time delay into parameter matrices of
the transferred systems. By implementing novel Lyapunov-Krasovskii functional
together with LMI approach, a robust control law is derived which guarantees
the asymptotical stability of the NCS with random delays about its equilibrium
point for all admissible uncertainties. We formulate our results in terms of LMI,
which the MATLAB LMI toolbox can easily verify. Finally, a numerical example
with simulation results illustrates the effectiveness and less conservativeness of the
obtained results.

2. Model of an NCS with random packet dropout and transmission
delays

Due to limited bandwidth, the data packet dropout is unavoidable in NCS.
When packet collision occurs, it is better to drop the old packet and transmit a new
one rather than repeating the transmission attempt to yield more advantages. We
consider the transmission delays induced by the network, besides the data packet
dropout problem. ρsc and ρca denote transmission delay in sensor- controller chan-
nel and controller-actuator channel, respectively; dsc and dca denote the number of
packet dropouts in the sensor-controller channel and controller-actuator channel,
respectively. These four delays can be combined if the feedback controller is static.

The network plant with data packet dropout and transmission delays are shown
in Fig. 1, where the plant is described by the following discrete-time networked
system model:

x((k + 1)h) = Ax(kh) + Buf (kh),
y(kh) = Hx(kh) (2.1)
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Figure 1. An NCS with data packet dropout and transmission delays.

where x(kh) ∈ Rn is the state vector; uf (kh) ∈ Rw is the reliable control signal of
the NCS; y(kh) ∈ Rm is the output vector; A and B are constant matrices; H is a
nonsingular matrix with an appropriate dimension; h is a positive constant scalar
and denotes sampling period.

The controller and the actuators are event-driven, whereas the sensors are time-
driven. i.e., the controller and the actuators act when the new data arrives,
whereas the sensors measure the states at each sampling instants. The reliable
control input is written as

uf (kh) = Gu(kh) = Gu(kh− ρca − dcah) = GK̂y(kh− ρca − dcah) (2.2)

where G is the actuator fault matrix; K̂ = K + ∆K(k), K is the state feedback
gain to be designed and ∆K(k) is a priori norm bounded gain variation. Here, it
is assumed that the gain variation ∆K(k) has the structure ∆K(k) = MF (k)N ,
where M and N being known constant matrices; F (k) the uncertain parameter
matrix satisfying FT (k)F (k) ≤ I [17].

The sampling and the transmission are taken by the sensor in Fig. 1. Thus
the delayed sampling value of the state is the output of the network. The network
is modeled as a switch. The network packet (containing x(kt)) is transmitted,
and the controller uses the updated data if the switch is closed (in position S1),
whereas the packet is lost, and the controller uses the old data if the switch is open
(in position S2). The maximum quantity of packet loss that does not destabilize
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the closed-loop system for a fixed sampling period. The dynamics of the switch at
time kt can be expressed as follows:

y(kh) =


y(kth− ρsc − dsch), if NCS (2.1)− (2.2) with no packet dropout
y(kth− ρsc − dsch− h), if NCS (2.1)− (2.2) with one packet dropout
...
y(kth− ρsc − dsch− ς(k)h), if NCS (2.1)− (2.2) with ς(k) packet dropout

The quantity of dropped packets is accumulated from the latest time when y(kh)
has been updated.

Thus the closed-loop nonfragile fault tolerent NCS with transmission delays and
network packet loss effects is described as

x((k + 1)h) = Ax(kh) + BGK̂y(kth− ρca − ρsc − dcah− dsch− ς(k)h). (2.3)

For simplicity’s sake, we omit h and let ρ(k) = k − kth + ρca + ρsc + dcah +
dsch + ς(k)h. Then the formulation of the non-fragile reliable NCS is as follows

x(k + 1) = Ax(k) + BGK̂y(k − ρ(k)),
x(k) = Φ(k), k = −ρM ,−ρM + 1, · · · , 0

(2.4)

where Φ(k) is a given initial condition sequence.
Naturally, ρ(k) also satisfies 0 ≤ ρm ≤ ρ(k) ≤ ρM < ∞, where ρm and ρM

representing the minimum and maximum network allowable equivalent delays re-
spectively.
Then the closed-loop NCS with input delays,

x(k + 1) = Ā(k)x(k) + BGK̂Hx(k − ρ(k)) (2.5)

is obtained in consideration of the non-fragile reliable NCS in (2.4) with the norm-
bounded parameter uncertainties and the output feedback controller signal, where
Ā(k) = A + ℘A(k); ℘A(k) is time varying matrices representing parametric un-
certainties, and described by ℘A(k) = W℘(k)Na where W and Na are known
constant matrices of appropriate dimensions; ℘(k) is known time varying matrix
with Lebesgue measurable elements bounded by ℘T (k)℘(k) ≤ I.
Assumption 1: The time delay ρ(k) is bounded, 0 ≤ ρm ≤ ρ(k) ≤ ρM , and
its probability distribution can be observed. i.e., suppose ρ(k) takes values in
[ρm : ρ0] or (ρ0 : ρM ] and Prob{ρ(k) ∈ [ρm : ρ0]} = δ0, where ρm ≤ ρ0 < ρM and
0 ≤ δ0 ≤ 1.

Remark 2.1. The binary stochastic variable was first introduced in [14] and then
successfully used in [1]. Under Assumption 1, we know that δ0 is dependent on
the values of ρm, ρ0 and ρM . In addition, Prob{ρ(k) ∈ (ρ0 : ρM ]} = 1− δ0 = δ̄0,

In order to describe the probability distribution of the time varying delay, we
define two sets

C1 = {k|ρ(k) ∈ [ρm : ρ0]} and C2 = {k|ρ(k) ∈ (ρ0 : ρM ]} (2.6)

where ρ0 is an integer satisfying ρm ≤ ρ0 ≤ ρM . Define two mapping functions

ρ1(k) =
{

ρ(k), k ∈ C1

ρm, else
and ρ2(k) =

{
ρ(k), k ∈ C2

ρ0, else
(2.7)
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It follows from (2.6) that C1 ∪ C2 = Z≥0 and C1 ∩ C2 = Φ, where Φ is an empty
set. It is easy to check that k ∈ C1 implies the event ρ(k) ∈ [ρm, ρ0] occurs and
k ∈ C2 implies the event ρ(k) ∈ (ρ0, ρM ] occurs.
Defining a stochastic variable as

δ(k) =
{

1, k ∈ C1

0, k ∈ C2
(2.8)

The nonfragile fault tolerant uncertain NCS (2.5) can be equivalently rewritten as

x(k + 1) = Ā(k)x(k) + δ(k)BGK̂Hx(k − ρ1(k)) + (1− δ(k))BGK̂Hx(k − ρ2(k)) (2.9)

Remark 2.2. Under Assumption 1 and (2.8), we see that δ(k) is a Bernoulli
distributed white sequence with Prob{δ(k) = 1} = E{δ(k)} = δ0 and Prob{δ(k) =
0} = E{δ(k)} = 1 − δ0. In addition, we can show that E{δ(k) − δ0} = 0 and
E{(δ(k)− δ0)2} = δ0(1− δ0).

Further, for notation convenience we write x(k), x(k + i), x(k− ρ1(k)), x(k−
ρ2(k)), ρ(k), ρ1(k),
ρ2(k), δ(k), 1−δ(k) as xk, xk+i, xρ,1, xρ,2, ρk, ρk,1, ρk,2, δk and δk respectively.
Then (2.9) can be rearranged as,

xk+1 = Ā(k)xk + δkBGK̂Hxρ,1 + δkBGK̂Hxρ,2 (2.10)

Before we give our main results, we need the following lemmas, which we will
use to prove the coming theorems.

Lemma 2.3. [2] For any symmetric constant matrix Q ∈ Rn×n, Q ≥ 0, two scalars
ρm and ρM satisfying ρm ≤ ρM , a vector valued function η(k) = x(k + 1)− x(k),
the following sums are well defined and it holds:

k−ρm−1∑
s=k−ρM

ηT
S QηS ≤ −1

ρM − ρm

[ k−ρm−1∑
s=k−ρM

η(t)
]T

Q

[ k−ρm−1∑
s=k−ρM

η(t)
]
,

−ρm−1∑
s=−ρM

k−1∑
s=k+j

ηT
S QηS ≤ −2

(ρM − ρm)(ρM + ρm + 1)
×

[ −ρm−1∑
s=−ρM

k−1∑
s=k+j

η(t)
]T

Q

[ −ρm−1∑
s=−ρM

k−1∑
s=k+j

η(t)
]
.

Lemma 2.4. [3] Given constant matrices Ω1, Ω2, Ω3, where Ω1 = ΩT
1 > 0 and

Ω2 = ΩT
2 > 0. Then Ω1 + ΩT

3 Ω−1
2 Ω3 < 0 if and only if

[
Ω1 ΩT

3

Ω3 −Ω2

]
< 0.

Lemma 2.5. [3] Let D, N and F (k) be the real matrices of appropriate dimensions
with F (k) satisfying FT (k)F (k) ≤ I. Then we have the following inequalities
holds:

(i) for ε > 0, DF (k)N + NT FT (k)DT ≤ ε−1DDT + εNT N
(ii) for ε > 0 and P − εDDT > 0,

(A + DF (k)N)P (A + DF (k)N)T ≤ AT (P−1 − εDDT )−1A + ε−1NT N.
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3. Non-Fragile known fault-tolerant control design

In this section, we study the asymptotical stabilization of discrete time NCS
without uncertainty, when the actuator fault matrix G is exactly known and in
the absence and the presence of non-fragile control. For this consideration, the
nominal form of the NCS (2.10) is as follows

xk+1 = Axk + δ0BGK̂Hxρ,1 + δ0BGK̂Hxρ,2 (3.1)

Theorem 3.1. The discrete time NCS (3.1) is asymptotically stable with known
actuator failure parameter matrix G, the output feedback reliable control and
∆(k) = 0 if there exist symmetric matrices X > 0, R̂n > 0, Ŝn > 0, Q̂m =[

Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, any matrices Mmn, (m = 1, · · · , 6, n = 1, 2, 3, 4) and matrix

Y with appropriate dimensions, such that the following LMI holds,

Ω̂ =



Ω̂16,16
√

ρ11M̂1
√

ρ11M̂2
√

ρ0M̂3
√

ρ21M̂4
√

ρ21M̂5
√

ρM M̂6
∗ −(R̂1 + R̂2) 0 0 0 0 0

∗ ∗ −R̂1 0 0 0 0

∗ ∗ ∗ −R̂2 0 0 0

∗ ∗ ∗ ∗ −(R̂3 + R̂4) 0 0

∗ ∗ ∗ ∗ ∗ −R̂3 0

∗ ∗ ∗ ∗ ∗ ∗ −R̂4


< 0, (3.2)

Ω̂1,1 = Q̂11 + Q̂21 + Q̂31 + Q̂41 + Q̂51 + Q̂61 + ρ11Q̂11 + ρ21Q̂41 − 2
ρ2
11

ρ12
Ŝ1 − 2

ρ2
0

ρ13
Ŝ2

−2
ρ2
21

ρ22
Ŝ3 − 2

ρ2
M

ρ23
Ŝ4 + 2λ1AX − 2λ1X + 2M̂31 + 2M̂61, Ω̂1,2 = 2M̂21,

Ω̂1,3 = 2λ1δ0BGY + 2XAT λ2 − 2λ2X + 2M̂11 − 2M̂21 + 2M̂T
32 − 2M̂31 + 2M̂T

62,

Ω̂1,4 = 2λ1δ0BGY + 2XAT λ3 − 2Xλ3 + 2M̂T
33 + 2M̂41 − 2M̂T

51 + 2M̂T
63 − 2M̂61,

Ω̂1,5 = −2M̂11 + 2M̂51, Ω̂1,6 = −2M̂41, Ω̂1,7 = 2X + 2Q̂12 + 2Q̂22 + 2Q̂32 + 2Q̂42

+2Q̂52 + 2Q̂62 + 2ρ11Q̂12 + 2ρ21Q̂42 − 2Xλ1 + 2XAT λ4 − 2λ4X + 2M̂T
34 + 2M̂T

64,

Ω̂1,13 = 4
ρ11

ρ12
Ŝ1, Ω̂1,14 = 4

ρ0

ρ13
Ŝ2, Ω̂1,15 = 4

ρ21

ρ22
Ŝ3, Ω̂1,16 = 4

ρM

ρ23
Ŝ4, Ω̂2,2 = −Q̂21,

Ω̂2,3 = 2M̂T
22, Ω̂2,4 = 2M̂T

23, Ω̂2,7 = 2M̂T
24, Ω̂2,8 = −2Q̂22, Ω̂3,3 = −Q̂11 + 2λ2δ0BGY

+2M̂12 − 2M̂22 − 2M̂32, Ω̂3,4 = 2λ2δ0BGY + (λ3δ0BGY )T + 2M̂T
13

−2M̂T
23 − 2M̂T

33 + 2M̂42 − 2M̂52 − 2M̂62, Ω̂3,5 = −2M̂12 + 2M̂52, Ω̂3,6 = −2M̂42,

Ω̂3,7 = −2λ2X + 2(λ4δ0BGY )T + 2M̂T
14 − 2M̂T

24 − 2M̂T
34, Ω̂3,9 = −2Q̂12,

Ω̂4,4 = −Q̂41 + 2λ3δ0BGY + 2M̂43 − 2M̂53 − 2M̂63, Ω̂4,5 = −2M̂13 + 2M̂53,

Ω̂4,6 = −2M̂43, Ω̂4,7 = −2λ3X + 2(λ4δ0BGY )T + 2M̂T
44 − 2M̂T

54 − M̂T
64,

Ω̂4,10 = −2Q̂42, Ω̂5,5 = −Q̂31 − Q̂51, Ω̂5,7 = −2M̂T
14 + 2M̂T

54, Ω̂5,11 = −2Q̂32 − 2Q̂52,
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Ω̂6,6 = −Q̂61, Ω̂6,7 = −2M̂T
44, Ω̂6,12 = −2Q̂62, Ω̂7,7 = Q̂13 + Q̂23 + Q̂33 + Q̂43

+Q̂53 + Q̂63 + ρ11Q̂13 + ρ21Q̂43 + ρ11R̂1 + ρ0R̂2 + ρ21R̂3 + ρM R̂4 +
ρ12

2
Ŝ1

+
ρ13

2
Ŝ2 + 2

ρ22

2
Ŝ3 + 2

ρ23

2
Ŝ4 + X − 2λ4X, Ω̂8,8 = −Q̂23, Ω̂9,9 = −Q̂13,

Ω̂10,10 = −Q̂43, Ω̂11,11 = −Q̂33 − Q̂53, Ω̂12,12 = −Q̂63, Ω̂13,13 = −
2

ρ12
Ŝ1,

Ω̂14,14 = −
2

ρ13
Ŝ2, Ω̂15,15 = −

2

ρ22
Ŝ3, Ω̂16,16 = −

2

ρ23
Ŝ4,

M̂i =
[

M̂i1 0 M̂i2 M̂i3 02n M̂i4 09n

]
, i = 1, · · · , 6, ρ11 = ρ0 − ρm,

ρ12 = ρ11(ρ0 + ρm + 1), ρ13 = ρ0(ρ0 + 1), ρ21 = ρM − ρ0, ρ22 = ρ21(ρM + ρ0 + 1),

ρ23 = ρM (ρM + 1),

and the other parameters are zero. In this case, the output feedback reliable
controller gain is given by K = Y X−1H−1.

Proof. In order to obtain the asymptotically stable result for (3.1), we choose
piece-wise Lyapunov-Krasovskii functional candidate V (xk, k) as,

V (xk, k) =
8∑

n=1

Vn(xk, k), (3.3)

where,

V1(xk, k) = xT
k Pxk,

V2(xk, k) =
k−1∑

s=k−ρk,1

λT
s Q1λs +

k−1∑
s=k−ρm

λT
s Q2λs +

k−1∑
s=k−ρ0

λT
s Q3λs,

V3(xk, k) =
k−1∑

s=k−ρk,2

λT
s Q4λs +

k−1∑
s=k−ρ0

λT
s Q5λs +

k−1∑
s=k−ρM

λT
s Q6λs,

V4(xk, k) =
−ρm∑

s=−ρ0+1

k−1∑
j=k+s

λT
j Q1λj +

−ρ0∑
s=−ρM+1

k−1∑
j=k+s

λT
j Q4λj ,

V5(xk, k) =
−ρm−1∑
s=−ρ0

k−1∑
j=k+s

ηT
j R1ηj +

−1∑
s=−ρ0

k−1∑
j=k+s

ηT
j R2ηj ,

V6(xk, k) =
−ρ0−1∑
s=−ρM

k−1∑
j=k+s

ηT
j R3ηj +

−1∑
s=−ρM

k−1∑
j=k+s

ηT
j R4ηj ,

V7(xk, k) =
−ρm−1∑
l=−ρ0

−1∑
j=l

k−1∑
s=k+j

ηT
s S1ηs +

−1∑
l=−ρ0

−1∑
j=l

k−1∑
s=k+j

ηT
s S2ηs,

V8(xk, k) =
−ρ0−1∑
l=−ρM

−1∑
j=l

k−1∑
s=k+j

ηT
s S3ηs +

−1∑
l=−ρM

−1∑
j=l

k−1∑
s=k+j

ηT
s S4ηs,

with λT
k =

[
xT

k ηT
k

]
and ηk = xk+1 − xk. Let us define the forward difference

of Vn(xk, k) as ∆Vn(xk, k) = Vn(xk+1, k + 1)− Vn(xk, k). Then we have,
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∆V1(xk, k) = xT
k+1Pxk+1 − xT

k Pxk (3.4)

∆V2(xk, k) =
k∑

s=k+1−ρ(k+1),1

λT
s Q1λs −

k−1∑
s=k−ρk,1

λT
s Q1λs +

k∑
s=k+1−ρm

λT
s Q2λs

−
k−1∑

s=k−ρm

λT
s Q2λs +

k∑
s=k+1−ρ0

λT
s Q3λs −

k−1∑
s=k−ρ0

λT
s Q3λs,

= λT
k

(
Q1 + Q2 + Q3

)
λk − λρ,1Q1λρ,1 − λρ,mQ2λρ,m − λρ,0Q3λρ,0

+
k−ρm∑

s=k+1−ρ(k+1),1

λT
SQ1λS , (3.5)

∆V3(xk, k) =
k∑

s=k+1−ρ(k+1),2

λT
s Q4λs −

k−1∑
s=k−ρk,2

λT
s Q4λs +

k∑
s=k+1−ρ0

λT
s Q5λs

−
k−1∑

s=k−ρ0

λT
s Q5λs +

k∑
s=k+1−ρM

λT
s Q6λs −

t−1∑
s=k−ρM

λT
s Q6λs,

= λT
k

(
Q4 + Q5 + Q6

)
λk − λρ,2Q4λρ,2 − λρ,0Q5λρ,0 − λρ,MQ6λρ,M

+
k−ρ0∑

s=k+1−ρ(k+1),2

λT
SQ4λS , (3.6)

∆V4(xk, k) =
−ρm∑

s=−ρ0+1

[ k∑
j=k+1+s

λT
j Q1λj −

k−1∑
j=k+s

λT
j Q1λj

]

+
−ρ0∑

s=−ρM+1

[ k∑
j=k+1+s

λT
j Q4λj −

k−1∑
j=k+s

λT
j Q4λj

]
,

=
−ρm∑

s=−ρ0+1

[
λT

k Q1λk − λT
k+sQ1λk+s

]
+

−ρ0∑
s=−ρM+1

[
λT

k Q4λk − λT
k+sQ4λk+s

]
,

= λT
k

(
ρ11Q1 + ρ21Q4

)
λk −

k−ρm∑
s=k−ρ0+1

λT
s Q1λs −

k−ρ0∑
s=k−ρM+1

λT
s Q4λs, (3.7)

∆V5(xk, k) =
−ρm−1∑
s=−ρ0

[ k∑
j=k+1+s

ηT
j R1ηj −

k−1∑
j=k+s

ηT
j R1ηj

]

+
−1∑

s=−ρ0

[ k∑
j=k+1+s

ηT
j R2ηj −

k−1∑
j=k+s

ηT
j R2ηj

]
,

=
−ρm−1∑
s=−ρ0

[
ηT

k R1ηk − ηT
k+sR1ηk+s

]
+

−1∑
s=−ρ0

[
ηT

k R2ηk − ηT
k+sR2ηk+s

]
,

= ηT
k

(
ρ11R1 + ρ0R2

)
ηk −

k−ρm−1∑
s=k−ρ0

ηT
s R1ηs −

k−1∑
s=k−ρ0

ηT
s R2ηs, (3.8)

9
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∆V6(xk, k) =
−ρ0−1∑
s=−ρM

[ k∑
j=k+1+s

ηT
j R3ηj −

k−1∑
j=k+s

ηT
j R3ηj

]

+
−1∑

s=−ρM

[ k∑
j=k+1+s

ηT
j R4ηj −

k−1∑
j=k+s

ηT
j R4ηj

]
,

=
−ρ0−1∑
s=−ρM

[
ηT

k R3ηk − ηT
k+sR3ηk+s

]
+

−1∑
s=−ρM

[
ηT

k R4ηk − ηT
k+sR4ηk+s

]
,

= ηT
k

(
ρ21R3 + ρMR4

)
ηk −

k−ρ0−1∑
s=k−ρM

ηT
s R3ηs +

k−1∑
s=k−ρM

ηT
s R4ηs, (3.9)

∆V7(xk, k) =
−ρm−1∑
l=−ρ0

−1∑
j=l

[ k∑
s=k+1+j

ηT
s S1ηs −

k−1∑
s=k+j

ηT
s S1ηs

]

+
−1∑

l=−ρ0

−1∑
j=l

[ k∑
s=k+1+j

ηT
s S2ηs −

k−1∑
s=k+j

ηT
s S2ηs

]

=
−ρm−1∑
l=−ρ0

[
(−l)ηT

k S1ηk −
−1∑
j=l

ηT
k+jS1ηk+j

]

+
−1∑

s=−ρ0

[
(−l)ηT

k S2ηk −
−1∑
j=l

ηT
k+jS2ηk+j

]

= ηT
k

(ρ11

2
S1 +

ρ13

2
S2

)
ηk −

−ρm−1∑
l=−ρ0

k−1∑
j=k+l

ηT
j S1ηj

−
−1∑

l=−ρ0

k−1∑
j=k+l

ηT
j S2ηj , (3.10)

∆V8(xk, k) =
−ρ0−1∑
l=−ρM

−1∑
j=l

[ k∑
s=k+1+j

ηT
s S3ηs −

k−1∑
s=k+j

ηT
s S3ηs

]

+
−1∑

l=−ρM

−1∑
j=l

[ k∑
s=k+1+j

ηT
s S4ηs −

k−1∑
s=k+j

ηT
s S4ηs

]

=
−ρ0−1∑
l=−ρM

[
(−l)ηT

k S3ηk −
−1∑
j=l

ηT
k+jS3ηk+j

]

+
−1∑

l=−ρM

[
(−l)ηT

k S4ηk −
−1∑
j=l

ηT
k+jS4ηk+j

]

= ηT
k

(ρ21

2
S3 +

ρ23

2
S4

)
ηk −

−ρ0−1∑
l=−ρM

k−1∑
j=k+l

ηT
j S3ηj −

−1∑
l=−ρM

k−1∑
j=k+l

ηT
j S4ηj

(3.11)

10
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Coimbing (3.4) - (3.11), we get,

∆V (xk, k) = 2xT
k Pηk + λT

k

(
Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + ρ11Q1 + ρ21Q4

)
λk

−λρ,1Q1λρ,1 − λρ,mQ2λρ,m − λρ,0(Q3 + Q5)λρ,0 − λρ,2Q4λρ,2

−λρ,MQ6λρ,M + ηT
k

(
P + ρ11R1 + ρ0R2 + ρ21R3 + ρMR4

+
1
2
ρ11S1 +

1
2
ρ13S2 +

1
2
ρ21S3 +

1
2
ρ23S2

)
ηk −

k−ρm−1∑
s=k−ρ0

ηT
S R1ηS

−
k−1∑

s=k−ρ0

ηT
S R2ηS −

k−ρ0−1∑
s=k−ρM

ηT
S R3ηS −

k−1∑
s=k−ρM

ηT
S R4ηS

−
−ρm−1∑
l=−ρ0

k−1∑
j=k+l

ηT
j S1ηj −

−1∑
l=−ρ0

k−1∑
j=k+l

ηT
j S2ηj

−
−ρ0−1∑
l=−ρM

k−1∑
j=k+l

ηT
j S3ηj −

−1∑
l=−ρM

k−1∑
j=k+l

ηT
j S4ηj (3.12)

By using Lemma 2.3, we obtain

−
−ρm−1∑
l=−ρ0

k−1∑
j=k+l

ηT
j S1ηj ≤ −

2

ρ12

[−ρm−1∑
l=−ρ0

k−1∑
j=k+l

ηj

]T

S1

[−ρm−1∑
l=−ρ0

k−1∑
j=k+l

ηj

]
,

≤ − 2

ρ12

[
ρ11xk +

k−ρm−1∑
l=k−ρ0

xk

]T

S1

[
ρ11xk +

k−ρm−1∑
l=k−ρ0

xk

]
, (3.13)

−
−1∑

l=−ρ0

k−1∑
j=k+l

ηT
j S2ηj ≤ −

2

ρ13

[ −1∑
l=−ρ0

k−1∑
j=k+l

ηj

]T

S2

[ −1∑
l=−ρ0

k−1∑
j=k+l

ηj

]
,

≤ − 2

ρ13

[
ρ0xk +

k−1∑
l=k−ρ0

xk

]T

S2

[
ρ0xk +

k−1∑
l=k−ρ0

xk

]
, (3.14)

−
−ρ0−1∑
s=−ρM

k−1∑
j=k+l

ηT
j S3ηj ≤ −

2

ρ22

[ −ρ0−1∑
l=−ρM

k−1∑
j=k+l

ηj

]T

S3

[ −ρ0−1∑
l=−ρM

k−1∑
j=k+l

ηj

]
,

≤ − 2

ρ22

[
ρ21xk +

k−ρ0−1∑
l=k−ρM

xk

]T

S3

[
ρ21xk +

k−ρ0−1∑
l=k−ρM

xk

]
, (3.15)

−
−1∑

l=−ρM

k−1∑
j=k+l

ηT
j S4ηj ≤ −

2

ρ23

[ −1∑
l=−ρM

k−1∑
j=k+l

ηj

]T

S4

[ −1∑
l=−ρM

k−1∑
j=k+l

ηj

]
,

≤ − 2

ρ23

[
ρMxk +

k−1∑
l=k−ρM

xk

]T

S4

[
ρMxk +

k−1∑
l=k−ρM

xk

]
(3.16)

11
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On the other hand, for any appropriately dimensioned matrices Mn, n = 1, . . . , 6,
the following inequalities hold;

2ζT
k M1

[
xρ,1 − xρ0 −

k−ρk,1−1∑
s=k−ρ0

ηS

]
= 0, (3.17)

2ζT
k M2

[
xρ,m − xρ,1 −

k−ρm−1∑
s=k−ρ,1

ηS

]
= 0, (3.18)

2ζT
k M3

[
xk − xρ,1 −

k−1∑
s=k−ρ,1

ηS

]
= 0, (3.19)

2ζT
k M4

[
xρk,2 − xρM

−
k−ρk,2−1∑
s=k−ρM

ηS

]
= 0, (3.20)

2ζT
k M5

[
xρ,0 − xρ,2 −

k−ρ0−1∑
s=k−ρ,2

ηS

]
= 0, (3.21)

2ζT
k M6

[
xk − xρ,2 −

k−1∑
s=k−ρ,2

ηS

]
= 0, (3.22)

(ρ0 − ρk,1)ζ
T
k M1(R1 + R2)

−1MT
1 ζk −

k−ρ1(k)−1∑
s=k−ρ0

ζT
k M1(R1 + R2)

−1MT
1 ζk = 0, (3.23)

(ρk,1 − ρm)ζT
k M2R

−1
1 MT

2 ζk −
t−ρm−1∑

s=k−ρk,1

ζT
k M2R

−1
1 MT

2 ζk = 0, (3.24)

ρk,1ζ
T
k M3R

−1
2 MT

3 ζk −
k−1∑

s=k−ρk,1

ζT
k M3R

−1
2 MT

3 ζk = 0, (3.25)

(ρM − ρk,2)ζ
T
k M4(R3 + R4)

−1MT
4 ζk −

k−ρk,2−1∑
s=k−ρM

ζT
k M4(R3 + R4)

−1MT
4 ζk = 0, (3.26)

(ρk,2 − ρ0)ζ
T
k M5R

−1
3 MT

5 ζk −
k−ρ0−1∑

s=k−ρk,2

ζT
k M5R

−1
3 MT

5 ζk = 0, (3.27)

ρk,2ζ
T
k M6R

−1
4 MT

6 ζk −
k−1∑

s=k−ρk,2

ζT
k M6R

−1
4 MT

6 ζk = 0. (3.28)

where ζT
k =

[
xT

k xT
ρ,1 xT

ρ,2 ηT
k

]T

. Also, for any matrix N of appropriate dimensions

the following inequality holds:

2ζT
k N

[
(A− I)xk + δ0BGKHxρ,1 + δ0BGKHxρ,2 − ηk

]
= 0. (3.29)

12
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Combining (3.12) - (3.29) we obtain,

∆V (xk, k) ≤ ξT
k Ω1ξk (3.30)

where

Ω1 =



Ω16,16
√

ρ11M1
√

ρ11M2
√

ρ0M3
√

ρ21M4
√

ρ21M5
√

ρMM6

∗ −(R1 + R2) 0 0 0 0 0
∗ ∗ −R1 0 0 0 0

∗ ∗ ∗ −R2 0 0 0

∗ ∗ ∗ ∗ −(R3 + R4) 0 0
∗ ∗ ∗ ∗ ∗ −R3 0

∗ ∗ ∗ ∗ ∗ ∗ −R4


,

(3.31)

ξT
k =

[
xT

k xT
ρm

xT
ρ,1 xT

ρ,2 xT
ρ0

xT
ρM

ηT
k ηT

ρm
ηT

ρ,1 ηT
ρ,2 ηT

ρ0
ηT

ρM

k−ρm−1∑
s=k−ρ0

xT
S

k−1∑
s=k−ρ0

xT
S

k−ρ0−1∑
s=k−ρM

xT
S

k−1∑
s=k−ρM

xT
S

]T

,

Ω1,1 = Q11 + Q21 + Q31 + Q41 + Q51 + Q61 + ρ11Q11 + ρ21Q41 − 2
ρ2
11

ρ12
S1

−2
ρ2
0

ρ13
S2 − 2

ρ2
21

ρ22
S3 − 2

ρ2
M

ρ23
S4 + 2N1A− 2N1 + 2M31 + 2M61, Ω1,2 = 2M21,

Ω1,3 = 2N1δ0BGKH + 2AT NT
2 − 2NT

2 + 2M11 − 2M21 + 2MT
32 − 2M31 + 2MT

62,

Ω1,4 = 2N1δ0BGKH + 2AT NT
3 − 2NT

3 + 2MT
33 + 2M41 − 2MT

51 + 2MT
63 − 2M61,

Ω1,5 = −2M11 + 2M51, Ω1,6 = −2M41, Ω1,7 = 2P + 2Q12 + 2Q22 + 2Q32 + 2Q42

+2Q52 + 2Q62 + 2ρ11Q12 + 2ρ21Q42 − 2N1 + 2AT NT
4 − 2NT

4 + 2MT
34 + 2MT

64,

Ω1,13 = 4
ρ11

ρ12
S1, Ω1,14 = 4

ρ0

ρ13
S2, Ω1,15 = 4

ρ21

ρ22
S3, Ω1,16 = 4

ρM

ρ23
S4, Ω2,2 = −Q21,

Ω2,3 = 2MT
22, Ω2,4 = 2MT

23, Ω2,7 = 2MT
24, Ω2,8 = −2Q22, Ω3,3 = +2N2δ0BGKH

−Q11 + 2M12 − 2M22 − 2M32, Ω3,4 = 2N2δ0BGKH + (N3δ0BGKH)T + 2MT
13

−2MT
23 − 2MT

33 + 2M42 − 2M52 − 2M62, Ω3,5 = −2M12 + 2M52, Ω3,6 = −2M42,

Ω3,7 = −2N2 + 2(N4δ0BGKH)T + 2MT
14 − 2MT

24 − 2MT
34, Ω3,9 = −2Q12,

Ω4,4 = −Q41 + 2N3δ0BGKH + 2M43 − 2M53 − 2M63, Ω4,5 = −2M13 + 2M53,

Ω4,6 = −2M43, Ω4,7 = −2N3 + 2(N4δ0BGKH)T + 2MT
44 − 2MT

54 − 2MT
64,

Ω4,10 = −2Q42, Ω5,5 = −Q31 −Q51, Ω5,7 = −2MT
14 + 2MT

54, Ω5,11 = −2Q32 − 2Q52,

Ω6,6 = −Q61, Ω6,7 = −2MT
44, Ω6,12 = −2Q62, Ω7,7 = P + Q13 + Q23 + Q33 + Q43

+Q53 + Q63 + ρ11Q13 + ρ21Q43 + ρ11R1 + ρ0R2 + ρ21R3 + ρMR4 +
ρ11

2
S1

+
ρ13

2
S2 +

ρ21

2
S3 +

ρ23

2
S4 − 2N4, Ω8,8 = −Q23, Ω9,9 = −Q13, Ω10,10 = −Q43,

Ω11,11 = −Q33 −Q53, Ω12,12 = −Q63, Ω13,13 = −
2

ρ12
S1, Ω14,14 = −

2

ρ13
S2,

Ω15,15 = −
2

ρ22
S3, Ω16,16 = −

2

ρ23
S4,

Mi =
[

Mi1 0 Mi2 Mi3 02n Mi4 09n

]
, i = 1, · · · , 6,

and other parameters are zero.
In order to obtain the output feedback controller gain matrices, let us define

Ni = λiP (i = 1, 2, 3, 4), where λi is the design parameter. Pre- and post-

13
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multiplying (3.31) by diag{X, · · · , X} ∈ R22×22, letting R̂n = XRnX, Ŝn =

XSnX, Q̂m =

[
Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, Q̂m1 = XQm1X, Q̂m2 = XQm2X, Q̂m3 =

XQm3X, M̂mn = XMmnX with X = P−1, m = 1, . . . , 6, n = 1, 2, 3, 4,. we
obtain LMI (3.2). Thus we conclude by the Lyapunov stability theory that the
reliable NCS (3.1) without uncertainties is asymptotically stable, which completes
the proof.
In the following theorem, we extend the results obtained in the previous theorem
to design the non-fragile controller K̂ = K + ∆K(k) for the discrete time NCS
(3.1) with known actuator failure G.

Theorem 3.2. The non-fragile discrete time NCS (3.1) is asymptotically sta-
ble with known actuator failure parameter matrix G and the output feedback reli-
able non-fragile control if there exist symmetric matrices X > 0, R̂n > 0, Ŝn >

0, Q̂m =

[
Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, any matrices Mmn, (m = 1, · · · , 6, n = 1, 2, 3, 4),

matrix Y with appropriate dimensions and positive scalars εi, (i = 1, · · · , 4), such
that the following LMI holds,

Ω̃ =
[

Ω̂ M̃
∗ −ε̃

]
< 0, (3.32)

M̃ =
[

ε1M̃1 Ñ1 ε2M̃2 Ñ2 ε3M̃3 Ñ3 ε4M̃4 Ñ4

]
,

ε̃ =
[

ε1 ε1 ε2 ε2 ε3 ε3 ε4 ε4
]T

,

M̃1 =
[

02n ε1λ1
√

δ0MT GT BT ε1λ1

√
δ0MT GT BT 012n

]T
, Ñ1 =

[
NHX 015n

]T
,

M̃2 =
[

02n ε2λ2
√

δ0MT GT BT ε2λ2

√
δ0MT GT BT 012n

]T
, Ñ2 =

[
02n NHX 013n

]T
,

M̃3 =
[

02n ε3λ3
√

δ0MT GT BT ε3λ3

√
δ0MT GT BT 012n

]T
, Ñ3 =

[
03n NHX 012n

]T
,

M̃4 =
[

02n ε4λ4
√

δ0MT GT BT ε4λ4

√
δ0MT GT BT 012n

]T
, Ñ4 =

[
06n NHX 09n

]T
,

other parameters are defined as in Theorem 3.1. In this case, the output feedback
non-fragile reliable controller gain is given by K = Y X−1H−1.

Proof: In this theorem, by including the non-fragile control K̂ = K + ∆K(k),
LMI (3.31) in Theorem 3.1 can be written as

Ω = Ω1 + M1F (k)N1 + NT
1 FT (k)MT

1 + M2F (k)N2 + NT
2 FT (k)MT

2

+M3F (k)N3 + NT
3 FT (k)MT

3 + M4F (k)N4 + NT
4 FT (k)MT

4 (3.33)

where

M1 =
[

02n N1
√

δ0MT GT BT N1

√
δ0MT GT BT 012n

]T
, N1 =

[
NH 015n

]T
,

M2 =
[

02n N2
√

δ0MT GT BT N2

√
δ0MT GT BT 012n

]T
, N2 =

[
02n NH 013n

]T
,

M3 =
[

02n N3
√

δ0MT GT BT N3

√
δ0MT GT BT 012n

]T
, N3 =

[
03n NH 012n

]T
,

M4 =
[

02n N4
√

δ0MT GT BT N4

√
δ0MT GT BT 012n

]T
, N4 =

[
06n NH 09n

]T
.

14
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Further, it follows from (3.33) and Lemma 2.5 that there exist scalars εi, (i =
1, · · · , 4) such that

Ω = Ω1 + ε1M1MT
1 + ε−1

1 N1NT
1 + ε2M2MT

2 + ε−1
2 N1NT

2 + ε3M3MT
3

+ε−1
3 N1NT

3 + ε4M4MT
4 + ε−1

4 N1NT
4 (3.34)

Then by using Lemma 2.4, it is easy to get

Ω =
[

Ω1 M
∗ −ε̃

]
(3.35)

where M =
[

ε1M1 N1 ε2M2 N2 ε3M3 N3 ε4M4 N4

]
, Pre- and post-

multiplying (3.35) by diag{X, · · · , X︸ ︷︷ ︸
22

, I, · · · , I︸ ︷︷ ︸
8

} ∈ R30×30, we obtain LMI (3.32)

which completes the proof.

4. Robust non-fragile unknown fault-tolerant control design

In the previous section, we developed criteria for reliable stabilization of discrete-
time random delays NCS (3.1) with and without non-fragile control. This section
extended the above results to study the robust unknown reliable control problem
with and without non-fragile control. First, we present the following lemma.

Lemma 4.1. [6, 24] Let B, D, G, X and Y be matrices of appropriate dimensions,
F be an uncertain matrix such that FT F ≤ I and ∆ be a diagonal uncertain matrix
satisfying ∆T ∆ ≤ I. Then there exist a positive definite diagonal matrix U and a
positive scalar ε such that

U − εGGT > 0 (4.1)

and

B∆Y + Y T ∆T BT + DFX + XT FT DT + B∆GFX + XT FT GT ∆T BT ≤
εDDT + ε−1XT X + BUBT + (Y + εGDT )T (U − εGGT )−1(Y + εGDT ) (4.2)

Proof: It follows from Lemma 2.5 that

B∆Y + Y T ∆T BT + DFX + XT FT DT + B∆GFX + XT FT GT ∆T BT

= B∆Y + Y T ∆T BT + (D + B∆G)FX + XT FT (D + B∆G)T

≤ B∆Y + Y T ∆T BT + ε(D + B∆G)(D + B∆G)T + ε−1XT X

≤ εDDT + ε−1XT X + B∆(Y + εGDT ) + (Y + εGDT )T ∆T BT

+εB∆GGT ∆T BT (4.3)

Obviously, there exists a positive definite diagonal matrix U satisfying the matrix
inequality (4.1). Therefore,

B∆(Y + εGDT ) + (Y + εGDT )T ∆T BT + εB∆GGT ∆T BT

≤ (Y + εGDT )T (U − εGGT )−1(Y + εGDT ) + B∆U∆T BT

≤ (Y + εGDT )T (U − εGGT )−1(Y + εGDT ) + BU
1
2 ∆∆T U

1
2 BT

≤ (Y + εGDT )T (U − εGGT )−1(Y + εGDT ) + BUBT . (4.4)

It is seen that, (4.3) and (4.4) leads to (4.2), which completes the proof.
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Moreover, it should be noted that the results obtained in Theorems 3.1 and 3.2
are applicable for the actuator failure matrix G, which is exactly known and fixed.
However, it should be pointed out that the actuator failures may not always be
fixed ones. It may occur within a range of intervals. So in this section, we assume
that the actuator failure G occurs in a range of interval and satisfies the following
assumption:

Assumption 2: G is the actuator fault matrix defined as follows

G = diag {g1, g2, . . . , gm} , 0 ≤ g
i
≤ gi ≤ gi, gi ≥ 1 (4.5)

where g
i

and gi, i = 1, 2, . . . ,m are given constants. If gi = 0, ith actuator
completely fails whereas ith actuator is normal if gi = 1. Define

G0 = diag {g10, g20, . . . gm0} , gi0 =
gi + g

i

2
, (4.6)

G1 = diag {g11, g21, . . . gm1} , gi1 =
gi − g

i

2
. (4.7)

Then the matrix G can be written as

G = G0 + G1Σ, Σ = diag {θ1, . . . , θp} , |θi| ≤ gi1, (i = 1, · · · , p). (4.8)

Now, we design the robust controller for unknown actuator failure matrix G, which
satisfies the constraints (4.5) - (4.8). The following theorem designs the reliable
state feedback controller using the conditions obtained in Theorem 3.1.

Theorem 4.2. The uncertain discrete time NCS (2.10) is robustly asymptotically
stable with unknown actuator failure parameter matrix G, the output feedback re-
liable control and ∆K(k) = 0 if there exist symmetric matrices X > 0, R̂n >

0, Ŝn > 0, Q̂m =

[
Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, any matrices Mmn, (m = 1, · · · , 6, n =

1, 2, 3, 4), matrix Y with appropriate dimensions and positive scalars εi (i = 1, 2),
such that the following LMI holds:

Θ̂ =


Ω̌ Θ̂1 Θ̂2 Θ̂3 Θ̂4

∗ −ε1 0 0 0
∗ ∗ −ε1 0 0
∗ ∗ ∗ −ε2 0
∗ ∗ ∗ ∗ −ε2

 < 0, (4.9)

Θ̂1 =
[

ε1λ1G
T
1 0 ε1λ2G

T
1 ε1λ3G

T
1 02n ε1λ4G

T
1 015n

]
,

Θ̂2 =
[

02n δ0BY δ0BY 018n

]
, Θ̂4 =

[
NaX 021n

]
,

Θ̂3 =
[

ε2λ1W
T 0 ε2λ2W ε2λ3W 02n ε2λ4W 015n

]
,

and the other parameters are defined in Theorem 3.1. In this case the output
feedback reliable controller gain, is given by K = Y X−1H−1.

16
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Proof. By replacing the matrix A by A + W℘(k)Na and G by G0 + G1Σ in
Theorem 3.1, we see thet

Θ̂ = Ω̌ + Θ̂T
1 ℘(k)Θ̂2 + Θ̂T

2 ℘(k)Θ̂1 + Θ̂T
3 ΣΘ̂4 + Θ̂T

4 ΣΘ̂3 (4.10)

where Ω̌ is obtained by replacing G by G0 in Ω̂. Further it follows from Lemma
2.5 and (4.10) that

Θ̂ = Ω̌ + ε−1
1 Θ̂T

1 Θ̂1 + ε1Θ̂T
2 Θ̂2 + ε−1

2 Θ̂T
3 Θ̂3 + ε2Θ̂T

4 Θ̂4 (4.11)

Then, it is easy to see that (4.11) is equivalent to LMI (4.9) by Lemma 2.4. Hence
completes the proof.

In the following theorem, we extend the results obtained in the previous theorem
to design the non-fragile controller K̂ = K+∆K(k) for the uncertain discrete time
NCS (2.10) with random delays.

Theorem 4.3. The non-fragile uncertain discrete time NCS (2.10) is robustly
asymptotically stable with unknown actuator failure parameter matrix G and the
output feedback reliable non-fragile control if there exist symmetric matrices X >

0, R̂n > 0, Ŝn > 0, Q̂m =

[
Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, any matrices Mmn (m =

1, · · · , 6, n = 1, 2, 3, 4), matrix Y with appropriate dimensions any positive definite
diagonal matrix U and positive scalars εi (i = 1, 2), such that the following LMI
holds,

Θ̌ =



Ω̌ Θ̌1 Θ̌2 Θ̌3 Θ̌4 Θ̌5 Θ̌6 Θ̌7 Θ̌8 Θ̌9

∗ −ε1 0 0 0 0 0 0 0 0
∗ ∗ −ε1 0 0 0 0 0 0 0
∗ ∗ ∗ −ε1 0 0 0 0 0 0
∗ ∗ ∗ ∗ Θ̌4,4 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ̌5,5 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2


< 0, (4.12)
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Θ̌2 =



ε1(λ1δ0BG0M)
0

ε1(λ2δ0BG0M)
ε1(λ3δ0BG0M)

02n

ε1(λ4δ0BG0M)
015n


, Θ̌3 =



ε1(λ1δ0BG0M)
0

ε1(λ2δ0BG0M)
ε1(λ3δ0BG0M)

02n

ε1(λ4δ0BG0M)
015n


,

Θ̌5 =



(Y T GT
1 + ε1λ1δ0BG0MMT G1)

0
(Y T GT

1 + ε1λ1δ0BG0MMT G1)
(Y T GT

1 + ε1λ1δ0BG0MMT G1)
02n

(Y T GT
1 + ε1λ1δ0BG0MMT G1)

015n


, Θ̌6 =



λ1δ0BU
0

λ1δ0BU
λ1δ0BU

02n

λ1δ0BU
015n


,

Θ̌7 =



λ1δ0BU
0

λ1δ0BU

λ1δ0BU
02n

λ1δ0BU
015n


, Θ̌4 =



(Y T GT
1 + ε1λ1δ0BG0MMT G1)

0
(Y T GT

1 + ε1λ1δ0BG0MMT G1)
(Y T GT

1 + ε1λ1δ0BG0MMT G1)
02n

(Y T GT
1 + ε1λ1δ0BG0MMT G1)

015n


,

Θ̂8 =
[

ε2λ1W
T 0 ε2λ2W ε2λ3W 02n ε2λ4W 015n

]
,

Θ̂9 =
[

NaX 021n

]
, Θ̌1 =

[
02n N N 018n

]
,

Θ̌4,4 = Θ̌5,5 = −(U − ε1MMT )

and the other parameters are defined in Theorem 3.1. In this case the output
feedback controller gain is given by K = Y X−1H−1.

Proof: The proof immediately follows by applying the non-fragile controller
K̂ = K +∆K(k), unknown actuator failure matrix G and uncertain parameters in
Theorem 4.2. Further applying Lemma 4.1, we obtain (4.12). Thus we conclude
by Lyapunov stability theory that the non-fragile uncertain discrete time NCS
(2.10) with unknown reliable control is robustly asymptotically stable. The proof
is completed.

Remark 4.4. In the absence of non-fragile, reliable controls and random delay, the
uncertain discrete time NCS (2.10) is as follows:

xk+1 = Ā(k)xk + B̄(k)uk

yk = Hxk
(4.13)

Choosing the control input delay as uk = KHxk,ρ, the NCS (4.13) is written as,

xk+1 = (A + ℘A(k))xk + (B + ℘B(k))KHxk,ρ (4.14)

where the parameter uncertainties are defined as[
℘A(k) ℘B(k)

]
= W℘(k)

[
N1 N2

]
.

18
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First we consider the case of matrices A and B being fixed, i.e., ℘A(k) = 0 and
℘B(k) = 0. Then the nominal form of the NCS (4.14) can be written as

xk+1 = Axk + BKHxk,ρ (4.15)

Corollary 4.5. The discrete time NCS (4.15) is asymptotically stable with the
output feedback control uk = KHxk,ρ if there exist symmetric positive matrices

X > 0, R̂n > 0, Ŝn > 0, n = 1, 2, Q̂m =

[
Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, any matrices

Mmp, (m, p = 1, 2, 3) and matrix Y with appropriate dimensions, such that the
following LMI holds:

Ξ1 =


Ξ10,10

√
ρ11M̂1

√
ρ11M̂2

√
ρMM̂3

∗ −(R̂1 + R̂2) 0 0
∗ ∗ −R̂1 0
∗ ∗ ∗ −R̂2

 < 0, (4.16)

where,

Ξ1,1 = Q̂11 + Q̂21 + Q̂31 + ρ11Q̂11 − 2
ρ2
11

ρ12
Ŝ1 − 2

ρ2
M

ρ13
Ŝ2 + 2λ1AX − 2λ1X + 2M̂31,

Ξ1,2 = 2M̂21, Ξ1,3 = 2λ1BY + 2λ2XAT − 2λ2X + 2M̂T
11 − 2M̂21 + 2M̂T

32 − 2M̂31,

Ξ1,4 = 2M̂T
11, Ξ1,5 = X + Q̂12 + Q̂22 + Q̂32 + ρ11Q̂12 + 2M̂T

33 − 2λ1X + 2λ3XAT − 2λ3X,

Ξ1,9 = 4
ρ11

ρ12
Ŝ1, Ξ1,10 = 4

ρM

ρ13
Ŝ2, Ξ2,2 = −Q̂21, Ξ2,3 = 2M̂T

22, Ξ2,5 = 2M̂T
23, Ξ2,6 = −Q̂22,

Ξ3,3 = −Q̂11 + 2λ2BY − 2M̂12 − 2M̂22 − 2M̂32, Ξ3,4 = −2M̂12, Ξ3,5 = 2M̂T
13 − 2M̂T

23

−2M̂T
33 − 2λ2X + 2Y T BT λ3, Ξ3,7 = −Q̂12, Ξ4,4 = −Q̂31 − 2M̂T

13, Ξ4,8 = −Q̂32,

Ξ5,5 = X + Q̂13 + Q̂23 + Q̂33 + ρ11Q̂13 + ρ11R̂1 + ρM R̂2 +
1

2
ρ11Ŝ1 +

1

2
ρM Ŝ2 − 2λ3X,

Ξ6,6 = −Q̂23, Ξ7,7 = −Q̂13, Ξ8,8 = −Q̂33, Ξ9,9 = −
1

ρ12
Ŝ1, Ξ10,10 = −

1

ρ13
Ŝ2,

M̂i =
[

M̂i1 0 M̂i2 0 M̂i3 05n

]
, i = 1, · · · , 3, ρ11 = ρM − ρm,

ρ12 = ρ11(ρM + ρm + 1), ρ13 = ρM (ρM + 1).

and the remaining position parameters are zero. In this case the output feedback
controller gain is given by K = Y X−1H−1.

Proof: Consider the Lyapunov-Krasovskii functional candidate V (xk, k) as

V (xk, k) =
5∑

n=1

Vn(xk, k), (4.17)
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where

V1(xk, k) = xT
k Pxk,

V2(xk, k) =
k−1∑

s=k−ρk,1

λT
s Q1λs +

k−1∑
s=k−ρm

λT
s Q2λs +

k−1∑
s=k−ρM

λT
s Q3λs,

V3(xk, k) =
−ρm∑

s=−ρM+1

k−1∑
j=k+s

λT
j Q1λj ,

V4(xk, k) =
−ρm−1∑
j=−ρM

k−1∑
s=k+j

ηT
s R1ηs +

−1∑
j=−ρM

k−1∑
s=k+j

ηT
s R2ηs,

V5(xk, k) =
−ρm−1∑
l=−ρM

−1∑
j=l

k−1∑
s=k+j

ηT
s S1ηs +

−1∑
l=−ρM

−1∑
j=l

k−1∑
s=k+j

ηT
s S2ηs,

The proof of this corollary is similar to Theorem 3.1 and hence omitted.
Now, we extend the results of Corollary 4.5 to uncertain NCS (4.14), which yields
the following corollary.

Corollary 4.6. The uncertain NCS (4.14) is robustly asymptotically stable with
the output feedback control uk = KHxk,ρ if there exist symmetric positive matrices

X > 0, R̂n > 0, Ŝn > 0, n = 1, 2, Q̂m =

[
Q̂m1 Q̂m2

∗ Q̂m3

]
> 0, any matrices

Mmp, (m, p = 1, 2, 3), appropriate dimensions matrix Y and positive scalar ε, such
that the following LMI holds:

Ξ̂ =

 Ξ1 Ξ2 Ξ3

∗ −ε 0
∗ ∗ −ε

 < 0, (4.18)

Ξ2 =
[

ελ1W 0 ελ2W 0 ελ3W 05n

]T
, Ξ3 =

[
N1X 0 N2Y 07n

]T

and the remaining parameters are share the same expressions as those in (4.16).

5. Numerical simulations

This section provides four numerical examples along with simulation results
to illustrate the effectiveness and less conservative of the developed theoretical
results. More precisely, in Example 5.1 we consider four cases to demonstrate
the obtained result. Case I deals with the reliable control design for the nominal
form NCS given in (3.1) with ∆K(k) = 0, and Case II investigates the non-fragile
reliable control design for NCS (3.1). In both, the cases actuator fault matrix is
known, whereas Case III and IV discuss the unknown actuator fault matrix for
uncertain discrete-time NCS without and with non-fragile control, respectively.

Example 5.1. Consider the closed loop reliable control for discrete-time NCS
(3.1) with the following parameters:

A =
[

0.08 0
0 0.09

]
, B =

[
1.2536
−0.8226

]
, H =

[
1 0
0 1

]
,
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Case :I (∆K(k) = 0 with known actuator fault matrix:)
By setting the uncertain free case in the control gain matrix, i.e., ∆K(k) =

0, and choosing the designing parameters λ1 = 0.0049, λ2 = 0.0006, λ3 =
0.0053, λ4 = 1.0988 and the remaining parameters as ρm = 1, ρ0 = 2, ρM =
8, G = 0.7, δ0 = 0.4in MATLAB LMI toolbox the LMI constraint obtained in
Theorem 3.1 is solved. It can be easily found that the obtained constraints are
solvable and feasible, which are not provided here due to page length. Based on the
above parameter values, the considered discrete-time NCS (3.1) is asymptotically
stable with a known actuator fault matrix.

Case :II (∆K(k) 6= 0 with known actuator fault matrix:)
Consider a non-fragile controller such that the resulting closed loop discrete

time NCS (3.1) is asymptotically stable with known actuator failure parameter
matrix G = 0.7. Further, the non-fragile uncertain parameters are give as follows:

M =
[

0.0127 0.0414
]
, N =

[
0.1012 0

0 0.0063

]
.

Solving the LMI in Theorem 3.2, with the above parameters together with
ρm = 1, ρ0 = 2, ρM = 7, G = 0.7, δ0 = 0.4 and the same designing parameters
as same in Case I, we get a feasible solution that guarantees the closed loop form of
the considered NCS (3.1) is asymptotically stable with non-fragile controller. For
both the cases, the corresponding output feedback control gain matrices and the
maximum delay bound of ρM are listed in Table 1 for Theorem 3.1 & 3.2 respec-
tively. It is observed from Table 1 that when the non-fragile controller appears in
the NCS (3.1) the upper bound ρM decreases compare to normal control.

Table 1. Comparison of the maximum delay bound ρM for the
cases I and II

Cases K̂ = K + ∆K(k) when ∆K(k) = 0 K̂ = K + ∆K(k) when ∆K(k) 6= 0

Gain Matrix K̂
[

0.0037 −0.0024
] [

0.0026 0.0001
]

Maximum upper bound ρM 8 7

Moreover, in order to reflect the effectiveness of the developed design scheme,
simulation results are presented in Figures 2- 4. For this, the initial condition of
the discrete time NCS (3.1) is chosen as x(0) =

[
0.05 −0.05

]
and the unknown

time varying uncertain matrix is given by,

F (k) =
{

0.01 sin(k), 0 ≤ k ≤ 50,
0, otherwise.

For cases I & II, the state responses of the considered NCS (3.1) are presented in
Figures 2 (a) and (b). Figure 2 (a) represents the time response of the state vector
xk without non-fragile. Figure 2 (b) represents the time response of the state vector
xk of the non-fragile NCS. Time histories of the reliable control forces uf (k) with
and without non-fragile control acting on the NCS (3.1) are given in Figure 3 (a)
and (b) respectively. Further, Figure 4(a) describes the Bernoulli random variable
δk and Figure 4(b) represents the variation of time-varying random delay ρk,1, ρk,2.
The simulation results reveal that the considered non-fragile reliable discrete time
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NCS with random delay is stabilizable via the proposed output feedback control
law.

when ∆K(k) = 0 when ∆K(k) 6= 0

Figure 2. State responses of the Closed loop NCS (3.1)

when ∆K(k) = 0 when ∆K(k) 6= 0

Figure 3. Control forces of controllers of nominal (3.1)

Case :III(∆K(k) = 0 with robust unknown actuator fault matrix:)
In the following case, we consider the problem of robust unknown reliable con-

troller design for a uncertain discrete time NCS (2.10) without non-fragile control.
In additionally, we choose the uncertain parameters as,

W =
[

α 0
]T

, Na =
[

0.3231 0
0 0.3381

]
, ℘(k) = α(k)/α

where |α(k)| ≤ α.
When the actuator fault matrix is not exactly known and assumed to occur in

the interval 0.2 ≤ G ≤ 0.9, then the reliable controller can be designed by solving
the LMI conditions in (4.9). For the above fault matrix inequality G together with
parameters in Case.2 with ρM = 6, the feasible solutions are obtained without
non-fragile controller.
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Figure 4. a) Simulation of Bernoulli random variables, b) Sim-
ulation of Time varying delay

More precisely, we assume that both the lower and upper bounds of the delay
ρk are known. Our purpose is to determine the maximum value of α such that the
uncertain NCS (2.10) is robustly asymptotically stable. The calculated maximum
value of α for different time varying interval ρk is given in Table 2. It is clear from
Table 2 that α decreases as time varying interval increases.

Table 2. Calculated upper values of α for Case III

1 ≤ ρ(k) ≤ 3 1 ≤ ρ(k) ≤ 4 1 ≤ ρ(k) ≤ 5 1 ≤ ρ(k) ≤ 6 1 ≤ ρ(k) ≤ 7

Case III 0.048 0.038 0.028 0.017 0.007

Case :IV(∆K(k) 6= 0 with robust unknown actuator fault matrix:)
Next, we consider an output feedback non-fragile controller such that, for all

admissible uncertainties as well as unknown actuator failures occurring in the
NCS model, the resulting closed-loop system is robustly asymptotically stable.
The sensor fault matrix G is assumed to satisfy 0.2 ≤ G ≤ 0.9. Then it follows
from (4.8) that G0 = 0.2 and G1 = 0.9 solving the LMI in Theorem 4.3 under the
same parameters considered in the previous cases, we obtain the feasible solutions
for the values of ρm = 1, ρ0 = 2, ρM = 6, δ0 = 0.4. The calculated maximum
value of α for different time-varying interval ρk is given in Table 3. Whereas the
robustness indices of output feedback control gain matrices and the maximum
delay bound of ρM for the cases III and IV respectively is given Table 4.

Table 3. Calculated upper values of α for Case IV

1 ≤ ρ(k) ≤ 3 1 ≤ ρ(k) ≤ 4 1 ≤ ρ(k) ≤ 5 1 ≤ ρ(k) ≤ 6

Case III 0.0193 0.0104 0.0007 0.0006

The corresponding simulation results are plotted in Figures 5 - 7 for both
∆K(k) = 0 and ∆K(k) 6= 0. The state responses of the uncertain closed-loop
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Table 4. Comparison of the maximum delay bound ρM for the
cases III and IV

Cases K̂ = K + ∆K(k) when ∆K(k) = 0 K̂ = K + ∆K(k) when ∆K(k) 6= 0

Gain Matrix K̂
[
−0.3707 −0.0323

] [
0.4706 −0.0759

]
Maximum upper bound ρM 6 4

when ∆K(k) = 0 when ∆K(k) 6= 0

Figure 5. State responses of the Closed loop NCS system (3.1)

when ∆K(k) = 0 when ∆K(k) 6= 0

Figure 6. Control forces of controllers of nominal system (3.1)

discrete time NCS system (2.10) in the presence and the absence of non-fragile
control terms are exhibited in Figures 5(a) and 5(b), respectively. Even though
the state responses of the closed-loop NCS (2.10) reach the equilibrium point
quickly compare to the presence of a non-fragile controller. So we conclude that
the considered uncertain discrete-time NCS in Example 5.1 is robustly asymptot-
ically stable through the obtained controller gain. Further, the simulated random
variables δk and the variation of time-varying delays ρk,1, ρk,2 are demonstrated
in Figures 7(a) and (b), respectively.
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Figure 7. a) Simulation of Bernoulli random variables, b) Sim-
ulation of Time varying delay

Figure 8. Inverted pendulum system

It is observed that, the state vectors of discrete-time NCS for both ∆K(k) = 0
and ∆K(k) 6= 0 cases are shown in Figures 2 and 5 respectively, and the cor-
responding controller performances are shown in Figures 3, 6, respectively for
both nominal and uncertain NCS. We can say that the obtained controller designs
compared to the non-fragile controller make the state trajectories converge well
and quickly to an equilibrium point. Thus, simulation results reveal that the de-
signed controller can stabilize the uncertain closed-loop NCS (2.10) effectively in
the presence and absence of uncertainties.

Example 5.2. In this example, we consider an inverted pendulum system with
a delayed control input. The inverted pendulum on a cart is depicted in Figure
8. In this system, a pendulum is attached to the side of a cart by means of a
pivot which allows the pendulum to swing in the xy-plane. A force uf is applied
to the cart in the x-direction to keep the pendulum balanced upright. xk is the
displacement of the center of mass of the cart from the origin O. θ is the angle
of the pendulum from the top vertical. M and m are the masses of the cart and
the pendulum, respectively; l is the half-length of the pendulum (i.e., the distance
from the pivot to the center of mass of the pendulum). It is assumed that the
pendulum is modeled as a thin rod and the surface to be friction-free. Then, by
applying Newton’s second law, we arrive at the equations of motion for the system
[4, 13].
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(M + m)ẍ + mlθ̈ cos θ −mlθ̇2 sin θ = uf (5.1)

mlẍ cos θ +
4
3
ml2θ̈ −mgl sin θ = 0 (5.2)

where g is the acceleration due to gravity. Now, by selecting state variables

z =
[

z1

z2

]
=

[
θ

θ̇

]
and by linearizing the above model at the equilibrium point z = 0, we obtain the
following statespace model:

żt =

[
0 1

3(M+m)g
l(4M+m) 0

]
zt +

[
0

− 3
l(4M+m)

]
uf

t (5.3)

Here the parameters are selected as M = 8.0kg, m = 2.0kg, l = 0.5m, g =
9.8m/s2. By assuming the sampling time to be Ts = 30m/s, the discretized model
for the above pendulum system in (5.3) is given by,

xk+1 =
[

1.0087 0.0301
0.5202 1.0078

]
xk +

[
−0.0001
0.0053

]
uf

k (5.4)

Assume the lower delay bound ρm = 1(i.e., dmh = 30ms). In comparison, by
solving the LMI in Corollary 4.5 of this correspondence paper, we have easily
found feasible solution, that the discrete time NCS is asymptotically stable for
any delay less than ρM = 5 (i.e., dMh = 150ms) with the design parameters as
λ1 = 0.7232, λ2 = 0.3474 and λ3 = 8.6547. Moreover, it is clearly seen from Table
5 that the maximum upper bound obtained in this paper is bigger than the value
in [4, 5], which concludes that the proposed controller has less conservative and
better performance. From the obtained solutions, the state feedback control gain
matrices are calculated as

K =
[
−159.4809− 38.5120

]
(5.5)

Table 5. Calculated upper bound ρM for different values of ρm

Method [5] Theorem 1 in [4] Theorem 3 in [4] Corollary 4.6

ρM 1 2 3 4

For simulation purpose, we take the initial condition x(0) =
[

0.05 −0.05
]T .

The simulation result of the open and closed loop form of discrete time NCS is
given in Figure 9 to show the effectiveness of controller gain (5.5). The unstability
of the state responses of open loop form of NCS is revealed in Figure 9(a) whereas
state responses of closed loop form of NCS converges to equilibrium point in Figure
9(b).
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Figure 9. State responses of the open and closed loop NCS (5.4)

Example 5.3. Consider the uncertain closed loop NCS (4.14) with the norm
bounded parameter uncertainties with the following parameters:

A =
[

0.8 0
0 0.9

]
, B =

[
−0.1 0
−0.1 −0.1

]
, H =

[
1 0
0 1

]
, W =

[
ᾱ
0

]
,

N1 =
[

1 0
]
, N2 =

[
0 0

]
, ℘(k) = α(k)/ᾱ

where |α(k)| ≤ α.
Assume that both lower and upper bounds of the delay ρ(k) are known. From

Corollary 4.6 the calculated maximum value of ᾱ is presented in Table 6 with the
designing parameter values λ1 = 0.7947, λ2 = 0.5774 and λ3 = 8.6547 such that
the system in (4.14) with the uncertainties is robustly asymptotically stable. For
comparison, the method from [5] is also simulated under the same conditions and
the results are listed in Table 6. It is observed that our results are much less
conservative than the previous ones.

Table 6. Calculated upper values of ᾱ for different cases

1 ≤ ρ(k) ≤ 2 3 ≤ ρ(k) ≤ 5 5 ≤ ρ(k) ≤ 7 2 ≤ ρ(k) ≤ 7 2 ≤ ρ(k) ≤ 8

[5] - 0.1615 0.1300 0.0830 Infeasible

Corollary 4.6 0.2277 0.1914 0.1696 0.1696 0.1572

Example 5.4. Consider the following discrete-time system with a time-varying
state delay [5]

x(k + 1) =
[

0.8 0
0.05 0.9

]
xk +

[
−0.1 0
−0.2 −0.1

]
xk,ρ

By solving the LMI in Corollary 4.5 is feasible with the designing parameter values
λ1 = 0.8909, λ2 = 0.3342 and λ3 = 4.7204, then the calculated maximum upper
bound ρM for different values ρm is presented in Table 7. However, the upper
bound of time delay obtained in [4, 5] are smaller than that of our paper. Thus,
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Table 7. Calculated upper bound ρM for different values ρm

ρm = 2 ρm = 4 ρm = 6 ρm = 10 ρm = 12

[5] 7 8 9 12 13

Theorem 1 in [4] 13 13 14 15 16

Theorem 3 in [4] 13 13 14 15 16

Corollary 4.5 20 20 22 26 28

we can conclude that the our proposed controller yields better performance than
the work in [4, 5].

6. Conclusion

The non-fragile reliable output feedback control problem for a class of discrete-
time NCS with data packet dropout and transmission delays induced by network
channels via randomly occurring time-varying delays has been investigated. The
non-fragile reliable output feedback control has been designed for the proposed
closed-loop NCS. By implementing the Lyapunov technique together with the
LMI approach and free weighting matrix, delay-dependent sufficient conditions
are obtained in terms of LMIs for the existence of a non-fragile reliable controller,
which ensures the robust asymptotic stability of the NCS. Finally, four numerical
examples show the less conservativeness of the obtained results and demonstrate
the effectiveness of the proposed non-fragile reliable control law.
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