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Abstract. The main purpose of this paper is to study the existence of periodic
solutions of second order impulsive differential equations with superlinear nonlinear
terms. Our result generalizes one of Paul H. Rabinowitz’s existence results of periodic
solutions of second order ordinary differential equations to impulsive cases. Mountain
Pass Lemma is applied in order to prove our main results.
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Introduction

Impulsive differential equations arising from real world describe the dynamics of pro-
cesses in which sudden, discontinuous jumps occur. Such processes are naturally seen
in control theory [15, 19, 20], population dynamics [21], chemotherapeutic treatment
in medicine [22], and some physics problems [18, 23]. For its significance, a lot of ef-
fort has been done in the theory of impulsive differential equations. See, for instance
[16, 17, 25, 26]. For general aspects of impulsive differential equations, monographs
[11, 10, 12] are recommended.

Since 1990s, lots of significant results concerning the existence of periodic so-
lutions of impulsive differential equations have been proved. The main tools used
are fixed point theory, topological degree theory(including continuation method) and
comparison method(including upper and lower solutions methods and monotone iter-
ative method), c.f. [25-33] and references therein. However, compared to the ordinary
differential equations, the results are still relatively rare. One of the reasons is that
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Periodic Solutions of Second-order Nonautonomous Impulsive DEs 113

some tools which are widely used in the ODE theory are still not effectively ap-
plied in impulsive differential equation theory. Critical point theory(including direct
methods, minimzx methods and Morse theory) is just such an example. It has been
extensively applied in study of the existence of periodic solutions of second order
ODEs u′′(t) = ∇F (t, u(t)) with superlinear or sublinear nonlinear terms ∇F , c.f.
[3, 5, 9, 8, 13, 14] and references therein. However, to the best of our knowledge,
there are still no similar results for impulsive differential equations. In this paper,
we generalize one of Paul H. Rabinowitz’s existence results of periodic solutions of
second order ordinary differential equations in [1] to impulsive cases.

More precisely, this paper studies the following differential equations

−u′′(t) + ak(t)u(t) = fk(t, u(t)), for t ∈ (tk, tk+1). (0.1)

u(s+k ) = u(s−k ) + cku(s
−
k ), (0.2)

u′(s+k ) = u′(s−k ) + dku
′(s−k ) + gk(u(s−k )), (0.3)

where u(t+) = lim
s→t+

u(s), u(t−) = lim
s→t−

u(s), ak, fk, gk, sk, ck and dk satisfy the

following conditions.

(A)

ak ∈ C(R,R+), fk ∈ C(R × R,R) and gk ∈ C(R,R) for all integers k,
{sk}, {ck} and {dk} are real sequences, there exist a positive integer m and
a positive number T such that 0 = s0 < s1 < · · · < sm = T , sk+m =
sk +T, ck+m = ck, dk+m = dk, gk+m = gk, ak+m(t+T ) = ak(t) and fk+m(t+
T, x) = fk(t, x) for any integer k and (t, x) ∈ R × R.

u(·) : R → R is a solution of (0.1)-(0.3) if it’s a piecewise continuous function
which has discontinuous of the first kind at sk and satisfying (0.1)-(0.3). For con-
venience and historical reason, we also suppose u is continuous from the left, that
is, we set u(sk) = lims→s

−

k
u(s) for each sk. u is said to be a T -periodic solution of

equations (0.1)-(0.3) if it is a solution of (0.1)-(0.3) and satisfies

u(0) − u(T ) = u′(0) − u′(T ) = 0, (0.4)

where u′(0) = limt→0− u′(t) and u′(T ) = limt→T− u′(t). Under hypothesis (A), it’s
easy to show that finding a T -periodic solution of (0.1)-(0.3) is equivalent to finding
a solution of the boundary value problem the BVP (0.1)-(0.4).

Our main result will be given in Section 2 and it’s a generalization of Theorem
6.10 of [1](see Remark 2.3).

There are three difficulties encountered when applying the critical point theory
to prove our main result. The first two are how to construct an appropriate Hilbert
space and that how to define a functional on that Hilbert space whose critical points
correspond to the solutions of (0.1)-(0.4) . The common definitions of such Hilbert
space and functional for second order ODE without impulse can not be used any
more, since the impulse conditions (0.2) and (0.3) must be taken into account. We
deal with these difficulties in section 1 by giving explicit definition of the Hilbert
space (denoted by HIT , see (1.1)) and the functional (denoted by I, see (1)). The
equivalence between solutions of the BVP (0.1)-(0.4) and critical points of functional
I is also proved in that section.
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114 H. Zhang, Z. Li

The next difficulty concerns how to find the critical points of the functional I. We
handle this in section 2. Via Mountain Pass Lemma, an existence result of solutions
of the BVP (0.1)-(0.4) is proved in that section.

This paper takes little space to talk about the detail of critical point theory. For
general theory about it, references[1, 2, 3, 4] are recommended.

1. Variational Structure

Let Γk = (sk−1, sk) for k = 1, 2, . . . ,m. Let u(k) = u|Γk
, ∀k = 1, 2, . . . ,m. Define the

function space

HIT =
{

u : [0, T ] → R | u is continuous from left at each sk, u(k) is absolutely

continuous, the weak derivative of u(k) is in L2(Γk), u satisfies the

condition (0.2) for all k = 1, . . . ,m, and u(0) = u(T )
}

.

(1.1)

ĤIT = {u : R → R| u is T -periodic , u|[0,T ] ∈ HIT } (1.2)

It’s easy to prove that the space HIT and ĤIT are isomorphic Hilbert spaces with
the following inner product

〈u, v〉 =

m
∑

k=1

∫

Γk

u(s)v(s)ds+

m
∑

k=1

∫

Γk

u′(s)v′(s)ds.

In this paper, we identify these two spaces and denote the norm induced by the above
inner product by ‖·‖.

Remark 1.1. Obviously, for any u ∈ HIT , u(k) ∈ W 1,2(Γk). By Sobolev-Rellich-
Kondrachov Imbedding Theorem(c.f. [6, 7]), the imbeddings W 1,2(Γk) ⊂ C(Γk) and
W 1,2(Γk) ⊂ L2(Γk) are continuous and compact.

Consider the functional I defined on HIT as follows.

I(u) =

m
∑

k=1

∫

Γk

1

2
|u′(s)|2 +

ak(s)

2
u2(s) − Fk(s, u(s))ds+

m
∑

k=1

∫ u(s−

k
)

0

gk(x)dx,

where Fk(t, x) =
∫ x

0
fk(t, y)dy, and

gk = (1 + ck)gk, ∀ k = 1, 2, . . . ,m. (1.3)

We will prove that the critical points of I are solutions of the BVP (0.1)-(0.4) .
First we show that under some conditions, the functional I is Fréchet differentiable.
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Periodic Solutions of Second-order Nonautonomous Impulsive DEs 115

Lemma 1.1. Assume fk and gk are continuous, then the functional I given by (1)
is Fréchet differentiable, and

I ′(u)v =

m
∑

k=1

∫

Γk

u′v′ + akuv − fk(s, u)vds+

m
∑

k=1

gk(u(s−k ))v(s−k ), (1.4)

for all u, v ∈ HIT .

Proof. Note that for each k = 1, 2, . . . ,m, u(k) ∈ W (1,2)(Γk), with little modifi-
cation to the proof of Theorem 1.4 in [3], it’s not difficult to prove that for each
k = 1, 2, . . . ,m,

Jk(u) =

∫

Γk

1

2
|u′|2 +

ak

2
u2 − Fk(s, u)ds

is Fréchet differentiable and

J ′
k(u)v =

∫

Γk

u′v′ + akuv − fk(s, u)vds

for all u, v ∈ HIT .
Since gk is continuous and that the imbedding W 1,2(Γk) ⊂ C(Γk,R) is con-

tinuous, it’s easy to check Hk(u) =
∫ u(s−

k
)

0 gk(x)dx is differentiable and J ′
k(u)v =

gk(u(s−k ))v(s−k ). �

Lemma 1.2. Suppose hypothesis (A) holds and dk = (1+ck)−1−1, then the following
two statements are equivalent

(1) u is critical point of I(u);

(2) u is a classical solution of the BVP (0.1)-(0.4) .

Proof. First suppose u is a critical point of I. It needs to verify that u is a classical
solution of (0.1)-(0.4) .

u is a critical point of I implies ∀v ∈ HIT

m
∑

k=1

∫

Γk

u′v′ + akuv − fk(s, u)vds+
m

∑

k=1

gk(u(s−k ))v(s−k ) = 0. (1.5)

Choosing v ∈ HIT , v|Γj
= 0 for j = 1, . . . , k − 1, k + 1, . . . ,m, (1.5) shows that

∫

Γk

u′v′ + akuv − fk(s, u)vds = 0. (1.6)

This means, for any w ∈W 1,2
0 (Γk), the following equation holds.

∫

Γk

u′w′ + akuw − fk(s, u)wds = 0. (1.7)
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116 H. Zhang, Z. Li

Thus u(k) is a weak solution of equation

−u′′(t) + aku(t) = fk(t, u(t)), t ∈ Γk. (1.8)

Let h(t) = fk(t, u(t)). By the fact u(k) ∈W 1,2(Γk) ⊂ C(Γk) and f ∈ C(R×R,R), h(t)
is continuous. Following from the regularity of solutions of linear elliptic differential
equations(c.f. [6]), u(k) ∈ W 2,2(Γk), for all k = 1, 2, . . . ,m. Also by u(k) ∈ C(Γk) and
h ∈ C(R,R), (1.8) implies u(k) ∈ C2(Γk,R), which means u(k) is a classical solution
of (1.6) for all k = 1, 2, . . . ,m. So the following equations hold for u and v ∈ HIT

∫

Γk

u′v′ + u′′vds = u′v|
s
−

k

s
+
k−1

, ∀k = 1, 2, . . . ,m. (1.9)

Combining (1.5) and (1.9) shows that

m
∑

k=1

∫

Γk

(u′′ − aku+ fk(s, u))vds =

m
∑

k=1

u′v|
s
−

k

s
+
k−1

+

m
∑

k=1

gk(u(s−k ))v(s−k ), (1.10)

where u′v|
s
−

k

s
+
k−1

= u′(s−k )v(s−k ) − u′(s+k−1)v(s
+
k−1). Choosing v ∈ HIT and v(s−k ) =

v(s+k ) = 0, ∀k = 1, 2, . . . ,m, (1.10) shows that

m
∑

k=1

∫

Γk

(u′′ − aku+ fk(s, u))vds = 0 (1.11)

for all v ∈ HIT , v(s
−
k ) = v(s+k ) = 0, k = 1, 2, . . . ,m. By the fact C∞

0 (Γk) is dense in
L2(Γk), (1.11) holds for all v ∈ HIT . It follows that

m
∑

k=1

u′v|
s
−

k

s
+
k−1

+

m
∑

k=1

gk(u(s−k ))v(s−k ) = 0 (1.12)

holds for all v ∈ HIT . By (0.1) and the fact u(k) ∈ C(Γk), u′′(t) is bounded for
t ∈ [0, T ] \ {s1, . . . , sm}, which means u′(s±k ) exist for all k = 1, 2, . . . ,m.

It follows from (1.12) that

0 =

m−1
∑

k=1

(

u′(s−k )v(s−k ) − u′(s+k )v(s+k ) + gk(u(s−k ))v(s−k )
)

+ u′(T−)v(T−) − u′(0+)v(0+) + gT (u(T−))v(T−)

=
m−1
∑

k=1

(

u′(s−k ) − (1 + ck)u′(s+k ) + gk(u(s−k ))
)

v(s−k )

+
(

u′(T−) − (1 + c0)u
′(0+) + g0(u(T

−))
)

v(T−)

(1.13)

for any v ∈ HIT . Since v ∈ HIT is arbitrary, (1.13) implies u′(s+k ) = (1+ck)
−1u′(s−k )+

gk(u(s−k )) = u′(s−k ) + dku
′(s−k ) + gk(u(s−k )), ∀k = 1, 2, ...,m− 1 and

u′(0+) = (1 + c0)
−1u′(T−) + g0(u(T

−)). (1.14)
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Periodic Solutions of Second-order Nonautonomous Impulsive DEs 117

Since u is T -periodic, u′(0−) = u′(T−), which means u′(T+) = (1+cm)−1u′(T−)+
g(u(T−) = u′(T−) + dmu

′(T−) + g(u(T−)). So condition (3) holds for u. Thus u is a
classical solution of the BVP (0.1)-(0.4) .

If u is a solution of (0.1)-(0.4) , it’s not difficult to show u satisfies both (1.11)
and (1.13) for all v ∈ HIT . This implies equation (1.5) holds for all v ∈ HIT which
means u is a critical point of functional I. �

2. Existence of Nonzero Periodic Solutions

To facilitate statements in the remainder of the paper, we introduce some notations.

H1. lim
x→0

fk(t, x)

x
= 0 uniformly with respect to t ∈ [0, T ] for all k = 1, 2, . . . ,m;

H2. there are constants µk > 2 and r > 0 such that for |x| ≥ r,

xfk(t, x) ≥ µk

∫ x

0

fk(t, y)dy > 0 (2.1)

uniformly with respect to t ∈ [0, T ] for all k = 1, 2, . . . ,m;

H3. lim
x→0

gk(x)

x
= 0 for all k = 1, 2, . . . ,m;

H4. suppose µk is the constant given above,

lim inf
|x|→∞

x−2

(
∫ x

0

gk(y)dy −
1

µk

gk(x)x

)

≥ 0 (2.2)

holds for all k = 1, 2, . . . ,m, where gk are defined by (1.3).

Remark 2.1. Integrating equation (2.1) shows that there exists constants a, b > 0
such that

Fk(t, x) ≥ a|x|µk − b, ∀x ∈ R. (2.3)

Thus Fk(t, x) grows at a “superquadratic” rate and fk(t, x) grows at a “superlinear”
rate uniformly with respect to t ∈ [0, T ] as |x| → ∞

Remark 2.2. Condition H4 implies there exists a continuous nonincreasing function
ψ : R → [0,+∞) such that

∫ x

0

gk(y)dy −
1

µk

gk(x)x ≥ −ψ(x)|x|2, ∀ k = 1, 2, . . . ,m (2.4)

and lim
|x|→∞

ψ(x) = 0.
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Theorem 2.1. Suppose hypothesis (A) holds and there exists a positive constant A
such that ak(t) ≥ A for all integers k and t ∈ R, dk = (1 + ck)−1 − 1, fk satisfies the
H1 and H2, gk satisfies H3 and H4. Then the BVP (0.1)-(0.4) possesses at least one
nonzero solution.

Remark 2.3. Theorem 1 is a generalization of Theorem 6.10 of Rabinowitz [1]. In
fact Theorem 6.10 of [1] follows from Theorem 1 by letting ck = 1 and gk = 0 for all
k.

We will use the famous Mountain Pass Lemma to prove this result.

Lemma 2.1. (Mountain Pass Lemma) Let E be a real Banach space and I ∈
C1(E,R) satisfying (P.S.). Suppose I(0) = 0 and

(I1) there are constants ρ, β > 0 such that I|∂Bρ
≥ β, and

(I2) there is an e ∈ E \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
h∈Γ

max
x∈h([0,1])

I(x),

where
Γ = {h ∈ C([0, 1], E)|h(0) = 0, h(1) = e}.

Proof of Theorem 2.1. Let

J(u) =

m
∑

k=1

∫

Γk

Fk(s, u(s))ds.

By Remark 2.1

J(u) ≥

m
∑

k=1

a

∫

Γk

|u(s)|µkds− bT. (2.5)

Choosing u ∈ HIT \ {0}, such that u(s+k ) = u(s−k ) = 0. (2.5) implies

I(tu) ≤
t2

2

m
∑

k=1

∫

Γk

|u′(s)|2 + ak|u(s)|
2ds+

m
∑

k=1

∫ tu(s−

k
)

0

gk(x)dx

− tµ
m

∑

k=1

∫

Γk

a|u(s)|µkds+ bT

≤
t2

2

m
∑

k=1

∫

Γk

|u′(s)|2 + ak|u(s)|
2ds− tµ

m
∑

k=1

∫

Γk

a|u(s)|µkds+ bT

≤
t2

2

m
∑

k=1

∫

Γk

|u′(s)|2 + ak|u(s)|
2ds− tµ

m
∑

k=1

∫

Γk

a|u(s)|µkds+ bT

→ −∞ ( as t→ +∞),
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Periodic Solutions of Second-order Nonautonomous Impulsive DEs 119

where µ = min{µk}. So the condition (I2) of Mountain Pass Lemma holds.
By condition H1, for any ǫ > 0, there exist δ1 > 0 such that for any |x| ≤ δ1,

|Fk(t, x)| ≤
1

2
ǫ|x|2 and |g(x)| ≤ ǫ|x|, ∀k = 0, 1, . . . ,m. (2.6)

Chose ǫ ≤ min{A
2 ,

1
2C2 ,

A
4C2 }. By Remark 1.1, ∀ k = 1, 2, . . . ,m, there exists

Ck > 0, such that
||u(k)||∞ ≤ Ck||u

(k)||W (1,2)(Γk) (2.7)

Let C = max{Ck}, δ = min{δ1, δ1/C}. Then for any u ∈ HIT , ||u|| ≤ δ,

|F (u(s))| ≤
1

2
ǫ|u(s)|2. (2.8)

Then

I(u) ≥
m

∑

k=1

1

2

∫

Γk

|u′(s)|2 +A|u(s)|2ds−
m

∑

k=1

ǫ

2

∫

Γk

|u(s)|2ds−
m

∑

k=1

∫ u(s−

k+1)

0

ǫ

2
|x|dx

≥

m
∑

k=1

1

2

∫

Γk

|u′(s)|2 +
A

2
|u(s)|2ds−

1

2

m
∑

k=1

ǫ|u(s−k+1)|
2. (2.9)

≥
1

2
min{1,

A

2
}‖u‖2 −

1

2
ǫ‖u‖2

∞

≥
1

2
min{1,

A

2
}‖u‖2 −

1

2
C2ǫ‖u‖2

≥
1

4
min{1,

A

2
}‖u‖2 (2.10)

Let ρ = δ. (2.7) and (2.10) mean that ∀ u ∈ ∂Bρ,

I(u) ≥ min{
1

4
,
A

8
}ρ2 (2.11)

Let β = min{ 1
4 ,

A
8 }ρ

2. (2.11) implies condition (I1) of Mountain Pass Lemma holds
too.

Now we verify the (P.S.) condition.
Suppose {un} is a sequence in HIT such that |I(un)| ≤ M for some positive

number M , and ‖I ′(un)‖ → 0 (k → ∞). We need to show that {un} has a convergent

subsequence. Now fix k and let T k
n = 1

µk

(

fk(s, u
(k)
n (s))u

(k)
n (s) − µkFk(s, u

(k)
n (s))

)

and

Ik(u(k)) =

∫

Γk

∣

∣

∣

du(k)

ds

∣

∣

∣

2

+ ak|u
(k)|2 − Fk(s, u(k))ds+

∫ u(k)
n (s−

k
)

0

gk(x)dx,
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120 H. Zhang, Z. Li

then

Ik(u(k)
n ) −

1

µk

I ′k(u(k)
n )u(k)

n =

∫

Γk

(1

2
−

1

µk

)(
∣

∣

∣

du
(k)
n

ds

∣

∣

∣

2

+ ak|u
(k)
n |2

)

ds

+

∫ u(k)
n (s−

k
)

0

gk(x) dx −
1

µk

gk(u(k)
n (s−k ))u(k)

n (s−k )

+

∫

Γk

T k
n ds.

By Remark 2.2,

Ik(u(k)
n ) −

1

µk

Ik(u(k)
n )u(k)

n ≥M1‖u
(k)
n ‖2 − ψ(u(k)

n (s−k ))u(k)
n (s−k )2

+

∫

Γ+
k,r

T k
nds+

∫

Γ−

k,r

T k
nds,

where M1 = min{1, A}(1
2 − 1

µk
), Γ+

k,r = {s ∈ Γk| |u
(k)
n (s)| ≥ r}, and Γ−

k,r = {s ∈

Γk| |u
(k)
n (s)| < r}. By H2,

∫

Γ+
k,r

T k
nds is nonnegative and

∫

Γ−

k,r

T k
nds is bounded by

some number M2. So for all n,

M + µ−1
k ‖u(k)

n ‖ ≥M1‖u
(k)
n ‖2 − ψ(u(k)

n (s−k ))u(k)
n (s−k )2 −M2. (2.12)

If {u
(k)
n (s−k )} is bounded, the boundedness of {u

(k)
n } can be derived form (2.12)

easily. Assume that {u
(k)
n (s−k )} is unbounded, then {u

(k)
n } is unbounded in W 1,2(Γk)

sense too. By Remark 2.2, for n large enough, ψ(u
(k)
n (s−k )) < M1/(2C), where C is

defined after (2.7). Then for n large enough,

M1 ≤
M1u

(k)
n (s−k )2

2‖u
(k)
n ‖2

+
1

µk‖u
(k)
n ‖

+
M +M2

‖u
(k)
n ‖2

≤
M1

2
+

1

µk‖u
(k)
n ‖

+
M +M2

‖u
(k)
n ‖2

. (2.13)

A contradiction can be easily derived form (2.13) for n large enough. So {u
(k)
n (s−k )}

is bounded.
By Remark 1.1, the boundedness of {u

(k)
n } ⊂W 1,2(Γk) implies {u

(k)
n } is precom-

pact both in space C(Γk) and L2(Γk). Without loss of generality, suppose {u
(k)
n } is

convergent both in C(Γk) and L2(Γk) for each k = 1, 2, . . . ,m. This implies for each

k, {u
(k)
n (s−k )} and {gk(u

(k)
n (s−k ))} are convergent sequences; {fk(s, u

(k)
n )} converges

uniformly in C(Γk), hence it converges in L2(Γk).
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(

I ′(u
(k)
l ) − I ′(u(k)

n )
)

(u
(k)
l − u(k)

n )

=

∫

Γk

∣

∣

∣

du
(k)
l

ds
−
du

(k)
n

ds

∣

∣

∣

2

+ ak|u
(k)
l − u(k)

n |2ds

−

∫

Γk

(fk(s, u
(k)
l ) − fk(s, u(k)

n ))(u
(k)
l − u(k)

n )ds

+
(

gk(u
(k)
l (s−k )) − gk(u(k)

n (s−k ))
)

(u
(k)
l (s−k ) − u(k)

n (s−k ))

implies

min{1, A}‖u
(k)
l − u(k)

n ‖

≤
(

I ′(u
(k)
l ) − I ′(u(k)

n )
) u

(k)
l − u

(k)
n

‖u
(k)
l − u

(k)
n ‖

+
1

2
‖u

(k)
l −u(k)

n ‖−1
(

‖fk(s, u
(k)
l ) − fk(s, u(k)

n )‖L2(Γk) + ‖u
(k)
l − u(k)

n ‖L2(Γk)

)

+ ‖u
(k)
l − u(k)

n ‖−1
(

gk(u
(k)
l (s−k )) − gk(u(k)

n (s−k ))
)

(u
(k)
l (s−k ) − u(k)

n (s−k )).

This shows that {u
(k)
n } is a Cauchy sequence in W 1,2(Γk). With this fact in mind,

it’s not difficult to verify {un} has a convergent subsequence in HIT . So the (P.S.)
condition holds for I.

At last, by Mountain Pass Lemma, I possesses at least one nonzero critical point,
which means the boundary value problems (0.1)-(0.4) has at least one nonzero classical
solution. �

Next, we consider a special case of equations (0.1)-(0.3).

−u′′(t) + ak(t)u(t) = fk(t, u(t)), t ∈ (sk, sk+1), (2.14)

u′(s+k ) = u′(s−k ) + gk(u(s−k )), (2.15)

Corollary 2.1. Suppose there exist positive numbers T , A and a positive integer m
such that 0 = s0 < s1 < · · · < sm = T , sk+m = sk+T, ak+m(t+T ) = ak(t), fk+m(t+
T ) = fk(t) and ak(t) ≥ A for all integers k and t ∈ R, fk satisfies the H1 and H2,
gk satisfies H3 and H4. Then (2.14)-(2.15) possesses at least one nonzero T -periodic
solution.

For the more simple equations

−u′′(t) + au(t) = f(u(t)), t ∈ (sk, sk+1), (2.16)

u′(s+k ) = u′(s−k ) + g(u(s−k )), (2.17)

we have the following results.
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H1’. lim
x→0

f(x)

x
= 0;

H2’. there are constants µ > 2 and r > 0 such that for |x| ≥ r,

xf(x) ≥ µ

∫ x

0

f(y)dy > 0.

H3’. lim
x→0

g(x)

x
= 0.

H4’. if µ is the constant given above, then

lim inf
|x|→∞

x−2

(
∫ x

0

g(y)dy −
1

µ
g(x)x

)

≥ 0.

Corollary 2.2. Suppose a > 0 and there exist a positive numbers T and a positive
integer m such that 0 = s0 < s1 < · · · < sm = T , sk+m = sk + T for all integers k,
f satisfies H1’ and H2’, g satisfies H3’ and H4’. Then (2.16)-(2.17) possess at least
one nonzero T -periodic solution.
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