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Abstract. Burton-Kirk’s fixed point theorem or degree theory is used to study
the existence of periodic solutions in neutral functional differential equations by con-
structing a homotopy which is a combination of a contraction mapping and compact
mapping. The construction of such a homotopy is very difficult in practice for non-
linear equations. In this paper, we use the direct fixed point mapping technique to
link the homotopy to the right hand side of the equation directly and avoid those
difficulties.
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1. Introduction

We consider the system of neutral functional differential equations

d

dt

(

x(t) −

∫ ∞

0

[dE(s)]x(t − s)
)

= F (t, xt) (1.1)

where x(t) ∈ Rn, F : R × C → Rn is continuous with C being the Banach space of
bounded continuous functions φ : (−∞, 0] → Rn with the supremum norm ‖ · ‖ and
F (t, φ) is T -periodic in t for each φ ∈ C. Here E : R+ → Rn×n is continuous to the left
and of bounded variation on R+. The assumption on E allows for

∫ ∞

0
[dE(s)]x(t− s)

to include such forms as

Dx(t) +Kx(t− r) +

∫ t

−∞

G(t− s)x(s)ds
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102 B. Zhang

in which D and K are constant matrices, r > 0, and G : R+ → Rn×n is continuous.
For each bounded continuous function x : R → Rn and t ∈ R, xt is defined by
xt(s) = x(t + s) for all s ≤ 0 so that xt ∈ C.

The existence of periodic solutions of (1.1) has been the subject of extensive in-
vestigations for many years. Our interest here centers on fixed point theorems of
continuation type which are nonlinear alternatives of Leray-Schauder degree theory.
Continuation theorems such as Schaefer’s fixed point theorem, without actually cal-
culating degree, require less restrictive growth condition on the functions involved.
For the historical background and discussion of applications, we refer the reader to,
for example, the work of Burton ([1], [2]). Burton and Kirk [3], Burton and Zhang
[4], Hale and Mawhin [6], Hatvani and Krisztin [7], Ma, Wang, and Yu [10], Wu,
Xia, and Zhang [13], and Zhang [14]. A common method of applying fixed point
theory consists of writing the differential equation as an integral equation which then
defines a mapping; if the mapping has a fixed point, then it is a solution of the dif-
ferential equation. In this paper, we use the direct fixed point mapping technique
introduced in Burton and Zhang [4] to construct a homotopy directly from F (t, φ)
and

∫ ∞

0
[dE(s)]x(t−s). This involves writing the solution as an integral equation and

it eliminates many of the problems encountered in writing the differential equation as
an integral equation. Then main difficulty is in selecting the constant of integration.
Examples will be given to illustrate the method of finding such a constant.

Let R−, R+, R denote the intervals (−∞, 0], [0,∞), and (−∞,∞) respectively.
| · | denotes the Euclidean norm on Rn. For an n×n matrix D, we denote the norm of
D by ‖D‖ = sup{|Dx| : |x| ≤ 1}. Let (PT , ‖ · ‖) be the Banach space of continuous
T -periodic functions φ : R → Rn with the supremum norm and define

P 0
T = {φ ∈ PT :

∫ T

0

φ(s)ds = 0}

For F : R×C → Rn, we say F (t, φ) is continuous in φ ∈ C uniformly with respect
to t ∈ R if for each ε > 0 and φ0 ∈ C, there exists δ > 0 such that [φ ∈ C, ‖φ−φ0‖ < δ]
imply

|F (t, φ) − F (t, φ0)| < ε for all t ∈ R.

2. The Main Result

Our result rests on a fixed point theorem of Burton and Kirk [3] which is a combination
of the contraction mapping theorem and Schaefer’s theorem. The theorem may be
viewed as a continuation theorem of Krasnoselskii [8] type. Continuation theorems
and their relations to Leray-Schauder degree theory are discussed in Smart [12].

Theorem 2.1. (Burton-Kirk) Let V be a Banach space, A, B : V → V, B a con-
traction with contraction number α < 1, and A continuous with A mapping bounded
sets into compact sets. Then either
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Periodicity in NFDEs by Direct Fixed Point Mapping 103

(i∗) x = λB(x/λ) + λAx has a solution in V for λ = 1, or

(ii∗) the set of all such solutions, 0 < λ < 1, is unbounded.

Some extensions of Theorem 2.1 may be found in Dhage [5], Liu and Li [9]. It is
clear that λB(x/λ) = B(x) when B is linear.

Theorem 2.2. Suppose the following conditions hold:

(i) There exists a constant γ, 0 < γ < 1, such that

∫ ∞

0

‖d[E(s)]‖ = γ.

(ii) For each φ ∈ P 0
T , there is a constant kφ ∈ R such that

∫ T

0
F (t,Φt)dt = 0

where Φ(t) = kφ +
∫ t

0
φ(s)ds.

(iii) Γ : P 0
T → PT defined by Γ(φ)(t) = Φ(t) in (ii) is continuous and for each α > 0,

there exists a constant Lα > 0 such that |kφ| ≤ Lα whenever ‖φ‖ ≤ α.

(iv) F : R× C → Rn is continuous and maps bounded sets into bounded sets.

(v) There exists a constant B1 > 0 such that ‖x‖ < B1 whenever x = x(t) is a
T -periodic solution of

d

dt

(

x(t) −

∫ ∞

0

[dE(s)]x(t − s)
)

= λF (t, xt), λ ∈ (0, 1]. (2.1)

Then (1.1) has a T -periodic solution.

Proof. First observe that
∫ t

0
φ(s)ds is T -periodic for each φ ∈ P 0

T . For B1 > 0 in (v),
by (iv) there exists L > 0 such that |F (t, ψ)| ≤ L whenever ψ ∈ C and ‖ψ‖ ≤ B1.
We now define

(Bφ)(t) =

∫ ∞

0

[dE(s)]φ(t − s) and (Aφ)(t) = F (t,Φt).

It is clear that B : P 0
T → P 0

T is a contraction. Since F is continuous, we see that
F (t,Φt) is continuous in t. By (ii), we also find (Aφ) ∈ P 0

T . Thus, A : P 0
T → P 0

T is
well-defined and continuous since Γ in (iii) is continuous and F (t, φ) is continuous in
φ uniformly with respect to t. �

We now show that A : P 0
T → P 0

T is compact. Consider {Γ(φ) : φ ∈ P 0
T , ‖φ‖ ≤M}

for each M > 0,. This set is uniformly bounded by (iii) and equi-continuous by the
definition of Φ. Thus, Γ is compact by Ascoli-Arzela’s theorem. This implies that A
is compact since F satisfies the continuity condition in (iv).

If there exists φ ∈ P 0
T such that

φ(t) = (Bφ)(t) + λ(Aφ)(t)

=

∫ ∞

0

[dE(s)]φ(t − s) + λF (t,Φt), (2.2)
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104 B. Zhang

then

d

dt

(

Φ(t) −

∫ ∞

0

[dE(s)]Φ(t − s)
)

= λF (t,Φt). (2.3)

Thus Φ is a solution of (2.1). For λ ∈ (0, 1], we have ‖Φ‖ ≤ B1 by (v), and so
|F (t,Φt)| ≤ L. It follows from (2.2) that

|φ(t)| ≤ ‖φ‖

∫ ∞

0

‖[dE(s)]‖ + |F (t,Φt)| ≤ γ‖φ‖ + L

and hence ‖φ‖ ≤ L/(1 − γ) =: B2. This implies that ‖φ‖ ≤ B2 whenever φ is a
fixed point of B+ λA. By Theorem 2.1, there exists φ ∈ P 0

T such that (2.2) holds for
λ = 1, and we assert from (2.3) that Φ is a T -periodic solution of (1.1). The proof is
complete.

Finally in this section, we consider a linear form of equation (1.1)

d

dt

(

x(t) −

∫ ∞

0

[dE(s)]x(t − s)
)

= L(t, xt) + p(t) (2.4)

where L : R×C → Rn is continuous, linear in φ, T -periodic in t with |L(t, φ)| ≤ K‖φ‖
for some constant K > 0, and p ∈ PT . In this case, conditions (ii)-(iv) can be verified
directly.

Theorem 2.3. Suppose that (i) holds and there is an n×n matrix L(t, ·) such that for

every k ∈ Rn there is the relation L(t, ·)k = L(t, k). If the linear function
∫ T

0
L(t, ·)dt

is invertible and

(v∗) there exists a constant B∗ > 0 such that ‖x‖ < B∗ whenever x = x(t) is a
T -periodic solution of

d

dt

(

x(t) −

∫ ∞

0

[dE(s)]x(t − s)
)

= λ[L(t, xt) + p(t)], λ ∈ (0, 1]. (2.5)

Then (2.4) has a T -periodic solution.
Proof. Define F (t, xt) = L(t, xt) + p(t). In view of Theorem 2.2, we need to verify
conditions (ii)-(iv). Let φ ∈ P 0

T and k ∈ Rn. Consider

∫ T

0

L
(

t, (k +

∫ t

0

φ(s)ds)t

)

dt+

∫ T

0

p(s)ds = 0.

Since L is linear with respect to the second argument, we have

∫ T

0

L(t, k)dt+

∫ T

0

L
(

t, (

∫ t

0

φ(s)ds)t

)

dt+

∫ T

0

p(s)ds = 0.

Thus,

k =
(

∫ T

0

L(t, ·)dt
)−1[

−

∫ T

0

L
(

t, (

∫ t

0

φ(s)ds)t

)

dt−

∫ T

0

p(s)ds
]

.
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Periodicity in NFDEs by Direct Fixed Point Mapping 105

We designate that unique constant as kφ. It is clear that Γ : P 0
T → PT defined by

Γ(φ) = Φ with Φ(t) = kφ +
∫ t

0
φ(s)ds is continuous and

∫ T

0
F (t,Φt)dt = 0. Observe

that
∣

∣

∣
L

(

t, (

∫ t

0

φ(s)ds)t

)
∣

∣

∣
≤ KT ‖φ‖

and

|kφ| ≤
∥

∥

∥

(

∫ T

0

L(t, ·)dt
)−1∥

∥

∥
(KTα+ ‖p‖)T =: Lα

for ‖φ‖ ≤ α. Thus, (ii) and (iii) are satisfied. It is also clear that (iv) holds. This
completes the proof. �

Remark 2.1. If L(t, xt) = A(t)x(t)+
∫ t

−∞
B(t, s)x(s)ds+

∑∞

k=1
Ak(t)x(t−hk), where

A(t), B(t, s), and Ak(t) are n× n matrices and hk > 0, then
∫ T

0
L(t, ·)dt is invertible

if and only if the matrix

∫ T

0

(

A(t) +

∫ t

−∞

B(t, s)ds +

∞
∑

k=1

Ak(t)
)

dt

has an inverse.

3. Examples

In this section, we give examples to illustrate how to apply Theorem 2.2 and Theorem
2.3 to some linear and nonlinear equations. Our emphasis will be on proving the
existence of kφ described in Theorem 2.2 and the use of Liapunov functions to derive
a priori bounds on periodic solutions. The examples are shown in simple forms for
illustrative purposes and they can be easily generalized.

Example 3.1. Consider the scalar equation

d

dt

(

x(t) −

∫ t

−∞

C(t− s)x(s)ds
)

= b(t)x(t) + p(t) (3.1)

where b, p ∈ PT and C ∈ L1(R+) with
∫ ∞

0
|C(u)|du = γ < 1. If

(2 − γ)|b(t)| − γ‖b‖ ≥ α (3.2)

for some constant α > 0, then equation (3.1) has a T -periodic solution.

Proof. In view of Theorem 2.3, we need to show that there exists B∗ > 0 such that
‖x‖ < B∗ whenever x = x(t) is a T -periodic solution of

d

dt

(

x(t) −

∫ t

−∞

C(t− s)x(s)ds
)

= λ[b(t)x(t) + p(t)], λ ∈ (0, 1] (3.3)
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106 B. Zhang

Let x = x(t) be a T -periodic solution of (3.3) and define

V (t) =

(

x(t) −

∫ t

−∞

C(t− s)x(s)ds

)2

.

Without loss of generality, we may assume b(t) < 0. Then for t ≥ 0, we have

V ′(t) = 2
(

x(t) −

∫ t

−∞

C(t− s)x(s)ds
)

λ(b(t)x(t) + p(t))

= 2λb(t)x2(t) − 2λb(t)x(t)

∫ t

−∞

C(t− s)x(s)ds

+2λp(t)
(

x(t) −

∫ t

−∞

C(t− s)x(s)ds
)

≤ −2λ|b(t)|x2(t) + λ|b(t)|

∫ t

−∞

|C(t− s)|(x2(t) + x2(s))ds

+2λ|p(t)|
(

|x(t)| +

∫ t

−∞

|C(t− s)||x(s)|ds
)

≤ −2λ|b(t)|x2(t) + γλ|b(t)|x2(t) + λ‖b‖

∫ t

−∞

|C(t− s)|x2(s)ds

+2λ‖p‖
(

|x(t)| +

∫ t

−∞

|C(t− s)||x(s)|ds
)

.

Integrate from 0 to T to obtain

0 = V (T ) − V (0)

≤ −λ(2 − γ)

∫ T

0

|b(t)|x2(t)dt+ λ‖b‖

∫ 0

−∞

|C(−s)|

∫ T

0

x2(t+ s)dtds

+2λ‖p‖

∫ T

0

|x(t)|dt + 2λ‖p‖

∫ 0

−∞

|C(−s)|

∫ T

0

|x(t + s)|dtds

= −λ

∫ T

0

[(2 − γ)|b(t)| − γ‖b‖]x2(t)dt+ 2λ‖p‖(1 + γ)

∫ T

0

|x(t)|dt

≤ −αλ

∫ T

0

x2(t)dt+ 2λ‖p‖(1 + γ)

∫ T

0

|x(t)|dt. (3.4)

Here we have used the equality
∫ T

0
x2(t + s)dt =

∫ T

0
x2(t)dt for any s ∈ R since x is

T -periodic. Thus, it follows from (3.4) that

α

∫ T

0

x2(t)dt ≤ 2‖p‖(1 + γ)

∫ T

0

|x(t)|dt ≤ (α/2)

∫ T

0

x2(t)dt+ β∗

for some constant β∗ > 0. To obtain the last term above, we have applied the Cauchy
inequality 2ab ≤ βa2 + b2/β with a = |x(t)|, b = ‖p‖(1+ γ), and β = α/2, and hence
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Periodicity in NFDEs by Direct Fixed Point Mapping 107

β∗ = (2/α)T ‖p‖2(1 + γ)2. This implies that there exists a constant K1 > 0 such that

∫ T

0

x2(t)dt ≤ K1 and

∫ T

0

(

x(t) −

∫ t

−∞

C(t− s)x(s)ds
)2

dt ≤ K1. (3.5)

Using (3.3), (3.5), and the boundedness of p(t), we also obtain

∫ T

0

∣

∣

∣

∣

d

dt

[

x(t) −

∫ t

−∞

C(t− s)x(s)ds
]2

∣

∣

∣

∣

dt ≤ K2

for some constant K2 > 0. By Sobolev’s inequality, there exists a constant K3 > 0
such that

sup
0≤t≤T

∣

∣

∣

∣

x(t) −

∫ t

−∞

C(t− s)x(s)ds

∣

∣

∣

∣

≤ K3.

Thus, ‖x‖ ≤ K3/(1 − γ). Therefore, (v∗) of Theorems 2.3 is satisfied. We conclude
that (3.1) has a T -periodic solution. The proof is complete. �

Example 3.2. Consider the nonlinear scalar equation

d

dt

(

x(t) − ax(t− r)
)

= b(t)x3(t) +

∫ t

−∞

C(t− s)x3(s)ds+ p(t) (3.6)

where a ∈ R, r > 0, b ∈ PT , C ∈ L1(R+), and p ∈ P 0
T . If

|a|‖b‖ + (1 + |a|)

∫ ∞

0

|C(u)|du < |b(t)| (3.7)

for t ∈ [0, T ], then (3.6) has a T -periodic solution.

Proof. We verify that all conditions of Theorem 2.2 hold. Let
∫ ∞

0
[dE(s)]x(t − s) =

ax(t − r) and

F (t, φ) = b(t)φ3(0) +

∫ 0

−∞

C(−s)φ3(s)ds+ p(t).

It is clear that F : R × C → Rn is continuous, T -periodic in t, and

F (t, xt) = b(t)x3(t) +

∫ 0

−∞

C(−s)x3(t+ s)ds+ p(t)

for each x ∈ PT . Condition (i) of Theorem 2.2 is readily satisfied since |a| < 1. We

now show that for φ ∈ P 0
T , there exists kφ ∈ R such that

∫ T

0
F (t,Φt)dt = 0 with

Φ(t) = kφ +
∫ t

0
φ(s)ds. Notice that

∫ t

0
φ(s)ds is T -periodic for φ ∈ P 0

T so that for each
s ∈ R, we have

∫ T

0

(

kφ +

∫ t+s

0

φ(u)du
)3

dt =

∫ T

0

(

kφ +

∫ t

0

φ(u)du
)3

dt =

∫ T

0

Φ3(t)dt.
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108 B. Zhang

Since
∫ T

0
p(s)ds = 0, we have

∫ T

0

F (t,Φt)dt =

∫ T

0

b(t)Φ3(t)dt+

∫ T

0

∫ 0

−∞

C(−s)
(

kφ +

∫ t+s

0

φ(u)du
)3

dsdt

=

∫ T

0

(

b(t) +

∫ ∞

0

C(u)du
)

Φ3(t)dt =:

∫ T

0

θ(t)Φ3(t)dt.

For k ∈ R, we define

Q(k) =

∫ T

0

θ(t)
(

k +

∫ t

0

φ(s)ds
)3

dt.

Without loss of generality, we may assume that b(t) > 0. By (3.7), there exists a

constant θ∗ > 0 such that θ(t) ≥ θ∗. Since Q′(k) = 3
∫ T

0
θ(t)

(

k +
∫ t

0
φ(s)ds

)2

dt ≥ 0

and limk→±∞Q(k) = ±∞, there exists a unique kφ ∈ R such that Q(kφ) = 0.

Therefore,
∫ T

0
F (t,Φt)dt = 0 and (ii) holds. This also implies that |kφ| ≤ T ‖φ‖.

We now show that Γ : P 0
T → PT defined by Γ(φ)(t) = Φ(t) is continuous. Let

{φn} be a sequence in P 0
T and φn → φ ∈ P 0

T as n→ ∞. We first show that kφn
→ kφ

as n → ∞. By way of contradiction, if kφn
6→ kφ, then there exists a subsequence,

say {kφn
} again, and µ > 0 with |kφn

− kφ| ≥ µ. By the definition of kφn
and kφ, we

have

0 =

∫ T

0

θ(t)
[

Φ3
n(t) − Φ3(t)

]

dt

=

∫ T

0

θ(t)
(

Φn(t) − Φ(t)
)[

Φ2
n(t) + Φn(t)Φ(t) + Φ2(t)

]

dt (3.8)

where Φn(t) = kφn
+

∫ t

0
φn(s)ds. Since φn → φ as n → ∞, there exists a constant

Q1 > 0 such that ‖φn‖ ≤ Q1 for all n = 1, 2, · · ·. Thus, |kφn
| ≤ TQ1 and so there

exists a subsequence {kφnj
} of {kφn

} such that kφnj
→ k∗ as j → ∞. Replace n by

nj in (3.8), let j → ∞, and apply Lebesgue’s convergence theorem to obtain

0 =

∫ T

0

θ(t)(k∗ − kφ)
[

Φ2
∗(t) + Φ∗(t)Φ(t) + Φ2(t)

]

dt

where Φ∗(t) = k∗ +
∫ t

0
φ(s)ds. Thus,

0 ≥
1

2
|k∗ − kφ|θ

∗

∫ T

0

[

Φ2
∗(t) + Φ2(t)

]

dt

=
1

2
|k∗ − kφ|θ

∗

∫ T

0

[

(k∗ − kφ + Φ(t))2 + Φ2(t)
]

dt

≥
1

2
|k∗ − kφ|θ

∗

∫ T

0

1

2
(k∗ − kφ)2dt =

1

4
Tθ∗|k∗ − kφ|

3 ≥
1

4
Tθ∗µ3 > 0,
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Periodicity in NFDEs by Direct Fixed Point Mapping 109

a contradiction. Thus, kφn
→ kφ as n→ ∞. Moreover,

∣

∣

∣

∫ t

0

φn(s)ds−

∫ t

0

φ(s)ds
∣

∣

∣
≤ T ‖φn − φ‖ → 0

as n → ∞. This shows that ‖Γ(φn) − Γ(φ)‖ = ‖Φn − Φ‖ → 0 as n → ∞. Thus,
Γ : P 0

T → PT is continuous. Also, |kφ| ≤ Tα if ‖φ‖ ≤ α, and therefore, (iii) holds.

It is also clear that F : R × C → Rn maps bounded sets into bounded sets and
F (t, φ) is continuous in φ uniformly with respect to t, and so (iv) holds. We now
show that there exists B1 > 0 such that ‖x‖ < B1 whenever x = x(t) is a T -periodic
solution of

d

dt

(

x(t) − ax(t− r)
)

= λ
[

b(t)x3(t) +

∫ t

−∞

C(t− s)x3(s)ds+ p(t)
]

, λ ∈ (0, 1]. (3.9)

Let x = x(t) be a T -periodic solution of (3.9) and define V (t) = (x(t) − ax(t − r))2.
Then for t ≥ 0, we have

V ′(t) = 2(x(t) − ax(t− r))
[

λb(t)x3(t) + λ

∫ t

−∞

C(t− s)x3(s)ds+ λp(t)
]

= 2λb(t)x4(t) − 2λab(t)x(t− r)x3(t) + 2λx(t)

∫ t

−∞

C(t− s)x3(s)ds

−2λax(t− r)

∫ t

−∞

C(t− s)x3(s)ds+ 2λ(x(t) − ax(t− r))p(t).

We may still assume b(t) > 0 so that

V ′(t) ≥ 2λ|b(t)|x4(t) − 2λ|a||b(t)|
[3

4
x4(t) +

1

4
x4(t− r)

]

−2λ

∫ t

−∞

|C(t− s)|
[3

4
x4(s) +

1

4
x4(t)

]

ds

−2λ|a|

∫ t

−∞

|C(t− s)|
[3

4
x4(s) +

1

4
x4(t− r)

]

ds− 2λ|x(t) − ax(t− r)|‖p‖.

Integrate from 0 to T to obtain

0 = V (T ) − V (0)

≥ 2λ

∫ T

0

|b(t)|x4(t)dt− 2λ|a|

∫ T

0

|b(t)|
[3

4
x4(t) +

1

4
x4(t− r)

]

dt

−2λ

∫ T

0

∫ 0

−∞

|C(−s)|
[3

4
x4(t+ s) +

1

4
x4(t)

]

dsdt

−2λ|a|

∫ T

0

∫ 0

−∞

|C(−s)|
[3

4
x4(t+ s) +

1

4
x4(t− r)

]

dsdt
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−2λ

∫ T

0

|x(t) − ax(t− r)|‖p‖dt

= 2λ

∫ T

0

[

|b(t)| − |a|‖b‖ − (1 + |a|)

∫ ∞

0

|C(u)|du
]

x4(t)dt

−2λ

∫ T

0

|x(t) − ax(t− r)|‖p‖dt. (3.10)

Here we have use the equality
∫ T

0
x4(t+ s)dt =

∫ T

0
x4(t)dt for any s ∈ R since x is T -

periodic. By (3.7), there exists β > 0 such that |b(t)|−|a|‖b‖−(1+ |a|)
∫∞

0
|C(u)|du ≥

β. Thus, it follows from (3.10) that

β

∫ T

0

x4(t)dt ≤ ‖p‖

∫ T

0

|x(t) − ax(t − r)|dt

≤ ‖p‖

[

∫ T

0

|x(t)|dt +

∫ T

0

|x(t − r)|dt

]

= 2‖p‖

∫ T

0

|x(t)|dt ≤ (β/2)

∫ T

0

x4(t)dt+M1

for some constant M1 > 0. Here we have applied the Cauchy inequality twice

2ab ≤ a2 + b2 ≤ θa4 +
1

4θ
+ b2

with a = |x(t)|, b = ‖p‖, θ = β/2, and hence M1 = T
(

1

2β
+ ‖p‖2

)

. This implies that

there exists a constant B2 > 0 such that

∫ T

0

x4(t)dt ≤ B2 and

∫ T

0

|x(t) − ax(t− r)|2dt ≤ B2. (3.11)

Using (3.6), (3.11), and the boundedness of p(t), we also obtain

∫ T

0

∣

∣

∣

d

dt
[x(t) − ax(t− r)]2

∣

∣

∣
dt ≤ B3

for some constants B3 > 0. By Sobolev’s inequality, there exists a constant B4 > 0
such that |x(t) − ax(t − r)| ≤ B4. This in turn implies that ‖x‖ ≤ B4/(1 − |a|).
Therefore, condition (v) holds. Since all conditions of Theorem 2.2 are satisfied, we
conclude that (3.6) has a T -periodic solution. The proof is complete. �
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