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1. Introduction

The present paper is concerned with the following singularly perturbed systems of
differential equations with piecewise constant argument

{

x′(t) = F (t, x(t), {x([t+ i])}N
−N , y(t), {y([t+ i])}N

−N , ǫ),

ǫy′(t) = G(t, x(t), {x([t + i])}N
−N , y(t), {y([t+ i])}N

−N , ǫ)
(1.1)

in the case that F and G are almost periodic for t uniformly on R2N+2 × R2N+2,
where ǫ > 0 is a small parameter, x ∈ R, y ∈ R, and [·] denotes the greatest
integer function. The existence problem of almost periodic solution has been studied
in a series of papers ( [1, 4, 8, 9, 18, 20, 21] ). To our knowledge, there are no
discussions about the spectrum of almost periodic solution to (1.1) up to now. The
main purpose of this paper is to study the spectrum or module of almost periodic
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70 R. Yuan

solution. Approximation theorem and quasi-periodicity are employed. Differential
equations with piecewise constant argument (EPCA, for short) have received extensive
investigations (see, e.g., [2,5,10, 19-24] and references therein). In these equations,
the derivatives of the unknown functions depend on not just the time t at which they
are determined, but on constant values of the unknown functions in certain intervals
of the time t before t. These equations have the structure of continuous dynamical
systems in intervals of unit length. Continuity of a solution at a point joining any
two consecutive intervals implies a recursion relation for the values of the solution
at such points. Therefore, they combine the properties of differential equations and
difference equations. The equations are thus similar in structure to those found in
certain “sequential-continuous” models of disease dynamics as treated by Busenberg
and Cooke in [2]. Another potential application of EPCAs is in the stabilization of
hybrid control systems with feedback delays. By a hybrid dynamical system we mean
one with a continuous plant and with a discrete (sampled) controller. The hybrid
dynamical systems have widely been studied (see [24] and its references therewith ).
Some of these systems may be described by EPCA.

As is well known, the existence problem of periodic solutions and almost periodic
solutions has been one of the most attracting topics in the qualitative theory of or-
dinary or functional differential equations for its significance in the physical sciences.
There have been many remarkable works ( [3,4,6-10,12-15,17-18, 20-23] and the ref-
erences cited therein ) concerning the existence of almost periodic solutions. For a
special form of singularly perturbed differential equation (1.1):

{

x′(t) = F (t, x(t), y(t), ǫ),

ǫy′(t) = G(t, x(t), y(t), ǫ),
(1.2)

the existence of periodic solutions has been studied by Flatto & Levinson [8], and
Anosov [1], etc.. Hale & Seifert [9] and Chang [4] generalized their results and in-
vestigated the existence of almost periodic solutions to Eq.(1.2). Recently, Smith
[18] also showed the existence and stability of almost periodic solutions to Eq.(1.2).
Clearly, Eq.(1.1) is a generalization form of Eq.(1.2).

Suppose that f(t) and g(t) are almost periodic. Then the module containment
property:

mod(g) ⊂ mod(f)

can be characterized in several ways (see [6, 7, 12, 13]). For periodic functions this
inclusion just means that the minimal period of g(t) is a multiple of the minimal
period of f(t). Therefore the discussion about module containment is very important.
We also note that there was a discussion about the spectrum containment of almost
periodic solution to ordinary differential equations in [3], i.e., Cartwright compared
the basic frequencies of almost periodic differential equations ẋ = ψ(x, t), x ∈ Rn

with those of its unique almost periodic solution. Mallet-Paret [14] gave an extension
of such Cartwright’s theorem to functional differential equations. But there are no
papers to singularly perturbed systems.
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Almost Periodic Solution of Singularly Perturbed EPCAs 71

It is assumed that the degenerate system

{

x′(t) = F (t, x(t), {x([t+ i])}N
−N , y(t), {y([t+ i])}N

−N , 0),

0 = G(t, x(t), {x([t + i])}N
−N , y(t), {y([t+ i])}N

−N , 0)
(1.3)

has an almost periodic “ outer ” solution which we take to be the trivial solution,
that is, we suppose

F (t, 0, · · · , 0, 0) ≡ G(t, 0, · · · , 0, 0) ≡ 0

so that (x, y) = (0, 0) satisfies (1.3). Our aim is to seek for almost periodic solutions
of Eq.(1.1) near the “outer” solution and to study the spectrum of the almost periodic
solutions. Expanding (1.1) about the trivial solution gives
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

















x′(t) = a(t, ǫ)x(t) +
N

∑

i=−N

ai(t, ǫ)x([t+ i]) + b(t, ǫ)y(t) +
N

∑

i=−N

bi(t, ǫ)y([t+ i])

+ f(t, x(t), {x([t+ i])}N
−N , y(t), {y([t+ i])}N

−N , ǫ),

ǫy′(t) = c(t, ǫ)x(t) +

N
∑

i=−N

ci(t, ǫ)x([t + i]) + d(t, ǫ)y(t) +

N
∑

i=−N

di(t, ǫ)y([t+ i])

+ g(t, x(t), {x([t+ i])}N
−N , y(t), {y([t+ i])}N

−N , ǫ).

(1.4)
One can think of, e.g., a(t, ǫ) as ∂F/∂x(t, 0, · · · , 0, ǫ). In the present paper, in fact,
we will consider the following general singularly perturbed systems
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





















x′(t) = a(t, ǫ)x(t) +

N
∑

i=−N

ai(t, ǫ)x([t+ i]) + b(t, ǫ)y(t) +

N
∑

i=−N

bi(t, ǫ)y([t+ i])

+ f(t, xt, , yt, ǫ),

ǫy′(t) = c(t, ǫ)x(t) +

N
∑

i=−N

ci(t, ǫ)x([t + i]) + d(t, ǫ)y(t) +

N
∑

i=−N

di(t, ǫ)y([t+ i])

+ g(t, xt, yt, ǫ),
(1.5)

where f, g : R × C × C × [0, ǫ0) → R, here C = C([−1, 0],R). We define xt ∈ C as
xt(θ) = x(t+ θ),−1 ≤ θ ≤ 0 and |xt| = sup−1≤θ≤0 |x(t + θ)|.

We say that a function (x, y) : R → R × R is a solution of Eq.(1.5) ( or Eq.(1.1)
) if the following conditions are satisfied

(i) (x, y) is continuous on R,
(ii) the derivative (x′, y′) of (x, y) exists on R except possibly at the point t =

n, n ∈ Z = {· · · ,−1, 0, 1, · · · } where one-sided derivative exists,
(iii) (x, y) satisfies Eq.(1.5) ( or Eq.(1.1) ) in the intervals (n, n+ 1), n ∈ Z.

The following hypotheses are assumed to hold throughout the paper.
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72 R. Yuan

(H1) a(t, ǫ), ai(t, ǫ), b(t, ǫ), bi(t, ǫ), c(t, ǫ), ci(t, ǫ), d(t, ǫ), di(t, ǫ), i = 0,±1, · · · ,
±N, are almost periodic functions in t. They are continuous in ǫ, uniformly in t ∈ R.
Let M denote a common bound for these functions on (t, ǫ) ∈ R × [0, ǫ0].

(H2) a(t, 0) = a0, ai(t, 0) = a0
i , c(t, 0) = 0, ci(t, 0) = 0, d(t, 0) = d0, di(t, 0) =

d0
i , i = 0,±1, · · · ,±N , are constants and d0 < 0.

(H3) All roots of algebraic equation

N
∑

i=−N

Aiξ
i = 0

are not on S1 , {z ∈ C; |z| = 1}, where

A0 = ea0

+ a0−1
a0
0(e

a0

− 1), A1 = a0−1
a0
1(e

a0

− 1) − 1,

Ai = a0−1
a0

i (e
a0

− 1), i = −1,±2, · · · ,±N.

(H4) All roots of algebraic equation

N
∑

i=−N

Diµ
i = 0 (1.6)

are not on S1, where

D0 = −d0−1
d0
0, D1 = −d0−1

d0
1 − 1,

Di = −d0−1
d0

i , i = −1,±2, · · · ,±N.

(H5) f, g are almost periodic in t uniformly on (φ, ψ) ∈ C×C. Furthermore, there
exist nondecreasing functions M(ǫ) and η(ρ, ǫ), 0 ≤ ǫ ≤ ǫ0, 0 ≤ ρ ≤ ρ0 satisfying
limǫ→0M(ǫ) = 0, lim(ρ,ǫ)→(0,0) η(ρ, ǫ) = 0, such that

|f(t, 0, 0, ǫ)| ≤M(ǫ), |g(t, 0, 0, ǫ)| ≤M(ǫ), t ∈ R, 0 ≤ ǫ ≤ ǫ0,

and
|f(t, φ, ψ, ǫ) − f(t, φ̄, ψ̄, ǫ)| ≤ η(ρ, ǫ)[|φ − φ̄| + |ψ − ψ̄|],

|g(t, φ, ψ, ǫ) − g(t, φ̄, ψ̄, ǫ)| ≤ η(ρ, ǫ)[|φ − φ̄| + |ψ − ψ̄|]

hold for all t ∈ R, |φ|, |φ̄|, |ψ|, |ψ̄| ≤ ρ0, 0 ≤ ǫ ≤ ǫ0.
This paper is organized as follows. In section 2, we discuss quasi-periodic func-

tions, almost periodic functions. We also discuss the Bohr exponents (or spectrum)
for almost periodic sequence. In section 3, we discuss a quasi-periodic differential
equations with piecewise constant argument and the spectrum’s relations between
almost periodic sequence (solution) and almost periodic function (solution). Quasi-
periodic DPCA with a parameter will be discussed in section 4. Quasi-periodic and
almost periodic singularly perturbed DPCA will be discussed in sections 5 and 6, re-
spectively. Approximation ideas are employed to discuss the spectrum. We formulate
a nonlinear result in section 7.
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Almost Periodic Solution of Singularly Perturbed EPCAs 73

2. Almost Periodic Functions / Sequences

Definition 1. ([6, 7, 12, 13]) A function f : R → R is called an almost periodic
function introduced by Bohr, if it is continuous and for any ǫ > 0, the ǫ-translation
set of f

T (f, ǫ) = {τ ∈ R; |f(t+ τ) − f(t)| < ǫ, t ∈ R}

is a relative dense set on R.

The theory of almost periodic functions is sometimes called Bohr’s theory and
can be found in some remarkable books. There is a deep connection between almost
periodic functions and periodic functions of several variables ( including a countable
number ). It is well known that for every almost periodic function f(t), the mean
value

Mt{f} = lim
T→∞

1

2T

∫ T

−T

f(t)dt = lim
T→∞

1

2T

∫ T+a

−T+a

f(t)dt

exists uniformly with respect to a. Let {λj} denote the set of all real numbers such
that

a(λj ; f) := lim
T→∞

1

2T

∫ T

−T

f(t) exp(−iλjt)dt 6= 0.

It is well known that the set of numbers {λj} in the above formula is countable. With
each almost periodic function f we associate the Fourier series

f(t) ∼
∑

k

ak exp(iλkt),

where ak = a(λk; f). The elements ak are called the Fourier coefficients and the
numbers λk the Fourier exponents of f . Denoted by Λf the set of all Fourier exponents

{λk} of f , which is called the spectrum of f . The set {
∑N

1 njλj} for all integers N
and integers nj is called the module of f(t), denoted by mod(f), which is the least
additive subgroup of the integral numbers containing the Fourier exponents of f(t).

A finite or countable set of real numbers β1, β2, · · · , βn, · · · is said to be rationally
independent, if the equality r1β1 + r2β2 + · · ·+ rnβn = 0 ( r1, · · · , rn are rational and
n is an arbitrary natural number ) implies that all of r1, r2, · · · , rn are zero. A finite
or countable set of rationally independent real numbers β1, β2, · · · , βn, · · · is called
a rational basis of a countable set of real numbers λ1, λ2, · · · , λn, · · · if every λn is
representable as a finite linear combination of the βj with rational coefficients, that
is,

λn = r
(n)
1 β1 + r

(n)
2 β2 + · · · + r(n)

mk
βmk

(n = 1, 2, · · · ).

where the r
(n)
j are rational numbers. If all the r

(n)
j are integers, then the basis is

called an integer basis. If a basis consists of a finite number of terms, then it is called
a finite basis.

Suppose that f is almost periodic in the Bohr’s sense. When a basis in mod(f) is
both integer and finite, f is called to be quasi-periodic. Let ω1, ω2, · · · , ωp be ratio-
nally independent real numbers. If each element in mod(f) is linear combinations of
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ωj with integral coefficients, we say that f is a quasi-periodic function with frequen-
cies (ω1

2π ,
ω2

2π , · · · ,
ωp

2π ). This definition is virtually given by Bogoliubov. Quasi-periodic
functions form a special case of almost periodic functions. In fact, P.Bohl and E. Es-
clangon first considered the quasi-periodic function as a generalization of the notion
of periodic function. Some of the methods of P. Bohl and E. Esclangon have been
used by Bohr to elaborate his theory. In Bohr’s theory, any denumerable set of real
numbers is admitted for the frequencies of an almost periodic function.

For convenience and explicitness, the quasi-periodic function is often defined in
some literatures and books as follows. Suppose F (θ1, θ2, · · · , θr) is 1-periodic in each
θ1, θ2, · · · , θr and Lebesgue integral. The set of such functions is denoted by L(Tr),
where Tr = Rr/2πZr. If ω1, · · · , ωr are rational independent, a function x : R →
R, t→ x(t), is said to be quasi-periodic with frequencies (ω1, · · · , ωr) if x is continuous
and there exists a continuous function F ∈ L(Tr) such that

x(t) = F (ω1t, ω2t, · · · , ωrt), ∀t ∈ R. (2.1)

It is easy to prove that when F is continuous, x(t) in (2.1) is almost periodic in
Bohr’s sense and quasi-periodic in Bogoliubov’s sense ( e.g., see [12]). If we denote
by P , QP , AP , AA the set of periodic functions, quasi-periodic functions, almost
periodic functions, almost automorphic functions, respectively, it is well known that
the following relation holds:

P ⊂ QP ⊂ AP ⊂ AA.

In the present paper, we also use several Banach spaces as follows. Assume that
ω1, ω2, · · · , ωr ∈ R. We denote ω = (ω1, · · · , ωr), m = (m1, · · · ,mr) ∈ Zr, and
< m,ω >= m1ω1 + · · · +mrωr. Set

QP(ω) =
{

f(t) =
∑

m

fme
i2π<m,ω>t, t ∈ R

∣

∣

∣

∑

m

|fm| < +∞, f−m = f̄m}.

Setting |f | =
∑

m |fm|, it is easily shown that (QP(ω), | · |) is a Banach space. Set

QP(ω; Z) =
{

φ(n) =
∑

k

φke
i2π<k,ω>n; n ∈ Z

∣

∣

∣φ−k = φ̄k,
∑

k

|φk| < +∞
}

.

Every sequence in QP(ω; Z) can be seen as that of a function in QP(ω) taken values at
integer points t = n ∈ Z. Setting |φ| =

∑

k |φk|, it is easy to prove that (QP(ω; Z), |·|)
is a Banach space. We define

GQP(1, ω) =
{

φ(t) ∈ C(R)
∣

∣

∣φ(t) =
∑

k

φk({t})ei2π<k,ω>[t];φ−k(s) = φ̄k(s),

∀k, φk(s) ∈ C[0, 1];
∑

k

sup
0≤s≤1

|φk(s)| < +∞
}

,

where C(R) denotes the set of continuous functions defined on R. It is easy to see
that GQP(1, ω) is a linear space on R ( or C ). Clearly, if φ(t) ∈ QP(ω), then
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Almost Periodic Solution of Singularly Perturbed EPCAs 75

φ(t) ∈ GQP(1, ω), since we can write

φ(t) =
∑

k

φke
i2π<k,ω>t =

∑

k

φk({t})ei2π<k,ω>[t],

where φk(s) = φke
i2π<k,ω>s, which implies that GQP(1, ω) is not empty. We define

||φ||G =
∑

k

sup
0≤s≤1

|φk(s)|, ∀φ ∈ GQP(1, ω).

It is easy to show that (GQP(1, ω), || · ||G) is a Banach space ( e.g., see [10, 23] ).
It should be noted that we do not require in the present paper that ω1, · · · , ωr in
above mentioned QP and GQP is rationally independent. It is easy to see that every
function in QP(ω) is quasi-periodic.

The Approximation Theorem 1. ([6, 7, 13]) For every continuous almost peri-
odic function f : R → R and for every ǫ > 0 there is a trigonometric polynomial

Pǫ(t) =

Nǫ
∑

ν=1

bν,ǫ exp(iλν,ǫt) (bν,ǫ ∈ C, λν,ǫ ∈ Λf ) (2.2)

such that
sup
t∈R

|f(t) − Pǫ(t)| < ǫ,

where bν,ǫ is the product of a(λν,ǫ; f) and certain positive number (depending on ǫ and
λν,ǫ ).

As a simple consequence of this Theorem we can conclude that if f(t) and g(t)
are two almost periodic functions and a(λ; f) ≡ a(λ; g), then f ≡ g. It follows that if
Λf is finite, then f(t) is a trigonometric polynomial, i.e., suppose Λf = {λ1, · · · , λr},
then there exist a1, · · · , ar, such that f(t) =

∑r
j=1 aje

iλjt, t ∈ R. It could be shown
that every almost periodic function f(t) is the diagonal function of a limit-periodic
function of a finite or countable number of variables.

Definition 2. ([6, 7, 15]) A sequence g := {g(n)}n∈Z is called an almost periodic
sequence, if for any ǫ > 0, there exists an l = l(ǫ) ∈ N with the property that for any
a ∈ Z there is a τ ∈ Z satisfying a ≤ τ < a+ l and |g(n+ τ) − g(n)| < ǫ, ∀n ∈ Z.

Suppose that g is an almost periodic sequence. Then the continuous function
G : R → R defined by G(n) = g(n), n ∈ Z, and G(n + s) = g(n) + s[g(n+ 1) − g(n)]
for s ∈ [0, 1] is an almost periodic function ( See [6, 7] ).

By the Approximation Theorem 1 for almost periodic functions, G can be approx-
imated by some trigonometric polynomials Pk(t), k = 1, 2, · · · , of the form Pk(t) =
∑nk

m=1 xk,m exp(iλk,mt), where xk,m ∈ C and λk,m ∈ R, such that

sup
t∈R

|G(t) − Pk(t)| <
1

k
, k = 1, 2, · · · .
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In particular, it follows that limk→∞(supn∈Z
|
∑nk

m=1 xk,mz
n
k,m − g(n)|) = 0, where

zk,m := exp(iλk,m), which shows that g is a uniform limit of sequences of the form

finite
∑

m=1

xmz
n
m, xm ∈ C, zm ∈ S1 := {z ∈ C; |z| = 1}.

It follows from [6] that the limit

a(z; g) = lim
N→∞

1

2N

N
∑

k=−N

z−kg(k) = lim
N→∞

1

2N

N−m
∑

k=−N−m

z−kg(k)

exists uniformly for m ∈ Z when z ∈ S1. a(z; g) is called the Bohr transform of g. In
case that g is trigonometric polynomial, that is, g is of the following form

g(n) =

p
∑

k=1

xkz
n
k , xk ∈ C, zk ∈ S1(zk 6= zl(k 6= l)),

it is easy to check that a(z; g) = xk if z = zk for some k = 1, 2, · · · , p, and a(z; g) = 0
if z 6= zk for any k = 1, · · · , p. We denote by σb(g) the set which consists of all
numbers z ∈ S1 satisfying a(z; g) 6= 0, and call σb(g) the Bohr spectrum of g. It
is easy to see that σb(g) is at most countable. We define the module of an almost
periodic sequence {g(n)} as

mods(g) = {

N
∏

j=1

z
nj

j

∣

∣ ∀zj ∈ σb(g), nj ∈ Z, N ∈ N}.

With each almost periodic sequence {g(n)} we also associate the Fourier series

g(n) ∼
∑

k

xkz
n
k , zk ∈ S1,

where xk = a(zk; g). The elements xk are called the Fourier coefficients and the
numbers zk the Fourier exponents of {g(n)}. We can formulate the approximation
theorem for an almost periodic sequence as follows.

The Approximation Theorem 2. Suppose that g is an almost periodic sequence.
For any ǫ > 0 there is a sequence of approximating polynomials Pǫ(n) of the form

Pǫ(n) =

nǫ
∑

k=1

xk,ǫz
n
k,ǫ, zk,ǫ ∈ σb(g)

such that
sup
τ∈Z

|g(τ) − Pǫ(τ)| < ǫ,

where xk,ǫ is the product of a(zk,ǫ; g) and certain positive number.
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Almost Periodic Solution of Singularly Perturbed EPCAs 77

Proof. This Theorem can be established by modifying the arguments in [13, pp.14-
21]. We omit its proof. �

It follows from this Theorem that if f and g are almost periodic sequences and if
a(z; f) ≡ a(z; g), then f ≡ g. We could conclude that if σb(g) is finite, then {g(n)} is
a trigonometric polynomial.

3. Quasi-Periodic Differential Equations

In this section, we consider the following differential equations with piecewise constant
argument

ẋ(t) = a0x(t) +

N
∑

i=−N

a0
ix([t+ i]) + f(t), (3.1)

where f(t) ∈ QP(ω), ω = (ω1, · · · , ωr). When ω1, · · · , ωr are rationally independent,
the existence of quasi-periodic solution of (3.1) has been studied in [10]. In this
section, for the aim of the present paper (see section 6), we would like to consider
the general case for ω = (ω1, · · · , ωr), i.e., we do not require that ω1, · · · , ωr are
rationally independent ( for short, ω is not rationally independent ). We begin with
some lemmas.

Lemma 1. If f(t) is an almost periodic function, then the sequence

{h(n)}n∈Z =

{∫ n+1

n

ea(n+1−s)f(s)ds

}

n∈Z

(3.2)

is an almost periodic sequence with the Bohr spectrum σb(h) = eiΛf . Furthermore, if
f(t) ∈ QP(ω), then {h(n)} ∈ QP(ω; Z). Here a is a constant.
Proof. The almost periodicity of {h(n)} has been proved in [20, 22]. It suffices
to study the spectrum relation. Since f(t) is an almost periodic function, it fol-
lows from the Approximation Theorem 1 that for any k > 0 there exists f̃k(t) =
∑nk

m=1 F̃k,me
iλmt, λm ∈ Λf such that

|f(t) − f̃k(t)| <
1

k
, k = 1, 2, · · · .

Define

h̃k(n) :=

∫ n+1

n

ea(n+1−s)f̃k(s)ds, ∀n ∈ Z, k = 1, 2, · · · (3.3)

A direct calculation shows

h̃k(n) =

nk
∑

m=1

F̃k,m
[ea − eiλm ]

a− iλm
eiλmn :=

nk
∑

m=1

H̃k,me
iλmn,
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where H̃k,m := F̃k,m
[ea−eiλm ]

a−iλm
, which is the Fourier coefficient corresponding to the

Fourier exponent eiλm . h̃k(n) is a trigonometric polynomial, σb(h̃k) = e
iΛ

f̃k ⊂ eiΛf :=
{eiλm , λm ∈ Λf}. It is easy to see that

sup
n∈Z

|h̃k(n) − h(n)| <
e|a|

k
, ∀k = 1, 2, · · · .

This implies that σb(h) ⊂ eiΛf . For any fixed λj0 ∈ Λf , we can assume nk > j0. So,
we can rewrite

f̃k(t) =

nk
∑

m=1,m 6=j0

F̃k,me
iλmt + F̃k,j0e

iλj0
t.

It is easy to see that a(λj0 ; f) = limk→∞ a(λj0 ; f̃k) = limk→∞ F̃k,j0 . Thus, we can
obtain

a(eiλj0 ;h) = lim
k→∞

a(eiλj0 ; h̃k) = lim
k→∞

H̃k,j0 = a(λj0 ; f)
ea − eiλj0

a− iλj0

.

It follows that eiλj0 ∈ σb(h). Thus, σb(h) = eiΛf . If f(t) ∈ QP(ω), then Λf = {2π <

m,ω >
∣

∣ ∀m ∈ Zr} and f̃k(t) can be taken as partial sum of f(t). �

Lemma 2. If f ∈ GQP(1, ω), then {h(n)} defined by (3.2) is in QP(ω,Z).
Proof. Since f ∈ GQP(1, ω), we have

f(t) =
∑

k

fk({t})ei2π<k,ω>[t].

Clearly,
∫ n+1

n

ea(n+1−s)f(s)ds =

∫ n+1

n

ea(n+1−s)
∑

k

fk({s})ei2π<k,ω>nds

=
∑

k

∫ 1

0

easfk(1 − s)ds · ei2π<k,ω>n.

�

Lemma 3. If f(t), g(t) ∈ GQP(1, ω), then f(t)g(t) ∈ GQP(1, ω).
Proof. If

f(t) =
∑

k

fk({t})ei2π<k,ω>[t], g(t) =
∑

k

gk({t})ei2π<k,ω>[t],

it follows from Cauchy’s Theorem that we can write

h(t) = f(t)g(t) =
∑

k

fk({t})ei2π<k,ω>[t] ·
∑

j

gj({t})e
i2π<j,ω>[t]

=
∑

m

hm({t})ei2π<m,ω>[t].

and
∑

m |hm| < +∞. �
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Lemma 4. If f(t) ∈ GQP(1, ω), then

∫ t

n

ea(t−s)f(s)ds =
∑

k

f̃k({t})ei2π<k,ω>n, n ≤ t < n+ 1, (3.4)

where f̃k(τ) is continuous for each k.
Proof. Since f(t) ∈ GQP(1, ω), we have

f(t) =
∑

k

fk({t})ei2π<k,ω>[t],
∑

k

sup
τ∈[0,1]

|fk(τ)| < +∞.

∫ t

n

ea(t−s)f(s)ds =

∫ t

n

ea(t−s)
∑

k

fk({s})ei2π<k,ω>[s]ds

=
∑

k

ea(t−n)

∫ t−n

0

e−asfk(s)ds · ei2π<k,ω>n

=
∑

k

f̃k({t})ei2π<k,ω>n, n ≤ t < n+ 1,

where

f̃k(τ) = eaτ

∫ τ

0

e−asfk(s)ds.

Clearly,
∑

k supτ∈[0,1] |f̃k(τ)| < +∞. �

Since the concept of almost periodic functions is in terms of functions on R, it is
suggested that one should find a solution of Eq.(3.1) on R, and not just on R

+. If
x(t) is a solution of Eq.(3.1) on R, we have the following relations:

x(t) = ea0(t−n)x(n) + (ea0(t−n) − 1)

N
∑

i=−N

a0−1
a0

ix(n+ i) +

∫ t

n

ea0(t−s)f(s)ds, (3.5)

n ≤ t ≤ n + 1. In view of the continuity of a solution at a point, we arrive at the
following difference equation

x(n+1) = ea0

x(n)+

N
∑

i=−N

(ea0

−1)a0−1
a0

i x(n+i)+

∫ n+1

n

ea0(n+1−s)f(s)ds, n ∈ Z.

(3.6)
By using (H3), Eq.(3.6) can be rewritten in the form

N
∑

i=−N

Aix(n+ i) = h(n), (3.7)

where

h(n) = −

∫ n+1

n

ea0(n+1−s)f(s)ds.
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In what follows, our idea is to study the properties of the sequence solution of Eq.(3.7).
Through the sequence solution and (3.5), we study the properties of solution of
Eq.(3.1). In [22], we proved the following results.

Lemma 5. Assume that (H3) holds. Then for any {h(n)} ∈QP(ω1,Z)⊕QP(ω2,Z),
the system (3.7) possesses a unique sequence solution{x∗(n)}∈QP(ω1,Z)⊕QP(ω2,Z),
where

QP(ω1,Z) ⊕QP(ω2,Z)

=
{

{u(n)}
∣

∣

∣
u(n) =

∑

k1

u
(1)
k1
ei2π<k1,ω1>n +

∑

k2

u
(2)
k2
ei2π<k2,ω2>n;

∑

k1

|u
(1)
k1

| +
∑

k2

|u
(2)
k2

| < +∞, u
(1)
−k1

= ū
(1)
k1
, u

(2)
−k2

= ū
(2)
k2

}

.

Furthermore, there exists a constant MA such that

||x∗|| ≤MA||h|| , MA sup
n∈Z

|h(n)|.

Remark 1. It should be pointed out that when ω is rationally independent, Lemmas
2-5 have been shown in [23]. In this paper, we focus on the general case. We can find
that its proofs are in an analogous way to those in [23]. We give its proofs only for
reader’s convenience.

Theorem 1. Assume that (H3) holds. We have the following conclusions.
(i). For any almost periodic f(t), Eq.(3.1) has a unique almost periodic solution

x(t) and there exists U > 0 such that ||x|| ≤ U ||f ||.
(ii). For any f(t) ∈ QP(ω), Eq.(3.1) has a unique solution x(t) ∈ GQP(1, ω) and

there exists U > 0 such that ||x|| ≤ U ||f ||.

Conclusion (i) has been proven in [20] ( or see [22] ). Conclusion (ii) has essentially
been shown in [10] because we could easily find that ω is not needed to be rationally
independent. We recall the proof’s main points for convenience. First, we show that
Eq.(3.7) possesses a unique bounded sequence solution x∗(n), which is almost periodic
sequence in case (i) and in QP(ω,Z) in case (ii), respectively. Then, define a solution
x(t) of Eq.(3.1) by using (3.5) with x(n) = x∗(n), n ∈ Z. x(t) is continuous on R. It
can be shown that x(t) is almost periodic in case (i) and in GQP(1, ω) in case (ii),
respectively. It is easy to see that under (H3) the bounded solution on R of Eq.(3.1) is
unique. In view of that f(t) ∈ QP(ω) is almost periodic, it follows that the obtained
solution x(t) is almost periodic in case (ii).

Corollary 1. Assume that (H3) holds and 1, ω are rationally independent. Then for
any f(t) ∈ QP(ω), Eq.(3.1) has a unique quasi-periodic solution x(t) with frequencies
(1, ω).

From Theorem 1, it follows that Eq.(3.1) possesses a unique almost periodic solu-
tion x(t) and x(t) ∈ GQP(1, ω). It has been shown in [10] that the unique continuous
almost periodic solution x(t) can be written in details as

x(t) = F (t, ωt),
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where

F (θ1, θ2) = ea0{θ1}
∑

k

Gke
i2π<k,θ2>e−i2π<k,ω>{θ1}

+ (ea0{θ1} − 1)

N
∑

j=−N

a0−1
a0

j

∑

k

Gke
i2π<k,ω>jei2π<k,θ2>e−i2π<k,ω>{θ1}

+
∑

k

fk

i2π < k, ω > −a0
ei2π<k,θ2>

−
∑

k

fk

i2π < k, ω > −a0
ei2π<k,θ2>e−i2π<k,ω>{θ1}ea0{θ1}

(see [10] for details ). Clearly, F is periodic in θ1 and θ2 with period 1, and Lebesgue

integral. Setting θ̂ = (θ1, θ2), we have the Fourier expansion

F (θ1, θ2) ∼
∑

m̂

Fm̂e
i2π<m̂,θ̂>,

where the Fourier coefficient

Fm̂ =

∫

T1+r

F (θ̂)e−i2π<m̂,θ̂>dθ̂.

We get the Fourier expansion of x(t) as

x(t) ∼
∑

m̂

Fm̂e
i2π<m̂,ω̂>t,

where ω̂ = (1, ω). It follows that Λx = {2π < m̂, ω̂ >}. Since 1, ω are rationally
independent, it is known that Λx has a finite and integer base 1, ω. Therefore, x(t) is
a quasi-periodic function with frequencies (1, ω) in Bogoliubov’s sense.

4. Quasi-Periodic Differential Equations With Parameter

In this section, we consider EPCA with a parameter

ǫy′(t) = d0y(t) +

N
∑

i=−N

d0
i y([t+ i]) + g(t). (4.1)

Because an almost periodic function is defined on R, we continue to find a solution
of Eq.(4.1) on R, and not just on R+. If y(t) is a solution of Eq.(4.1) on R, we obtain
the following relations:

y(t) = ed0( t
ǫ
−n

ǫ
)y(n)+

N
∑

i=−N

(ed0( t
ǫ
−n

ǫ
)−1)d0−1

d0
i y(n+i)+

∫ t
ǫ

n
ǫ

ed0( t
ǫ
−σ)g(ǫσ)dσ, (4.2)
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n ≤ t ≤ n + 1. In view of the continuity of a solution at a point, we arrive at the
following difference equation:

y(n+1) = e
d0

ǫ y(n)+
N

∑

i=−N

(e
d0

ǫ −1)d0−1
d0

i y(n+ i)+

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)g(ǫσ)dσ. (4.3)

Let

D0(ǫ) = e
d0

ǫ + d0−1
d0
0(e

d0

ǫ − 1),

D1(ǫ) = d0−1
d0
1(e

d0

ǫ − 1) − 1,

Di(ǫ) = d0−1
d0

i (e
d0

ǫ − 1), i = −1,±2, · · · ,±N,

e(n, ǫ) = −

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)g(ǫσ)dσ.

Then Eq.(4.3) can be written as

N
∑

i=−N

Di(ǫ)y(n+ i) = e(n, ǫ). (4.4)

Lemma 6. If g(t) is an almost periodic function, then for any fixed ǫ > 0, the
sequence

{e(n, ǫ)}n∈Z =
{

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)g(ǫσ)dσ

}

n∈Z

is an almost periodic sequence with the Bohr spectrum σb(e) = eiΛg . Furthermore, if
f(t) ∈ QP(ω), then {e(n, ǫ)} ∈ QP(ω; Z).
Proof. The almost periodicity of {e(n, ǫ)} has been proved in [20]. Note that e(n, ǫ)
can be rewritten as

e(n, ǫ) =

∫ n+1

n

1

ǫ
e

d0

ǫ
(n+1−σ)g(σ)dσ.

The rest parts are the same as the proof of Lemma 1. So we omit it. �

Lemma 7. If g(t) ∈ GQP(1, ω), then

∫ t
ǫ

n
ǫ

ed0( n+1

ǫ
−s)g(ǫs)ds =

∑

k

g̃k({t}, ǫ)ei2π<k,ω>n, n ≤ t < n+ 1,

where g̃k(τ, ǫ) is continuous on τ for each k and ǫ > 0.
Proof. Since g(t) ∈ GQP(1, ω), we have

g(t) =
∑

k

gk({t})ei2π<k,ω>[t],
∑

k

sup
τ∈[0,1]

|gk(τ)| < +∞.
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It is easy to see that

∫ t
ǫ

n
ǫ

ed0( n+1

ǫ
−s)g(ǫs)ds =

∫ t
ǫ

n
ǫ

ed0( n+1

ǫ
−s)

∑

k

gk({ǫs})ei2π<k,ω>[ǫs]ds

=
∑

k

e
d0

ǫ
(t−n)

∫ t−n

0

1

ǫ
e−

d0

ǫ
sgk(s)ds · ei2π<k,ω>n

=
∑

k

g̃k({t}, ǫ)ei2π<k,ω>n, n ≤ t < n+ 1,

where

g̃k(τ, ǫ) =
1

ǫ
e

d0

ǫ
τ

∫ τ

0

e−
d0

ǫ
sgk(s)ds.

It is easy to see |g̃k(τ, ǫ)| ≤ 1
|d0| sup0≤τ≤1 |gk(τ)| for 0 ≤ τ ≤ 1. �

Theorem 2. Suppose that (H2) and (H4) hold. Then there exists an ǫ1 > 0 such that
when 0 < ǫ ≤ ǫ1, for any {e(n, ǫ)} ∈ QP(ω,Z), the difference equation (4.4) has a
unique sequence solution y∗(n, ǫ) ∈ QP(ω,Z) and there exists a constant Ṽ > 0 such
that

|y∗(n, ǫ)| ≤ Ṽ sup
n∈Z

|e(n, ǫ)|, 0 < ǫ ≤ ǫ1, n ∈ Z. (4.5)

Proof. Since limǫ→0Di(ǫ) = Di, i = 0,±1, · · · ,±N , it follows from (H4) that there
exists ǫ1 such that when 0 < ǫ ≤ ǫ1, all roots of the algebraic equation

N
∑

i=−N

Di(ǫ)µ
i = 0 (4.6)

are not on S1. For such ǫ > 0, suppose that the different roots of Eq.(4.6) are
denoted by µ1(ǫ), · · · , µs(ǫ), with multiplicities κ1, · · · , κs,

∑s
j=1 κj = 2N . Let L =

{l| |µl(ǫ)| < 1, 1 ≤ l ≤ 2N}, L′ = {l| |µl(ǫ)| > 1, 1 ≤ l ≤ 2N}. Note that the
multiplicity of characteristic roots will vary with ǫ > 0. We omit ǫ dependence in
s, κj , L, L

′ only for simplicity. We define a sequence {y(n, ǫ)} by

y(n, ǫ) =
∑

l∈L

κl−1
∑

j=0

kl,j

∑

m≤n−1

[n− (m+ 1)]jµ
n−(m+1)
l (ǫ)e(m, ǫ)

+
∑

l∈L′

κl−1
∑

j=0

kl,j

∑

m≥n

[n− (m+ 1)]jµ
n−(m+1)
l (ǫ)e(m, ǫ),

(4.7)

where the unknown constants kl,j , 0 ≤ j ≤ κl − 1, 1 ≤ l ≤ s, are determined later.
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Putting the sequence {y(n, ǫ)} defined by (4.7) into Eq.(4.4), we can obtain



































































































































∑

l∈L

κl−1
∑

j=0

kl,jµl(ǫ) −
∑

l∈L′

κl−1
∑

j=0

kl,jµl(ǫ) = 0,

· · · · · ·

∑

l∈L

κl−1
∑

j=0

kl,jµ
N−2
l (ǫ)(N − 2)j −

∑

l∈L′

κl−1
∑

j=0

kl,jµ
N−2
l (ǫ)(N − 2)j = 0,

∑

l∈L

κl−1
∑

j=0

kl,jµ
N−1
l (ǫ)(N − 1)j −

∑

l∈L′

κl−1
∑

j=0

kl,jµ
N−1
l (ǫ)(N − 1)j =

1

DN (ǫ)
,

∑

l∈L

κl−1
∑

j=0

kl,jµ
N
l (ǫ)N j −

∑

l∈L′

κl−1
∑

j=0

kl,jµ
N
l (ǫ)N j = −

DN−1(ǫ)

D2
N (ǫ)

,

· · · · · ·

∑

l∈L

κl−1
∑

j=0

kl,jµ
2N
l (ǫ)(2N)j −

∑

l∈L′

κl−1
∑

j=0

kl,jµ
2N
l (ǫ)(2N)j

= R(D−1(ǫ), D0(ǫ), · · · , DN (ǫ)),

(4.8)

where R(D−1(ǫ), D0(ǫ), · · · , DN (ǫ)) is a rational function of D−1(ǫ), · · · , DN(ǫ). If
we see kl(l ∈ L),−kl(l ∈ L′) as unknown variables, then the coefficient of the linear
system (4.8) is the Casorati matrix. Its determinant is different from zero (see [11] for
details). Hence, we can uniquely determine a set of values (k∗1(ǫ), · · · , k∗2N (ǫ)) from
Eq.(4.8). Therefore, the sequence {y∗(n, ǫ)} defined by

y∗(n, ǫ) =
∑

l∈L

κl−1
∑

j=0

k∗l,j(ǫ)
∑

m≤n−1

[n− (m+ 1)]jµ
n−(m+1)
l (ǫ)e(m, ǫ)

+
∑

l∈L′

κl−1
∑

j=0

k∗l,j(ǫ)
∑

m≥n

[n− (m+ 1)]jµ
n−(m+1)
l (ǫ)e(m, ǫ)

(4.9)

is a solution of the difference equation (4.4).
Since e(n, ǫ) ∈ QP(ω,Z), we can assume

e(n, ǫ) =
∑

m

Em(ǫ)ei2π<m,ω>n,
∑

m

|Em(ǫ)| < +∞, 0 < ǫ ≤ ǫ1.

At this moment, y∗(n, ǫ) in (4.9) can be rewritten as

y∗(n, ǫ) =
∑

m

Ym(ǫ)ei2π<m,ω>n,
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where

Ym(ǫ) = Em(ǫ)[
∑

l∈L

κl−1
∑

j=0

k∗l,j(ǫ)e
−i2π<m,ω>pj(µl(ǫ)e

−i2π<m,ω>)

+
∑

l∈L′

κl−1
∑

j=0

k∗l,j(ǫ)(−1)jµ−1
l (ǫ)pj(µ

−1
l (ǫ)e−i2π<m,ω>)],

pj(x) = 1 + x+ 2jx2 + · · · + ujxu + · · · , |x| < 1.

For each 0 < ǫ ≤ ǫ1, we have

|Ym(ǫ)| ≤ |Em(ǫ)|[
∑

l∈L

κl−1
∑

j=0

|k∗l,j(ǫ)|pj(|µl(ǫ)|) +
∑

l∈L′

κl−1
∑

j=0

|k∗l,j(ǫ)||µ
−1
l (ǫ)|pj(|µ

−1
l (ǫ)|)].

It follows that {y∗(n, ǫ)} ∈ QP(ω,Z) for each 0 < ǫ ≤ ǫ1. It suffices to show (4.5).
We consider the system

N
∑

i=−N

Diy(n+ i) = 0, (4.10)

where Di are as in (H4). Without loss of generalization, we can assume DN 6= 0.
(4.10) becomes

y(n+N) = −
DN−1

DN
y(n+N − 1) − · · · −

D0

DN
y(n) − · · · −

D−N

DN
y(n−N). (4.11)

Clearly, Eq.(4.11) is equivalent to the system

u(n+ 1) = Cu(n), (4.12)

where

u(n) =











u0(n)
u1(n)

...
u2N−1(n)











:=











y(n−N)
y(n−N + 1)

...
y(n+N − 1)











, C =









0 1 · · · 0
0 0 · · · 0
· · · · · · · · ·

−DN−1

DN
−DN−2

DN
· · · −D−N

DN









Similarly, the system
N

∑

i=−N

Di(ǫ)y(n+ i) = 0 (4.13)

is equivalent to the system
u(n+ 1) = C(ǫ)u(n), (4.14)

where

C(ǫ) =









0 1 · · · 0
0 0 · · · 0
· · · · · · · · ·

−DN−1(ǫ)
DN (ǫ) −DN−2(ǫ)

DN (ǫ) · · · −D−N (ǫ)
DN (ǫ)








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From (H4), we know that (4.12) admits an exponential dichotomy. From the rough-
ness theorem for exponential dichotomies, we know that there exists ǫ1 > 0 (without
loss of generalization ) such that when 0 < ǫ ≤ ǫ1, the system (4.14) also admits an
exponential dichotomy. The unique bounded solution y∗(n, ǫ) of system (4.4) can be
estimated by the constants appeared in the exponential dichotomy and the constants
can be chosen to be independent of the small perturbation ( see [16, Prop. 2.10] ) so
that we can obtain that there exists a constant Ṽ such that

|y∗(n, ǫ) ≤ Ṽ sup
n∈Z

|e(n, ǫ)|, 0 < ǫ ≤ ǫ1, n ∈ Z.

�

Theorem 3. Suppose that (H2) and (H4) hold. Then there exists an ǫ1 > 0 such that
when 0 < ǫ ≤ ǫ1, for any g(t) ∈ QP(ω), Eq.(4.1) has a unique solution y(t, g, ǫ) ∈
GQP(1, ω). The map g → y(g, ǫ) defines a bounded linear operator Vǫg satisfying
||Vǫ|| ≤ V, 0 < ǫ ≤ ǫ1. The map ǫ→ Vǫ is continuous for 0 < ǫ ≤ ǫ1.
Proof. From Lemma 6, it follows that

e(n, ǫ) =

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)g(ǫσ)dσ, n ∈ Z

is in QP(ω,Z) for each fixed ǫ > 0. Obviously, it can be assumed that if 0 < ǫ ≤ ǫ1,

|e(n, ǫ)| ≤
2

|d0|
sup
t∈R

|g(t)| :=
2

|d0|
||g||.

Theorem 2 implies that Eq.(4.3) possesses a unique sequence solution y∗(n, ǫ) ∈
QP(ω,Z). We define by (4.2)

y(t, ǫ) = ed0( t
ǫ
−n

ǫ
)y(n) +

N
∑

i=−N

(ed0( t
ǫ
−n

ǫ
) − 1)d0−1

d0
i y(n+ i) +

∫ t
ǫ

n
ǫ

ed0( t
ǫ
−σ)g(ǫσ)dσ,

with y(n) = y∗(n, ǫ), n ≤ t < n+ 1. Since y∗(n, ǫ) is a solution of Eq.(4.3), it follows
that y(t, ǫ) is continuous on R and satisfies Eq.(4.1). Since y∗(n, ǫ) ∈ QP(ω,Z), it
follows from Lemma 7 that y(t, ǫ) can be rewritten in the form

y(t, ǫ) = G(t, ωt, ǫ),

where G(θ1, θ2, ǫ) can be rewritten as

G(θ1, θ2, ǫ) = e
d0

ǫ
{θ1}

∑

k

Ek(ǫ)ei2π<k,θ2>e−i2π<k,ω>{θ1}

+ (e
d0

ǫ
{θ1} − 1)

N
∑

j=−N

d0−1
d0

j

∑

k

Ek(ǫ)ei2π<k,ω>jei2π<k,θ2>e−i2π<k,ω>{θ1}

+
∑

k

gk

i2π < k, ω > ǫ− d0
ei2π<k,θ2>

−
∑

k

gk

i2π < k, ω > ǫ− d0
ei2π<k,θ2>e−i2π<k,ω>{θ1}e

d0

ǫ
{θ1},
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if we write g(t) =
∑

k gke
i2π<k,ω>t ∈ QP(ω). Clearly, y(t, ǫ) ∈ GQP(1, ω). The

boundedness and continuity are similar to those in [20]. So we omit it. �

5. Quasi-Periodic Singularly Perturbed Differential Equations

In this section, we consider the following singularly perturbed differential equation



























x′(t) = a(t, ǫ)x(t) +

N
∑

i=−N

ai(t, ǫ)x([t + i]) + b(t, ǫ)y(t) +

N
∑

i=−N

bi(t, ǫ)y([t+ i]) + f(t),

ǫy′(t) = c(t, ǫ)x(t) +

N
∑

i=−N

ci(t, ǫ)x([t+ i]) + d(t, ǫ)y(t) +

N
∑

i=−N

di(t, ǫ)y([t+ i]) + g(t),

(5.1)
where f(t), g(t), a(t, ǫ), b(t, ǫ), etc., are quasi-periodic. In the following, we sometimes
use the notations aǫ(t) = a(t, ǫ), ai,ǫ(t) = ai(t, ǫ) for convenience, ect.

Theorem 4. Assume that a(t, ǫ), aj(t, ǫ), b(t, ǫ), bj(t, ǫ), c(t, ǫ), cj(t, ǫ), d(t, ǫ),
dj(t, ǫ) ∈ QP(ω). Under assumptions (H1)-(H4), there exist ǫ1, 0 < ǫ1 ≤ ǫ0, positive
functions αi,j(ǫ), 1 ≤ i, j ≤ 2 defined for 0 < ǫ ≤ ǫ1, satisfying

lim
ǫ→0+

α1,1(ǫ) = U, lim
ǫ→0+

α1,2(ǫ) = 2UV (N + 1)M,

lim
ǫ→0+

α2,1(ǫ) = 0, lim
ǫ→0+

α2,2(ǫ) = V,

αi,j(ǫ) ≤ 2UV (N + 1)M + U + V, 1 ≤ i, j ≤ 2

such that for any f(t) ∈ QP(ω1), g(t) ∈ QP(ω2), 0 < ǫ ≤ ǫ1, system (5.1) possesses a
unique solution (x∗(t, f, g, ǫ), y∗(t, f, g, ǫ) ∈ GQP(1, (ω, ω1, ω2)). The solution satisfies

||x|| ≤ α1,1(ǫ)||f || + α1,2(ǫ)||g||, ||y|| ≤ α2,1(ǫ)||f || + α2,2(ǫ)||g||. (5.2)

The map (f, g) → (x(f, g, ǫ), y(f, g, ǫ)) defines a bounded linear operator L(ǫ) satisfy-
ing ||L(ǫ)|| ≤ 4UV (N + 1)M + 2U + 2V and ǫ→ L(ǫ) is continuous for 0 < ǫ ≤ ǫ1.
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Proof. Let ω̃ = (ω, ω1, ω2). For any (x0(t), y0(t)) ∈ GQP(1, ω̃), we consider











































































x′(t) = a0x(t) +
N

∑

i=−N

a0
ix([t + i]) + (aǫ(t) − a0)x0(t)

+

N
∑

i=−N

(ai,ǫ(t) − a0
i )x0([t+ i]) + bǫ(t)y(t) +

N
∑

i=−N

bi,ǫ(t)y([t+ i]) + f(t),

ǫy′(t) = d0y(t) +

N
∑

i=−N

d0
i y([t+ i]) + (dǫ(t) − d0)y0(t)

+

N
∑

i=−N

(di,ǫ(t) − d0
i )y0([t+ i]) + cǫ(t)x0(t) +

N
∑

i=−N

ci,ǫ(t)x0([t+ i]) + g(t).

(5.3)
From the variation of constants formula, it follows that

x(t) = ea0(t−n)x(n) +

N
∑

i=−N

(ea0(t−n) − 1)a0−1
a0

ix(n+ i)

+

N
∑

i=−N

∫ t

n

ea0(t−s)[ai,ǫ(s) − a0
i ]ds · x0(n+ i)

+
N

∑

i=−N

∫ t

n

ea0(t−s)bi,ǫ(s)ds · y(n+ i)

+

∫ t

n

ea0(t−s)[(aǫ(s) − a0)x0(s) + bǫ(s)y(s) + f(s)]ds,

y(t) = ed0( t
ǫ
−n

ǫ
)y(n) +

N
∑

i=−N

(ed0( t
ǫ
−n

ǫ
) − 1)d0−1

d0
i y(n+ i)

+
N

∑

i=−N

∫ t
ǫ

n
ǫ

ed0( t
ǫ
−σ)(di,ǫ(ǫσ) − d0

i )dσ · y0(n+ i)

+

N
∑

i=−N

∫ t
ǫ

n
ǫ

ed0( t
ǫ
−σ)ci,ǫ(ǫσ)dσ · x0(n+ i)

+

∫ t
ǫ

n
ǫ

ed0( t
ǫ
−σ)[(dǫ(ǫσ) − d0)y0(ǫσ) + cǫ(ǫσ)x0(ǫσ) + g(ǫσ)]dσ, n ≤ t < n+ 1.

(5.4)
In view of the continuity of a solution at a point, we arrive at the following difference
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equation

x(n+ 1) = ea0

x(n) +

N
∑

i=−N

(ea0

− 1)a0−1
a0

ix(n+ i)

+

N
∑

i=−N

∫ n+1

n

ea0(n+1−s)[ai,ǫ(s) − a0
i ]ds · x0(n+ i)

+

N
∑

i=−N

∫ n+1

n

ea0(n+1−s)bi,ǫ(s)ds · y(n+ i)

+

∫ n+1

n

ea0(n+1−s)[(aǫ(s) − a0)x0(s) + bǫ(s)y(s) + f(s)]ds,

y(n+ 1) = e
d0

ǫ y(n) +

N
∑

i=−N

(e
d0

ǫ − 1)d0−1
d0

i y(n+ i)

+
N

∑

i=−N

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)(di,ǫ(ǫσ) − d0

i )dσ · y0(n+ i)

+

N
∑

i=−N

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)ci,ǫ(ǫσ)dσ · x0(n+ i)

+

∫
n+1

ǫ

n
ǫ

ed0( n+1

ǫ
−σ)[(dǫ(ǫσ) − d0)y0(ǫσ) + cǫ(ǫσ)x0(ǫσ) + g(ǫσ)]dσ.

(5.5)

Note that the second equation in (5.5) is solved first. From Lemmas 3, 4, 6 and
Theorem 2, it has a unique sequence solution {y(n, ǫ)} ∈ QP(ω̃,Z). Similar to the
proof in section 4, it can be proved by Lemma 7 that the y defined by (5.4), with
values y(n, ǫ) at t = n, is in GQP(1, ω̃). Then this y is put into the first equation in
(5.5) which is then solved for {x(n, ǫ)} in QP(ω̃,Z). Therefore, the inhomogeneous
difference equation (5.5) has an sequence solution (x(n, ǫ), y(n, ǫ)) ∈ QP(ω̃,Z). At
this time, it can be proved that the solution (x(t, ǫ), y(t, ǫ)) defined by (5.4), with
values (x(n, ǫ), y(n, ǫ)) at t = n, is the unique solution of Eq.(5.3) in GQP(1, ω̃) by
Lemmas 2, 3, 4. See section 4 for reference.

Writing (x, y) = T (x0, y0; f, g, ǫ), then solving (5.1) is equivalent to finding a
fixed point of T (·, ·; f, g, ǫ). The contractibility of T and (5.2) can be proved in an
analogous way to those in [20]. So we omit it. �
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6. Almost Periodic Singularly Perturbed Differential
Equations

In this section, we consider the following singularly perturbed differential equation.



























x′(t) = a(t, ǫ)x(t) +
N

∑

i=−N

ai(t, ǫ)x([t + i]) + b(t, ǫ)y(t) +
N

∑

i=−N

bi(t, ǫ)y([t+ i])+f(t),

ǫy′(t) = c(t, ǫ)x(t) +

N
∑

i=−N

ci(t, ǫ)x([t + i]) + d(t, ǫ)y(t) +

N
∑

i=−N

di(t, ǫ)y([t+ i])+g(t),

(6.1)
where f(t), g(t), a(t, ǫ), b(t, ǫ), etc., are almost periodic.

Under (H1), we can show that the spectrums of a(t, ǫ) and aj(t, ǫ), −N ≤ j ≤ N ,
are independent of ǫ. Similar results also hold for b(t, ǫ), c(t, ǫ), d(t, ǫ), etc. Without
loss of generality, we give a proof for a(t, ǫ).

Since a(t, ǫ) is almost periodic in t and continuous in ǫ ∈ [0, ǫ0] uniformly in t ∈ R,
we have a∗ : R → C([0, ǫ0],R), where a∗(t) = {a(t, ǫ); 0 ≤ ǫ ≤ ǫ0}. From the uniform
continuity on ǫ, it follows that for each ǫ′, there exists σ(ǫ′) such that

T (f, η, ǫ) = {τ ∈ R; |a(t+ τ, ǫ) − a(t, ǫ)| < η, ∀t ∈ R}

is independent of ǫ ∈ (ǫ′ −σ(ǫ′), ǫ′ +σ(ǫ′)). Using the compactness of [0, ǫ0], we know
that T (f, η, ǫ) is independent of ǫ ∈ [0, ǫ0]. It follows that if τ ∈ T (f, η, ǫ), we have

|a∗(t+ τ) − a∗(t)| = sup
0≤ǫ≤ǫ0

|a(t+ τ, ǫ) − a(t, ǫ)| < η.

Thus, it implies that a∗ : R → C([0, ǫ0],R) is an almost periodic function. a∗ has a
Fourier expansion

a∗(t) ∼
∑

ν

a∗νe
iλνt, a∗ν = a(λν ; a∗) ∈ C([0, ǫ0],R).

It follows from the Approximation Theorem (see [13]) that

|ã∗k(t) − a∗(t)| <
1

k
, ∀t ∈ R,

where ã∗k(t) =
∑nk

ν Ã∗
k,νe

iλνt, Ã∗
k,ν ∈ C([0, ǫ0],R). Therefore, Λa(t,ǫ) = Λa∗ = {λ1, λ2,

· · · } is independent of ǫ and |ãk(t, ǫ) − a(t, ǫ)| < 1
k , ãk(t, ǫ) =

∑nk

ν=1 Ãk,ν(ǫ)eiλνt.
In what follows, without loss of generality, we suppose that the spectrums of all

coefficients in (6.1) are same, that is,

Λa(t,ǫ1) = Λa(t,ǫ2) = Λaj(t,ǫ1) = Λaj(t,ǫ2) , Λ, 0 ≤ j ≤ N, ∀ 0 ≤ ǫ1, ǫ2 < ǫ0.

Λb(t,ǫ) = Λbj(t,ǫ) = Λc(t,ǫ) = Λcj(t,ǫ) = Λd(t,ǫ) = Λdj(t,ǫ) = Λ.
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Otherwise, we could combine the spectrums so that the spectrums coincide. At this
time, these modules do not have to the smallest ones. For two number sets A,B ⊂ C,

we define A+B = {a+b|∀a ∈ A, b ∈ B}. Set M = {
∑s

l=1mlλl

∣

∣

∣∀ml ∈ Z, ∀λl ∈ Λ, ∀s ∈

N}. We define a Banach space AP to be the set of all almost periodic functions,
equipped with supremum norm ||φ|| = supt∈R

|φ(t)|.

Theorem 5. If (H1)-(H4) hold, then there exist ǫ1, 0 < ǫ1 ≤ ǫ0, positive functions
αi,j(ǫ), 1 ≤ i, j ≤ 2 defined for 0 < ǫ ≤ ǫ1, satisfying

lim
ǫ→0+

α1,1(ǫ) = U, lim
ǫ→0+

α1,2(ǫ) = 2UV (N + 1)M,

lim
ǫ→0+

α2,1(ǫ) = 0, lim
ǫ→0+

α2,2(ǫ) = V,

αi,j(ǫ) ≤ 2UV (N + 1)M + U + V, 1 ≤ i, j ≤ 2,

such that for each (f, g) ∈ AP , 0 < ǫ ≤ ǫ1, with the spectrum relation Λf ,Λg ⊂ Λ,
there is a unique solution

(x∗(f, g, ǫ), y∗(f, g, ǫ) ∈ AP

of Eq.(6.1) and mod(x∗(t), y∗(t)) ⊂ M + {2kπ
∣

∣k ∈ Z}. The solution satisfies

||x∗|| ≤ α1,1(ǫ)||f || + α1,2(ǫ)||g||, ||y
∗|| ≤ α2,1(ǫ)||f || + α2,2(ǫ)||g||. (6.2)

The map (f, g) → (x∗(f, g, ǫ), y∗(f, g, ǫ)) defines a bounded linear operator L(ǫ) satis-
fying ||L(ǫ)|| ≤ 4UV (N + 1)M + 2U + 2V and ǫ→ L(ǫ) is continuous for 0 < ǫ ≤ ǫ1.
Proof. The existence and uniqueness of almost periodic solution (x∗(f, g, ǫ),y∗(f, g, ǫ)),
(6.2), and the boundedness and continuity of operator have been shown in [20].
It suffices to study the module containment. Set Λ = {λ1, λ2, · · · }. From the
Approximation Theorem 1, it follows that there exist trigonometric polynomials
ãk(t, ǫ), ãj,k(t, ǫ), b̃k(t, ǫ), b̃j,k(t, ǫ), c̃k(t, ǫ), c̃j,k(t, ǫ), d̃k(t, ǫ), d̃j,k(t, ǫ), −N ≤ j ≤ N ,

f̃k(t), g̃k(t) of the forms

ãk(t, ǫ) =

nk
∑

ν=1

Ãk,ν(ǫ)eiλνt, ãj,k(t, ǫ) =

nk
∑

ν=1

Ãj,k,ν(ǫ)eiλν t,

b̃k(t, ǫ) =

nk
∑

ν=1

B̃k,ν(ǫ)eiλν t, b̃j,k(t, ǫ) =

nk
∑

ν=1

B̃j,k,ν(ǫ)eiλνt,

c̃k(t, ǫ) =

nk
∑

ν=1

C̃k,ν(ǫ)eiλνt, c̃j,k(t, ǫ) =

nk
∑

ν=1

C̃j,k,ν(ǫ)eiλν t,

d̃k(t, ǫ) =

nk
∑

ν=1

D̃k,ν(ǫ)eiλνt, d̃j,k(t, ǫ) =

nk
∑

ν=1

D̃j,k,ν(ǫ)eiλνt,

f̃k(t) =

nk
∑

ν=1

F̃k,νe
iλνt, g̃k(t) =

nk
∑

ν=1

G̃k,νe
iλνt,
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where λν ∈ Λ, such that

|ãk(t, ǫ) − a(t, ǫ)| <
1

k
, |ãj,k(t, ǫ) − aj(t, ǫ)| <

1

k
,

|b̃k(t, ǫ) − b(t, ǫ)| <
1

k
, |b̃j,k(t, ǫ) − bj(t, ǫ)| <

1

k
,

|c̃k(t, ǫ) − c(t, ǫ)| <
1

k
, |c̃j,k(t, ǫ) − cj(t, ǫ)| <

1

k
,

|d̃k(t, ǫ) − d(t, ǫ)| <
1

k
, |d̃j,k(t, ǫ) − dj(t, ǫ)| <

1

k
, (−N ≤ j ≤ N),

|f̃k(t) − f(t)| <
1

k
, |g̃k(t) − g(t)| <

1

k
, k = 1, 2, · · · ,

for t ∈ R and 0 < ǫ ≤ ǫ1. For each k, consider











































































x′(t) = ãk(t, ǫ)x(t) +

N
∑

j=−N

ãj,k(t, ǫ)x([t + j])

+ b̃k(t, ǫ)y(t) +

N
∑

j=−N

b̃j,k(t, ǫ)y([t+ j]) + f̃k(t),

ǫy′(t) = c̃k(t, ǫ)x(t) +

N
∑

j=−N

c̃j,k(t, ǫ)x([t + j])

+ d̃k(t, ǫ)y(t) +

N
∑

j=−N

d̃j,k(t, ǫ)y([t+ j]) + g̃k(t),

(6.3)

n ≤ t < n+ 1. Clearly, ãk(t, ǫ), ãj,k(t, ǫ), etc., are continuous in ǫ uniformly in t ∈ R.

Let ãk(t, 0) = ã0
k, ãj,k(t, 0) = ã0

j,k and d̃k(t, 0) = d̃0
k, d̃j,k(t, 0) = d̃0

j,k,

A0,k = eã0
k + ã0

0,k(eã0
k − 1)/ã0

k, A1,k = ã0
1,k(eã0

k − 1)/ã0
k − 1,

Aj,k = ã0
j,k(eã0

k − 1)/ã0
k, j = −1,±2, · · · ,±N,

D0,k = −d̃0
0,k/d̃

0
k, D1,k = −d̃0

1,k/d̃
0
k − 1,

Dj,k = −d̃0
j,k/d̃

0
k, j = −1,±2, · · · ,±N.

When k ≫ 1, it follows from (H3) and (H4) that for each fixed k, all roots of algebraic
equations

N
∑

j=−N

Aj,kξ
j = 0

and
N

∑

j=−N

Dj,kµ
j = 0
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are not on S1. Set ω̃k = (λ1

2π , · · · ,
λnk

2π ). We establish a lemma for convenience as
follows. But, its proof will be put in the finality of this section.

Lemma 8. Under the assumptions (H1)-(H4), there exist ǫ1 > 0 and k1 > 0 such that
for k > k1 and 0 < ǫ < ǫ1, system (6.3) possesses a unique solution (x∗k(t, ǫ), y∗k(t, ǫ)) ∈
GQP(1, ω̃k) and

|x∗k(t, ǫ)| ≤ (α1,1(ǫ) + 1) sup
t

|f̃k(t)| + (α1,2(ǫ) + 1) sup
t

|g̃k(t)|,

|y∗k(t, ǫ)| ≤ (α2,1(ǫ) + 1) sup
t

|f̃k(t)| + (α2,2(ǫ) + 1) sup
t

|g̃k(t)|,

so that there exists a constant Uf,g such that when 0 ≤ ǫ ≤ ǫ1, we have

sup
t

|x∗k(t, ǫ)| ≤ Uf,g, sup
t

|y∗k(t, ǫ)| ≤ Uf,g. (6.4)

Here, αi,j(ǫ) are as in Theorem 4.

We continue the proof of Theorem 5. Let m̃k = (m1, · · · ,mnk
). It follows from

Lemma 8 that we could write x∗k(t, ǫ) and y∗k(t, ǫ) as

x∗k(t, ǫ) =
∑

m̃k

Xk,m̃k
({t}, ǫ)ei2π<m̃k,ω̃k>[t] , Fk(t, ω̃kt, ǫ),

y∗k(t, ǫ) =
∑

m̃k

Yk,m̃k
({t}, ǫ)ei2π<m̃k,ω̃k>[t] , Gk(t, ω̃kt, ǫ),

where
Fk(θ0, θ̃k, ǫ) =

∑

m̃k

Xk,m̃k
({θ0}, ǫ)e

−i2π<m̃k,ω̃k>{θ0}ei2π<m̃k,θ̃k>,

Gk(θ0, θ̃k, ǫ) =
∑

m̃k

Yk,m̃k
({θ0}, ǫ)e

−i2π<m̃k,ω̃k>{θ0}ei2π<m̃k,θ̃k>

are 1-periodic in θ0, θ1, · · · , θnk
, respectively, and θ̃k = (θ1, · · · , θnk

). Clearly, Fk, Gk∈

L(Tnk+1). Setting θ̂k = (θ0, θ1, · · · , θnk
) and m̂k = (m0,m1, · · · ,mnk

), we have the
Fourier expansion ( see [25] for details )

Fk(θ0, θ1, · · · , θnk
, ǫ) ∼

∑

m̂k

Fk,m̂k
(ǫ)ei2π<m̂k,θ̂k>,

Gk(θ0, θ1, · · · , θnk
, ǫ) ∼

∑

m̂k

Gk,m̂k
(ǫ)ei2π<m̂k,θ̂k>,

where the Fourier coefficients

Fk,m̂k
(ǫ) =

∫

T
nk+1

Fk(θ̂k, ǫ)e
−i2π<m̂k,θ̂k>dθ̂k,

Gk,m̂k
(ǫ) =

∫

T
nk+1

Gk(θ̂k, ǫ)e
−i2π<m̂k,θ̂k>dθ̂k.
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We get the Fourier expansions of x∗k(t, ǫ) and y∗k(t, ǫ) as

x∗k(t, ǫ) ∼
∑

m̂k

Fk,m̂k
(ǫ)ei2π<m̂k,ω̂k>t,

y∗k(t, ǫ) ∼
∑

m̂k

Gk,m̂k
(ǫ)ei2π<m̂k,ω̂k>t,

where ω̂k = (1, ω̃k). It follows that

mod(x∗k(t, ǫ), y∗k(t, ǫ)) ⊂ {

nk
∑

l=1

mlλl

∣

∣λl ∈ Λ ∀ml ∈ Z} + {2jπ|j ∈ Z},

which implies that limk→∞ mod(x∗k(t, ǫ), y∗k(t, ǫ)) ⊂ M + {2kπ|k ∈ Z}, here we use
the limit of sets. Set u∗k(t, ǫ) = x∗k(t, ǫ) − x∗(t, ǫ), v∗k(t, ǫ) = y∗k(t, ǫ) − y∗(t, ǫ). Then
u∗k(t, ǫ), v∗k(t, ǫ) satisfy the following systems

u′(t) = a(t, ǫ)u(t) +

N
∑

i=−N

ai(t, ǫ)u([t+ i]) + b(t, ǫ)v(t) +

N
∑

i=−N

bi(t, ǫ)v([t+ i])

+f̃k(t) − f(t) + (ãk(t, ǫ) − a(t, ǫ))x∗k(t) +

N
∑

i=−N

(ãi,k(t, ǫ) − ai(t, ǫ))x
∗
k([t+ i])

+(b̃k(t, ǫ) − b(t, ǫ))y∗k(t) +
N

∑

i=−N

(b̃i,k(t, ǫ) − bi(t, ǫ))y
∗
k([t+ i]),

ǫv′(t) = c(t, ǫ)u(t) +

N
∑

i=−N

ci(t, ǫ)u([t+ i]) + d(t, ǫ)v(t) +

N
∑

i=−N

di(t, ǫ)v([t+ i])

+g̃k(t) − g(t) + (c̃k(t, ǫ) − c(t, ǫ))x∗k(t) +
N

∑

i=−N

(c̃i,k(t, ǫ) − ci(t, ǫ))x
∗
k([t+ i])

+(d̃k(t, ǫ) − d(t, ǫ))y∗k(t) +

N
∑

i=−N

(d̃i,k(t, ǫ) − di(t, ǫ))y
∗
k([t+ i]).

It follows from (6.2) and (6.4) that when 0 ≤ ǫ ≤ ǫ1, we have

sup
t

|x∗k(t, ǫ) − x∗(t, ǫ)| → 0, sup
t

|y∗k(t, ǫ) − y∗(t, ǫ)| → 0, as k → ∞.

Thus, we have

lim
k→∞

a(λ;x∗k) = a(λ;x∗), lim
k→∞

a(λ; y∗k) = a(λ; y∗), ∀λ ∈ R.

Therefore, we could imply mod(x∗, y∗) ⊂ M + {2kπ|∀k ∈ Z}. �

Proof of Lemma 8. It follows from Theorem 4 that there exist ǫ1 > 0 and k1 > 0
such that for k > k1 and 0 < ǫ < ǫ1, the system (6.3) possesses a unique solution
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(x∗k(t, ǫ), y∗k(t, ǫ)) ∈ GQP(1, ω̃k). It suffices to show (6.4). We give an outline as
follows.

(1). If AN 6= 0, then the system

N
∑

i=−N

Aix(n+ i) = h(n) (6.5)

is equivalent to
u(n+ 1) = Cu(n) + q(n),

where

u(n) =











y(n−N)
y(n−N + 1)

...
y(n+N − 1)











, q(n) =















0
0
...
0

1
AN

h(n)















,

C =













0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · ·
0 0 0 · · · 1

−AN−1

AN
−AN−2

AN
· · · · · · −A−N

AN













.

From (H3), it follows that
u(n+ 1) = Cu(n)

admits an exponential dichotomy.
(2). If AN,k 6= 0, then the system

N
∑

j=−N

Aj,kx(n+ j) = hk(n) (6.6)

is equivalent to
u(n+ 1) = Cku(n) + qk(n),

where

Ck =













0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · ·
0 0 0 · · · 1

−
AN−1,k

AN,k
−

AN−2,k

AN,k
· · · · · · −

A−N,k

AN,k













, qk(n) =















0
0
...
0

1
AN,k

hk(n)















.

From the roughness theorem for exponential dichotomies, we know that there exists
k1 ( without loss of generalization ) such that when k > k1, the system

u(n+ 1) = Cku(n)
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also admits an exponential dichotomy. The unique bounded solution x∗k(n) of system
(6.6) can be estimated by the constants appeared in the exponential dichotomy and
the constants can be chosen to be independent of the small perturbation ( see [16,
Prop. 2.10]) so that we can obtain

|x∗k(n)| ≤ M̃A sup
n∈Z

|hk(n)|.

(3). From the above and Theorem 1, it is easy to see that

ẋ(t) = ã0
kx(t) +

N
∑

i=−N

ã0
i,kx([t+ i]) + f̃k(t) (6.7)

possesses a unique solution x̃∗k(t) ∈ GQP(1, ω̃k) and there exists a constant Ũ inde-
pendent of k ( note that x̃∗k(t) can be represented as in (3.5) ) such that

|x̃∗k(t)| ≤ Ũ sup
t

|f̃k(t)|.

(4). Suppose DN 6= 0. Let

D0,k(ǫ) = ed̃0
k/ǫ + d̃0

0,k(ed̃0
k/ǫ − 1)/d̃0

k,

D1,k(ǫ) = d̃0
1,k(ed̃0

k/ǫ − 1)/d̃0
k − 1,

Dj,k(ǫ) = d̃0
j,k(ed̃0

k/ǫ − 1)/d̃0
k, j = −1,±2, · · · ,±N,

ek(n, ǫ) = −

∫
n+1

ǫ

n
ǫ

ed̃0
k( n+1

ǫ
−σ)g̃k(ǫσ)dσ.

If k > k1 and 0 < ǫ < ǫ1, then the system

N
∑

i=−N

Di,k(ǫ)y(n+ i) = ek(n, ǫ) (6.8)

is equivalent to
v(n+ 1) = Bk(ǫ)v(n) + qk(ǫ),

where

Bk(ǫ) =









0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · ·

−
DN−1,k(ǫ)
DN,k(ǫ) −

DN−2,k(ǫ)
DN,k(ǫ) · · · · · · −

D−N,k(ǫ)
DN,k(ǫ)









,

v(n) =











y(n−N)
y(n−N + 1)

...
y(n+N − 1)











, qk(ǫ) =















0
0
...
0

1
DN,k(ǫ)ek(n, ǫ)














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Clearly, limk→∞,ǫ→0Dj,k(ǫ) = Dj for each fixed j. From (H4) and the roughness
theorem for exponential dichotomies, we know that there exist k1 > 0 and ǫ1 > 0 (
without loss of generalization ) such that when k > k1 and 0 < ǫ < ǫ1, the system

v(n+ 1) = Bk(ǫ)v(n)

also admits an exponential dichotomy. The unique bounded solution y∗k(n, ǫ) of system
(6.8) can be estimated by the constants appeared in the exponential dichotomy and
the constants can be chosen to be independent of the small perturbation ( see [16,
Prop. 2.10]) so that we can obtain

|y∗k(n, ǫ)| ≤ ÑD sup
n∈Z

|ek(n, ǫ)|.

(5). From the above and in analogous way to the proof of Theorem 3 ( e.g., see
[20, Thm. 2.4] ), it is easy to prove

ǫẏ(t) = d̃0
ky(t) +

N
∑

i=−N

d̃i,ky([t+ ǫ]) + g̃k(t)

possesses a unique solution ỹ∗k(t, ǫ) ∈ GQP(1, ω̃k) and there exists a constant Ṽ inde-
pendent of k and ǫ such that

|ỹ∗k(t, ǫ)| ≤ Ṽ sup
t

|g̃k(t)|.

The rest is virtually in an analogous way as in the proof of [ 20, Thm. 3.1]. We
omit it. This completes the proof of Lemma 8. �

7. Nonlinear Singularly Perturbed Differential Equations

In this section, we will discuss the systems (1.5). We formulate the following result.

Theorem 6. Assume that f(t, φ, ψ, ǫ), g(t, φ, ψ, ǫ) are almost periodic in t uniformly
for (φ, ψ) with spectrums Λf ,Λg ⊂ Λ. If (H1)-(H5) hold, then there exist ǫ2, ρ1, 0 <
ǫ2 ≤ ǫ0 and 0 < ρ1 ≤ ρ0, such that for each ǫ satisfying 0 < ǫ ≤ ǫ2, (1.5) has
a unique almost periodic solution (x∗(t, ǫ), y∗(t, ǫ)) satisfying ||x|| ≤ ρ1, ||y|| ≤ ρ1,
mod((x∗(t), y∗(t))) ⊂ M+{2kπ| k ∈ Z}, and this solution is continuous in ǫ uniformly
in t ∈ R and satisfies ||x∗(ǫ)|| + ||y∗(ǫ)|| = O(M(ǫ)) as ǫ→ 0.
Proof. The existence of almost periodic solution has been shown in [20]. It suffices
to show the module containment. We choose ρ1 (≤ ρ0) and ǫ2 (≤ ǫ1) such that

(4UV (N + 1)M + 2U + 2V )[4ρ1η(ρ1, ǫ2) +M(ǫ2)] < ρ1,

2[4UV (N + 1)M + 2U + 2V )η(ρ1, ǫ2) <
1

2
.
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Set R = {(x, y) ∈ AP
∣

∣mod(x, y) ⊂ M + {2kπ}}. Given (x0, y0) ∈ R satisfying
||x0|| ≤ ρ1, ||y0|| ≤ ρ1 and 0 < ǫ ≤ ǫ2, let (x, y) be the unique solution in R of















































x′(t) = a(t, ǫ)x(t) +

N
∑

i=−N

ai(t, ǫ)x([t+ i]) + b(t, ǫ)y(t) +

N
∑

i=−N

bi(t, ǫ)y([t+ i])

+ f(t, x0t, y0t, ǫ),

ǫy′(t) = c(t, ǫ)x(t) +
N

∑

i=−N

ci(t, ǫ)x([t + i]) + d(t, ǫ)y(t) +
N

∑

i=−N

di(t, ǫ)y([t+ i])

+ g(t, x0t, y0t, ǫ).

Such an (x, y) ∈ R exists by Theorem 5 and the estimate

|f(t, x0t, y0t, ǫ)| ≤ η(ρ1, ǫ2)2[||x0|| + ||y0||] +M(ǫ2)

≤ 4ρ1η(ρ1, ǫ2) +M(ǫ2), t ∈ R, 0 < ǫ ≤ ǫ2.

In fact, (x, y) = L(ǫ)(f(·, x0, y0, ǫ), g(·, x0, y0, ǫ)) = T (x0, y0, ǫ). The existence of a
solution of (1.5) in R is equivalent to the existence of a fixed point of the mapping T .

We estimate (x, y) using Theorem 5 as

||x|| ≤ (α1,1(ǫ) + α1,2(ǫ))[4ρ1η(ρ1, ǫ2) +M(ǫ2)] < ρ1.

and similarly for ||y||. Thus, T (·, ·, ǫ) maps the closed set F = {(x0, y0) ∈ AP :
mod(x0, y0) ⊂ M + {2kπ}, ||x0|| ≤ ρ1, ||y0|| ≤ ρ1} into itself for each ǫ with 0 < ǫ ≤
ǫ2.

Setting (x, y) = T (x0, y0, ǫ) and (x̄, ȳ) = T (x̄0, ȳ0, ǫ), it is easily shown that

||x− x̄|| ≤ [4UV (N + 1)M + 2U + 2V ]η(ρ1, ǫ2)[||x0 − x̄0|| + ||y0 − ȳ0||]

and similarly for ||y − ȳ||, yielding

||x− x̄|| + ||y − ȳ||

≤ 2[4UV (N + 1)M + 2U + 2V ]η(ρ1, ǫ2)[||x0 − x̄0|| + ||y0 − ȳ0||]

≤
1

2
[||x0 − x̄0|| + ||y0 − ȳ0||].

Hence T is a uniform contraction. The rest is in an analogous way to those in [20].
So we omit it. �
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