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Abstract. By appealing to the theory of global attractors and steady states for
uniformly persistent dynamical systems, we show that uniform persistence implies the
existence of interior periodic solutions for dissipative periodic functional differential
equations of retarded and neutral type. This result is then applied to a multi-species
competitive system and a SIS epidemic model.
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1. Introduction

Periodic solutions of periodic functional differential equations (FDEs) have received
extensive investigations, see, e.g., [3, 5, 14, 15, 11] and references therein. It is well-
known that the existence, uniqueness, stability, and attractivity of periodic solutions
for a periodic semiflow are equivalent to those of fixed points for its Poincaré map(see,
e.g., [17]). Various fixed point theorems, coincidence degree theory, and bifurcation
methods can be used to study the existence of positive periodic solutions for periodic
FDEs, while the uniqueness and global attractivity of these positive solutions may be
addressed via the monotone operators approach and Liapunov function techniques.

Uniform persistence is an important concept in population dynamics, since it
characterizes the long-term survival of some or all interacting species in an ecosystem.
Looked at abstractly, it is the notion that a closed subset of the state space is repelling
for the dynamics on the complementary set, and then it gives a uniform estimate
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126 X.-Q. Zhao

for omega limit sets, which sometimes is essential to obtain a more detailed global
dynamics. For the general theory of uniform persistence in dissipative systems, we
refer to [4, 12, 17] and references therein.

A dissipative and uniformly persistent system is often said to be permanent. In
[16, 6], it was shown that permanence implies the existence of at least one coex-
istence steady state for abstract discrete- and continuous-time dynamical systems
under appropriate assumptions. This result provides a dynamic approach to some
static problems, e.g., the existence of positive steady states and periodic solutions
for evolution equations. We should point out that this approach is very flexible in
its applications since the concept of uniform persistence depends on the choice of an
open subset in the phase space. The purpose of this paper is to show that permanence
implies the existence of interior periodic solutions for periodic functional differential
equations by appealing to an abstract result in [6].

The remaining parts of this paper are organized as follows. In the next section,
we present the necessary preliminary concepts and results on discrete-time dynamical
systems. In section 3, we establish the existence of interior periodic solutions for three
types of periodic functional differential equations. Section 4 is aimed at the applica-
tions of the general results to two periodic and time-delayed systems in population
biology. A threshold dynamics is also obtained for the SIS epidemic model.

2. Preliminaries

Let (M, d) be a complete metric space. Recall that a set U in M is said to be a
neighborhood of another set V provided V is contained in the interior int(U) of U .
For any subsets A, B ⊂ M , we define

d(x, A) := inf
y∈A

d(x, y), δ(B, A) := sup
x∈B

d(x, A).

The Kuratowski measure of noncompactness, α, is defined by

α(B) = inf{r : B has a finite open cover of diameter ≤ r},

for any bounded set B of M . It is easy to see that B is precompact (i.e., B is compact)
if and only if α(B) = 0.

Let T : M → M be a continuous map. We consider the discrete-time dynamical
system T n : M → M, ∀n ≥ 0, which is defined by

T 0 = I, T n = T ◦ T n−1, ∀n ≥ 1.

For a subset C ⊂ M , we denote its positive orbit for T as γ+ (C) :=
⋃

n≥0

T n(C).

A subset A ⊂ M is positively invariant for T if T (A) ⊂ A. A is invariant for T

if T (A) = A. We say that a subset A ⊂ M attracts a subset B ⊂ M for T if
lim

n→∞
δ(T n(B), A) = 0.
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Permanence Implies the Existence of Interior Periodic Solutions for FDEs 127

Definition 2.1. A continuous mapping T : M → M is said to be point (compact)
dissipative if there is a bounded set B0 in M such that B0 attracts each point (compact
set) in M ; T is compact if T maps any bounded set in M to a precompact set; T is α-
condensing (α-contraction of order k, 0 ≤ k < 1) if T takes bounded sets to bounded
sets and α(T (B)) < α(B) (α(T (B)) ≤ kα(B)) for any nonempty closed bounded set
B ⊂ M with α(B) > 0.

Clearly, a compact map is an α-contraction of order 0, and an α-contraction of
order k is α-condensing.

Definition 2.2. A nonempty, compact and invariant set A ⊂ M is said to be an
attractor for T if A attracts one of its neighborhoods; a global attractor for T if A

is an attractor that attracts every point in M ; a strong global attractor for T if A

attracts every bounded subset of M .

For the general theory of global attractors in dissipative systems, we refer to
[2, 8, 6] and references therein.

Let M0 be a nonempty open subset of M . We define ∂M0 := M \ M0. Clearly,
∂M0 is a closed subset of M .

Definition 2.3. Let T : M → M be a continuous map with T (M0) ⊂ M0. T is
said to be uniformly persistent with respect to M0 if there exists η > 0 such that
lim inf
n→+∞

d (T n(x), ∂M0) ≥ η for all x ∈ M0.

In what follows, we assume that M is a closed subset of a Banach space (X, ‖·‖),
that M0 is a convex and relatively open subset in M , and that T : M → M is a
continuous map with T (M0) ⊂ M0.

The following result on the existence of the global attractor and fixed point of T

in M0 comes from [6, Theorem 4.5] with ρ(x) = d(x, ∂M0), which is a generalization
of [16, Theorem 2.3].

Theorem 2.1. Assume that

(1) T is point dissipative and uniformly persistent.

(2) One of the following two conditions hold:

(2a) T n0 is compact for some integer n0 ≥ 1, or

(2b) Positive orbits of compact sets in M are bounded.

(3) T is α-condensing.

Then T : M0 → M0 admits a global attractor A0, and T has a fixed point in A0.
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3. Periodic FDEs

In this section, we establish the existence of periodic solutions for three types of
periodic functional differential equations by applying Theorem 2.1 to their time period
maps.

For a given τ ≥ 0, let C := C([−τ, 0], Rm). For any function x : [−τ, b) → R
m,

b > 0, we define xt ∈ C by xt(θ) = x(t + θ), ∀θ ∈ [−τ, 0].
We first consider a periodic retarded functional differential equation

dx(t)

dt
= f(t, xt) (3.1)

with f : R × C → R
m a continuous and bounded map, f(t, φ) a locally Lipschitz

function in φ, and f(t + ω, φ) = f(t, φ) for some ω > 0.

Theorem 3.1. Let M be a closed subset of C and M0 be a convex and relatively
open subset in M such that for any φ ∈ M , the unique solution x(t, φ) of (3.1) with
x0 = φ exists on [0,∞), and both M and M0 are positively invariant for solution
maps xt, t ≥ 0. Assume that

(i) Solutions of (3.1) are ultimately bounded in M in the sense that there is a
number K0 > 0 such that lim sup

t→∞

‖xt(φ)‖ ≤ K0 for all φ ∈ M .

(ii) Solutions of (3.1) are uniformly persistent with respect to M0 in the sense that
there exists η > 0 such that lim inf

t→+∞
d(xt(φ), ∂M0) ≥ η for all φ ∈ M0.

Then system (3.1) has at least one ω-periodic solution x∗(t) with x∗
t ∈ M0 for all

t ≥ 0.

Proof. By the proof of [2, Theorem 4.1.1], it follows that the solution map xt is an
α-contraction on M for an equivalent norm in C for each t > 0, and is compact on
M for each t ≥ τ . Let T be the Poincaré map associated with system (3.1), that is,
Tφ = xω(φ), ∀φ ∈ M . Clearly, there exists an integer n0 ≥ 1 such that n0ω ≥ τ .
Thus, condition (2a) holds for T on M . Now Theorem 2.1 completes the proof. �

In the case where τ = 0, (3.1) reduces to a periodic ordinary differential system
x′ = f(t, x), and hence, Theorem 3.1 also applies to periodic ODEs.

In Sections 8.4-8.6 of [5], sufficient conditions for permanence were obtained for
three classes of nonautonomous and time-delayed Kolmogorov-type population mod-
els, respectively. If, in addition, such a system is ω-periodic, then Theorem 3.1 implies
that it has at least one positive ω-periodic solution.

Suppose that A(t, θ) is a continuous m × m matrix function and D0 : R →
L(C, Rm) is a C1-continuous map such that both A and D0 are ω-periodic in t and
the zero solution of the linear functional equation

D0(t)yt = 0, y0 = φ
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Permanence Implies the Existence of Interior Periodic Solutions for FDEs 129

is uniformly asymptotically stable for φ ∈ CD0
=: {φ ∈ C : D0(0)φ = 0}. For a given

t ∈ R, we define D(t) : C → R
m by

D(t)φ = D0(t)φ +

∫ 0

−τ

A(t, θ)φ(θ)dθ.

Next we consider a periodic neutral function differential equation

d

dt
D(t)xt = f(t, xt) (3.2)

with f(t, φ) defined as in system (3.1).

Theorem 3.2. Let M be a closed subset of C and M0 be a convex and relatively
open subset in M such that for any φ ∈ M , the unique solution x(t, φ) of (3.2) with
x0 = φ exists on [0,∞), and both M and M0 are positively invariant for solution
maps xt, t ≥ 0. Assume that

(i) Solutions of (3.2) are ultimately bounded in M .

(ii) Solutions of (3.2) are uniformly persistent with respect to M0.

Then system (3.2) has at least one ω-periodic solution x∗(t) with x∗
t ∈ M0 for all

t ≥ 0.

Proof. It was shown in [7] that point dissipative implies compact dissipative for
solution maps xt of (3.2)(see also [2, Theorem 4.5.6]). Let T be the Poincaré map
associated with the system (3.2). Then condition (2b) holds for T on M . By [2,
Section 4.5.3]), it follows that T is an α-contraction on M for an equivalent norm in
C. Now Theorem 2.1 completes the proof. �

In the case where D0(t)φ = φ(0) and A(t, θ) ≡ 0, the neutral equation (3.2)
reduces to the retarded equation (3.1), and hence, Theorem 3.1 is also a consequence
of Theorem 3.2.

For a given γ > 0, we define the phase space as

Cγ = {φ ∈ C((−∞, 0], Rm) : lim
θ→−∞

eγθφ(θ) exists }

equipped with the norm ‖φ‖ = sup
θ∈(−∞,0]

eγθ|φ(θ)|.

Finally, we consider a retarded functional differential equation with infinite delay

dx(t)

dt
= f(t, xt) (3.3)

with f : R × Cγ → R
m a continuous and bounded map, f(t, φ) a locally Lipschitz

function in φ, and f(t + ω, φ) = f(t, φ) for some ω > 0.
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Theorem 3.3. Let M be a closed subset of Cγ and M0 be a convex and relatively
open subset in M such that for any φ ∈ M , the unique solution x(t, φ) of (3.3) with
x0 = φ exists on [0,∞), and both M and M0 are positively invariant for solution
maps xt, t ≥ 0. Assume that

(i) Solutions of (3.3) are ultimately bounded in M .

(ii) Solutions of (3.3) are uniformly persistent with respect to M0.

(iii) Solutions of (3.3) are uniformly bounded in M in the sense that for any L > 0,
there exists K = K(L) > 0 such that ‖xt(φ)‖ ≤ K for all t ≥ 0 and φ ∈ M

with ‖φ‖ ≤ L.

Then system (3.3) has at least one ω-periodic solution x∗(t) with x∗
t ∈ M0 for all

t ≥ 0.

Proof. Let T be the Poincaré map associated with the system (3.3). Clearly, the
assumption (iii) implies that positive orbits of bounded sets in M for T are bounded.
By the arguments in [2, Section 4.9.1], it then follows that T is an α-contraction on
M for an equivalent norm in Cγ . Now Theorem 2.1 completes the proof. �

Compared with Theorems 3.1 and 3.2, we may wonder whether the assumption
(iii) can be removed from Theorem 3.3. This remains an open problem for system
(3.3).

4. Applications

In applications of the results in section 3, the key point is to prove a given time-delayed
system is uniformly persistent for an appropriate open set M0. In this section, we
provide two illustrative examples.

Let the Banach space C be defined as in section 3, and C+ be its positive cone con-
sisting of all nonnegative functions in C. We consider m-species periodic competitive
system with time delay

dxi(t)

dt
= xi(t) (gi(t, xi(t)) − hi(t, xt)) , 1 ≤ i ≤ m, (4.1)

where x = (x1, . . . , xm) ∈ R
m. We assume that

(A1) For each i, gi ∈ C1(R2, R) and hi ∈ C1(R×C, R) are ω-periodic in t, hi(t, φ) ≥ 0

for all (t, φ) ∈ [0, ω]×C+, hi(t, φ) is nondecreasing in φ ∈ C+, and ∂gi(t,xi)
∂xi

< 0
for all (t, xi) ∈ [0, ω] × R+.

(A2) For each i, there exists Ki > 0 such that gi(t, Ki) ≤ 0 for all t ∈ [0, ω], and
∫ ω

0 gi(t, 0)dt > 0.
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Permanence Implies the Existence of Interior Periodic Solutions for FDEs 131

By [17, Theorem 5.2.1], it follows that the periodic ordinary differential equation

x′
i(t) = xi(t)gi(t, xi(t))

has a unique positive ω-periodic solution x∗
i (t), which is globally attractive in R+\{0}.

We further assume that

(A3)
∫ ω

0 gi(t, 0)dt >
∫ ω

0 hi(t, x
∗
t )dt for each 1 ≤ i ≤ m.

Then we have the following result.

Theorem 4.1. Let assumptions (A1)-(A3) hold. Then system (4.1) is uniformly
persistent and has at least one positive ω-periodic solution.

Proof. For a given φ ∈ C+, let x(t, φ) = (x1(t), . . . , xm(t)) be the unique solution of
system (4.1) with x0 = φ. Then we have

x′
i(t) ≤ xi(t)gi(t, xi(t)).

By the comparison theorem, it follows that x(t, φ) exists for all t ≥ 0, and for any
ǫ > 0 there exists t1 = t1(φ) > 0 such that

0 ≤ xi(t) ≤ x∗
i (t) + ǫ, ∀t ≥ t1, 1 ≤ i ≤ m. (4.2)

Define

M := C+, M0 = {φ = (φ1, . . . , φm) ∈ M : φi(0) > 0, ∀1 ≤ i ≤ m}.

It is easy to see that both M and M0 are positively invariant for solution maps of
(4.1). Now we assume that φ ∈ M0, and let ǭ := (ǫ, . . . , ǫ) ∈ R

m. Then

x′
i(t) ≥ xi(t) (gi(t, xi(t)) − hi(t, x

∗
t + ǭ)) , ∀t ≥ t1 + τ.

We fix a sufficiently small number ǫ such that
∫ ω

0

gi(t, 0)dt >

∫ ω

0

hi(t, x
∗
t + ǭ)dt, ∀1 ≤ i ≤ m.

It follows from [17, Theorem 5.2.1] that each periodic ordinary differential equation

y′
i(t) = yi(t) (gi(t, yi(t)) − hi(t, x

∗
t + ǭ))

has a globally attractive positive ω-periodic solution y∗
i (t) in R+ \ {0}. Choose a

number β > 0 such that β < min
t∈[0,ω]

y∗
i (t) for all 1 ≤ i ≤ m. Note that xi(t) > 0 for

all t ≥ 0. Thus, the comparison theorem implies that there exists t2 = t2(φ) ≥ t1 + τ

such that
xi(t) ≥ y∗

i (t) − β, ∀t ≥ t2, 1 ≤ i ≤ m. (4.3)

By (4.2) and (4.3), we see that solutions of system (4.1) are ultimately bounded in M

and uniformly persistent with respect to M0. Now Theorem 3.1 completes the proof.
�
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Consider a time-delayed SIS epidemic model, which was presented in [1]:

S′(t) = B(N(t − τ))N(t − τ)e−d1τ − dS(t) −
βS(t)I(t)

N(t)
+ γI(t)

I ′(t) =
βS(t)I(t)

N(t)
− (d + d2 + γ)I(t) (4.4)

with N(t) = S(t) + I(t). Here d > 0 is the death rate constant at the adult stage,
and B(N) is a birth rate function, τ is the developmental or maturation time, d1 >

0 is the death rate constant for the life stage prior to the adult stage, d2 ≥ 0 is
the disease induced death rate constant, γ > 0 is the recovery rate constant ( 1

γ
is

the average infective time), and β > 0 is the contact rate constant. The standard
incidence function is used with βI

N
giving the average number of adequate contacts

with infectives of one susceptible per unit time.
Now we assume the contact rate is a nonnegative continuous ω-periodic function

β(t) with its time average over [0, ω] satisfying

β̄ :=
1

ω

∫ ω

0

β(t)dt > 0.

For simplicity, we take the birth rate function as B(N) = a
N

+ c with a > 0 and
0 < c < d. Then we obtain the following periodic and time-delayed SIS epidemic
model

S′(t) = (a + cN(t − τ)) e−d1τ − dS(t) −
β(t)S(t)I(t)

N(t)
+ γI(t)

I ′(t) =
β(t)S(t)I(t)

N(t)
− (d + d2 + γ)I(t). (4.5)

As noticed in [18], the function SI
S+I

can be extended to a globally Lipschitz

function F (S, I) on R
2
+ with F (0, 0) = 0. In what follows, we always identify the term

S(t)I(t)
N(t) with F (S(t), I(t)). By [9, Theorem 5.2.1], for any φ ∈ M := C([−τ, 0], R2

+),

there is a unique solution (S(t, φ)), I(t, φ)) of system (4.5) with (S(θ, φ), I(θ, φ)) =
φ(θ), ∀θ ∈ [−τ, 0], and S(t, φ) ≥ 0, I(t, φ) ≥ 0 for all t ≥ 0 in its maximal interval of
existence. Then N(t) = S(t) + I(t) satisfies the differential inequality

N ′(t) ≤ (a + cN(t − τ))e−d1τ − dN(t).

Since 0 < c < d, it is easy to see that the linear equation

N ′(t) = (a + cN(t − τ))e−d1τ − dN(t) (4.6)

has a unique positive equilibrium Ne :=
a

d − ce−d1τ
, which is globally stable in

C([−τ, 0], R+) (see, e.g., [1, Theorem 3.1]). By the comparison theorem (see [9,
Theorem 5.1.1]), it then follows that each solution (S(t, φ), I(t, φ)) exists globally on
[0,∞), and solutions of system (4.5) are ultimately bounded in M . Moreover, for any
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Permanence Implies the Existence of Interior Periodic Solutions for FDEs 133

φ = (φ1, φ2) ∈ M with φ2(0) > 0, by using two equations in (4.5) respectively, we
have S(t, φ) > 0, I(t, φ) > 0, ∀t > 0.

Define

M0 := {φ = (φ1, φ2) ∈ M : φ2(0) > 0}, ∂M0 := M \ M0.

Then we have the following threshold type result.

Theorem 4.2. Let R0 := β̄
d+d2+γ

. Then the following statement is valid:

(i) If R0 < 1, then any solution (S(t, φ), I(t, φ)) of system (4.5) with φ ∈ M0

satisfies lim
t→∞

S(t, φ) = Ne and lim
t→∞

I(t, φ) = 0;

(ii) If R0 > 1, system (4.5) has a positive ω-periodic solution, and there is η > 0
such that any solution (S(t, φ), I(t, φ)) of system (4.5) with φ ∈ M0 satisfies
lim inf
t→∞

S(t, φ) ≥ η and lim inf
t→∞

I(t, φ) ≥ η.

Proof. Define Φ(t)φ = (St(φ), It(φ)), t ≥ 0, φ ∈ M . Then Φ(t) is an ω-periodic
semiflow on M . Fix a sufficiently small positive number δ0 such that

B(N) =
a

N
+ c > 2(d + d2)e

d1τ , ∀N ∈ (0, 2δ0].

Since lim
φ→0

Φ(t)φ = 0 uniformly for t ∈ [0, ω], there exists δ1 > 0 such that

‖Φ(t)φ‖ ≤ δ0, ∀t ∈ [0, ω], ‖φ‖ ≤ δ1.

Claim 1. lim sup
n→∞

‖Φ(nω)φ‖ ≥ δ1 for all φ ∈ M0.

Suppose that, by contradiction, lim sup
n→∞

‖Φ(nω)φ‖ < δ1 for some φ ∈ M0. Then

there exists an integer N1 ≥ 1 such that ‖Φ(nω)φ‖ < δ1, ∀n ≥ N1. Let (S(t), I(t)) =
(S(t, φ), I(t, φ)), t ≥ 0. For any t ≥ N1ω, we have t = nω + t′ with n ≥ N1 and
t′ ∈ [0, ω]. Thus, we have

‖Φ(t)φ‖ = ‖Φ(t′)(Φ(nω)φ)‖ ≤ δ0, ∀t ≥ N1ω.

Since N(t) ≥ I(t) > 0, ∀t ≥ 0, N(t) satisfies the following differential inequality

N ′(t) ≥ 2(d + d2)N(t − τ) − (d + d2)N(t), ∀t ≥ t1 := N1ω + τ.

By [9, Corollary 5.5.2], the stability modulus, denoted by s, of the linear time-delayed
equation

N ′(t) = 2(d + d2)N(t − τ) − (d + d2)N(t) (4.7)

is positive. Thus, [9, Theorem 5.5.1] implies that (4.7) admits a solution N∗(t) = estu

with u > 0. Since N(t) > 0, ∀t > 0, we can choose a small number k > 0 such that
N(t) > kN∗(t), ∀t ∈ [t1 − τ, t1]. By the comparison theorem (see [9, Theorem 5.1.1]),
we then obtain N(t) ≥ kN∗(t), ∀t ≥ t1. This implies lim

t→∞
N(t) = ∞, a contradiction.
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In the case where R0 < 1, we have β̄ < d + d2 + γ. If I(0) > 0, then N(t) ≥
I(t) > 0, ∀t ≥ 0, and hence, by equation (4.5), we obtain

I ′(t) ≤ (β(t) − (d + d2 + γ))I(t), ∀t ≥ 0.

It follows that
I(t) ≤ I(0)e

R

t

0
(β(s)−(d+d2+γ))ds, ∀t ≥ 0.

Since 1
ω

∫ ω

0
(β(t) − (d + d2 + γ))dt = β̄ − (d + d2 + γ) < 0, we see that lim

t→∞
I(t) = 0.

Thus, N(t) satisfies the following nonautonomous time-delayed equation

N ′(t) = (a + cN(t − τ))e−d1T − dN − d2I(t)

which is asymptotic to the autonomous time-delayed equation (4.6). By [13, Theorem
4.1], together with Claim 1 above, it then follows that lim

t→∞
N(t) = Ne, and hence,

lim
t→∞

S(t, φ) = lim
t→∞

(N(t) − I(t)) = Ne.

In the case where R0 > 1, we have β̄ > d + d2 + γ. We consider the Poincaré
map T := Φ(ω) : M → M . Thus, T nφ = Φ(nω)φ, ∀n ≥ 0, φ ∈ M . Let M1 = (0, 0)
and M2 = (Ne, 0). Then we have Ã∂ := ∪φ∈∂M0

ω(φ) = {M1, M2}, where ω(φ) is
the omega limit set of φ for the map T . Clearly, M1 and M2 are disjoint, compact
and isolated invariant sets for T in ∂M0, and no subset of {M1, M2} forms a cycle

in ∂M0. Fix a number η0 ∈
(

d+d2+γ

β̄
, 1

)

. Since lim
(I,N)→(0,Ne)

N − I

N
= 1 > η0, there

exists η1 > 0 such that

N − I

N
> η0, ∀I ∈ [0, η1], |N − Ne| ≤ 2η1.

Since lim
φ→(Ne,0)

Φ(t)φ = (Ne, 0) uniformly for t ∈ [0, ω], there exists η2 > 0 such that

‖Φ(t)φ − (Ne, 0)‖ ≤ η1, ∀t ∈ [0, ω], ‖φ − (Ne, 0)‖ ≤ η2.

Claim 2. lim sup
n→∞

‖Φ(nω)φ − (Ne, 0)‖ ≥ η2 for all φ ∈ M0.

Suppose that, by contradiction, lim sup
n→∞

‖Φ(nω)φ−(Ne, 0)‖ < η2 for some φ ∈ M0.

Then there exists an integer N2 ≥ 1 such that ‖Φ(nω)φ − (Ne, 0)‖ < η2, ∀n ≥ N2.
For any t ≥ N2ω, we have t = nω + t′ with n ≥ N2 and t′ ∈ [0, ω]. Thus, we have

‖Φ(t)φ − (Ne, 0)‖ = ‖Φ(t′)(Φ(nω)φ) − (Ne, 0)‖ ≤ η1, ∀t ≥ N2ω.

Thus, I(t) satisfies the following differential inequality

I ′(t) ≥ (β(t)η0 − (d + d2 + γ)) I(t), ∀t ≥ N2ω.

By the comparison theorem, it follows that

I(t) ≥ I(N2ω)e
R

t

N2ω
(β(s)η0−(d+d2+γ))ds

, ∀t ≥ N2ω.
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Since
1

ω

∫ ω

0

(β(t)η0 − (d + d2 + γ)) dt = β̄η0 − (d + d2 + γ) > 0,

we have lim
n→∞

I(nω) = ∞, a contradiction.

In view of two claims above, we see that M1 and M2 are isolated invariant sets
for T in M , and W s(Mi)∩M0 = ∅, i = 1, 2, where W s(Mi) is the stable set of Mi for
T . By the acyclicity theorem on uniform persistence for maps (see [17, Theorem 1.3.1
and Remark 1.3.1]), it follows that T : M → M is uniformly persistent with respect
to M0. Thus, [17, Theorem 3.1.1] implies that the periodic semiflow Φ(t) : M → M

is also uniformly persistent with respect to M0. By Theorem 3.1, we see that system
(4.5) has an ω-periodic solution (S∗(t), I∗(t)) with (S∗

t , I∗t ) ∈ M0 for all t ≥ 0. Clearly,
S∗(t) > 0 and I∗(t) > 0 for all t > 0.

It remains to prove the practical uniform persistence. By Theorem 2.1, T : M0 →
M0 has a global attractor A0. Since A0 = TA0 = Φ(ω)A0, it follows that φ1(0) > 0
and φ2(0) > 0 for all φ ∈ A0. Let C := ∪t∈[0,ω]Φ(t)A0. It is easy to see that C ⊂ M0

and lim
t→∞

d(Φ(t)φ, C) = 0 for all φ ∈ M0. Define a continuous function p : M → R+

by
p(φ) = min(φ1(0), φ2(0)), ∀φ = (φ1, φ2) ∈ M.

Clearly, p(φ) > 0, ∀φ ∈ C. Since C is a compact subset of M0, we have minφ∈C p(φ) >

0. Consequently, there exists η > 0 such that

lim inf
t→∞

min (S(t, φ), I(t, φ)) = lim inf
t→∞

p(Φ(t)φ) ≥ η, ∀φ ∈ M0.

This completes the proof. �

In the case where d2 = 0, we see that N(t) satisfies equation (4.6), and hence,
lim

t→∞
N(t) = Ne. Thus, I(t) satisfies the nonautonomous equation

I ′(t) =
β(t)(N(t) − I(t))I(t)

N(t)
− (d + γ)I(t)

which is asymptotic to the following periodic equation

I ′(t) =
β(t)(Ne − I(t))I(t)

Ne

− (d + γ)I(t). (4.8)

If R0 > 1, i.e., β̄ > d + γ, and β(t) > 0, ∀t ∈ [0, ω], then [17, Theorem 5.2.1]
implies that equation (4.8) has a unique positive ω-periodic solution Ī(t), which
is globally asymptotically stable in R \ {0}. By the theory of asymptotically peri-
odic systems (see [17, Section 3.2]), it follows that lim

t→∞

(

I(t) − Ī(t)
)

= 0, and hence

lim
t→∞

(

S(t) − (Ne − Ī(t))
)

= 0. This implies that system (4.5) has a globally attractive

positive ω-periodic solution
(

Ne − Ī(t), Ī(t))
)

.
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By applying the perturbation theory of a globally stable fixed point (see [10]) and
the theorem on uniform persistence uniform in parameters (see [17, Theorem 1.4.2])
to the Poincaré map of system (4.5), we can further show that if R0 > 1, β(t) >

0, ∀t ∈ [0, ω], and d2 ≥ 0 is sufficiently small, system (4.5) has a globally attractive
positive ω-periodic solution (Ŝ(t), Î(t)). However, it is a challenging problem to study
the uniqueness and global attractivity of positive periodic solution of (4.5) in the case
where R0 > 1 and the parameter d2 ≥ 0 is not small.

Finally, we remark that it should be interesting to find applications of Theorems
3.2 and 3.3 to some practical models.
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