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Abstract. For a monotone reaction-diffusion system, the existence of a monotone
mono-stable traveling wave, a traveling wave connecting an unstable equilibrium and a
stable equilibrium, has been well understood. However, the uniqueness of a monotone
traveling wave systems is in general unclear except for some scalar equations. In this
note we prove that, for a class of a monotone reaction-diffusion system, the monotone
mono-stable traveling wave solution is indeed unique whenever it exists. Our approach
is based on a rigorous analysis of the asymptotical behavior of a monotone traveling
wave. It turns out that the information on asymptotical behavior plays essential role
in determining the uniqueness of a monotone traveling wave.
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1. Introduction

Consider the following reaction-diffusion system

∂u

∂t
= d∆u + f(u), (1.1)

where u = u(x, t) ∈ Rn, d = diag(d1, · · · , dn) is an n×n nonnegative diagonal matrix

with at least one dj > 0, x ∈ Rm is the spatial variable, t ≥ 0 is the time, ∆ =

m
∑

j=1

∂2

∂x2
j
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is the Laplace operator, f ∈ C1(Rn, Rn). We suppose that the following hold.

[A1 ] System (1.1) is a monotone system. That is,

∂fi(u)

∂uj

≥ 0, i 6= j.

[A2 ] System (1.1) has two constant equilibrium steady states Ei ∈ Rn, such that
E1 ≪ E2, E1 is unstable, and E2 is stable.

[A3 ] Both the matrices Ai = Df(Ei), i = 1, 2, are irreducible.

By the assumptions [A1]- [A3] we know that there is a c∗ > 0, the minimum
wave speed, such that for each c ≥ c∗, there is a monotone traveling wave (called a
mono-stable traveling wave) connecting E1 and E2. In this paper we are interested
in the uniqueness of monotone traveling waves. This is important in applications
to practical problems. For instance, when using (1.1) to model many biological or
physics problems, it is often the case where the lower equilibrium E1 = 0. If only
the nonnegative solutions (the biologically or physically meaningful solutions) are
considered, then it can be shown that, for a monotone system, the uniqueness of a
monotone traveling wave actually implies the uniqueness of a nonnegative traveling
wave (with respect a fixed wave speed). For the simplest equation, i.e, the scalar
Fisher equation, the uniqueness of the monotone traveling wave can be proved by
analyzing a planar system. Recently, the uniqueness of monotone traveling waves
also has been proved for some classes of scalar nonlocal types of reaction-diffusion
equations [2, 4] using sophisticated analysis. However, the uniqueness of monotone
traveling waves for higher dimensional systems is in general unclear. The purpose
of this note is to prove that, for a class of reaction-diffusion systems, the monotone
traveling wave solution is indeed unique whenever it exists. That is, we shall prove
the following

Theorem 1.1. Under Assumptions [A1] - [A3], for each c > 0, if (1.1) has a mono-
tone traveling wave solution u(x, t) = U(ν · x + ct) connecting E1 and E2, then the
function U(s), s = ν · x + ct, is unique up to a time translation, where ν ∈ Rm is a
unit vector.

The extension of Theorem 1.1 to more general systems, such as the system with
time delay or nonlocal response, will be addressed in our future research.

A complete proof of Theorem 1.1 will be given in Section 3. We first establish
several lemmas in Section 2 that will be used in the proof of Theorem 1.1.

2. Preliminaries

In this paper, a nonnegative vector h ∈ Rn is denoted by h ≥ 0. We use h > 0 to
indicate that h is nonnegative and nonzero. We say that h is strictly positive, denoted
by h ≫ 0, if all components of h are positive. A real matrix is called positive if all
its entries are nonnegative and at least one of its entries is positive. The following
lemma is well known for a positive matrix [1].
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Lemma 2.1. Let B = [bij ] ∈ R
n×n be a positive and irreducible matrix with bii > 0

for i = 1, · · · , n. If 0 < h ∈ Rn and h has k(k < n) positive components, then Bh
has at least k + 1 positive components.

Definition 2.1. For a second order system of linear differential equations

cv̇ = dv̈ + Av, (2.1)

we say that λ ∈ C is an eigenvalue and 0 6= η ∈ Cn is the associated eigenvector
corresponding to (2.1) if λ and η satisfy the equation

[A + λ2d]η = cλη.

It is clear that (2.1) has an exponential solution eλtη if and only if λ is an eigen-
value and η is the associated eigenvector of (2.1).

Lemma 2.2. Let A ∈ Rn×n be irreducible with the off diagonal entries of A being
nonnegative. Then

(i) If λ ∈ R is an eigenvalue and the associated eigenvector η (with respect to (2.1)
is nonnegative, then (a1) η ≫ 0 and η is the only associated eigenvector (up to
a scalar multiplication); (a2) for 0 6= β ∈ R, λ + iβ is not an eigenvalue.

(ii) If in addition A is a stable matrix (all eigenvalues of A have negative real part),
then there is a unique λ∗ ≤ 0 such that the associated eigenvector η with respect
to (2.1) is strictly positive (up to a scalar multiplication). Moreover, λ∗ must
be negative and is simple.

Proof. Pick a sufficiently large number α such that α+aii > 0 for i = 1, · · · , n. Then
the matrix A + αI + λ2d is a positive irreducible matrix. Since [A + λ2d]η = cλη is
equivalent to

[A + αI + λ2d]η = (cλ + α)η, (2.2)

the theory for positive matrices implies that η ≫ 0 and the eigenvector is unique. this
proves (a1). For (a2), suppose the opposite, i.e. there is a β 6= 0 and ξ ∈ C such that

[A + (λ + iβ)2d]ξ = c(λ + iβ)ξ.

Then

[A + αI + (λ + iβ)2d]ξ = [c(λ + iβ) + α]ξ.

A straightforward computation yields that

[A + αI + λ2d]ξ = [(cλ + α)I + β2d + i(cβI − 2λβd)]ξ.
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Let r(B) denote the spectral radius of the matrix B. Then (2.2) yields that cλ+α =
r(A + αI + λ2d) > 0. Since d is a nonnegative diagonal matrix, we immediately
deduce that

[A + αI + λ2d]ξ∗ > (α + cλ)ξ∗,

where ξ∗ = (|ξ1|, · · · , |ξn|) is a positive vector. The irreducibility therefore implies
that

r(A + αI + λ2d) > cλ + α,

contradicting (2.2).
To prove Part (ii), for real λ, we define the matrix

M(λ) = A + λ2d + αI.

Then M(λ) is a positive and irreducible matrix. Consider the equation

M(λ)h = (α + cλ)h. (2.3)

By the theory of positive matrices we know that this equation has a solution h > 0 if
and only if

r(M(λ)) = α + cλ.

It is apparent that r(M(λ)) is continuous with respect to λ. Let us consider λ ≤ 0 such
that the above equality holds. First we note that if µ < λ ≤ 0, then M(µ) ≥ M(λ),
which implies

r(M(µ)) ≥ r(M(λ)).

That is, r(M(λ)) is increasing as λ ≤ 0 decreases. It is obvious that

p(α) = α + cλ

is decreasing as λ decreases. Since A is stable, the dominant eigenvalue λ0 of A is
negative and the corresponding eigenvector ζ is positive. Thus we have

M(0)ζ = [A + αI]ζ = (α + λ0)ζ.

It follows that
r(M(0)) = α + λ0 < α = p(α).

On the other hand, we have r(M(λ)) ≥ 0 for all λ and p(α) < 0 for λ < −α/c.
Therefore, there is a unique λ∗ < 0 such that

r(M(λ∗)) = α + cλ∗.

Consequently, there is a unique strictly positive vector η ∈ Rn such that

M(λ∗)η = (α + cλ∗)η.

Or equivalently,
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[A + λ2
∗
d]η = cλ∗η.

Finally let us to show that λ∗ is simple. If this is not the case, then equation (2.1)
must have a solution of the form

v(t) = (th1 + h2)e
λ∗t, t ∈ R,

where hi ∈ Rn for i = 1, 2, with h1 6= 0. Upon a substitution of

v̇(t) = (λ∗th1 + h1 + λ∗h2)e
λ∗t, v̈(t) = (λ2

∗
th1 + 2λ∗h1 + λ2

∗
h2)e

λ∗t

into (2.1) we obtain the system for h1 and h2 as

[A + λ2
∗
d]h1 = cλ∗h1

[A + λ2
∗
d]h2 = cλ∗h2 + [cI − 2λ∗d]h1.

(2.4)

The first equation of (2.4) implies that h1 is a multiple of η. It follows that h1 ≫ 0.
Moreover, it is known that there is a strictly positive vector ζ ∈ Rn such that

ζT [A + λ2
∗
d] = cλ∗ζ

T .

where “T ” denotes the transpose. Multiplying the second equation of (2.4) from the
left by ζT we obtain

0 = ζT (cI − 2λ∗d)h1.

Since λ∗ < 0, cI − 2λ∗d is a strictly positive diagonal matrix. The above equality
cannot hold. This leads to a contradiction. �

Throughout the paper, an n × n matrix function A(t) = [aij(t)], t ∈ R, is called
an ENN-matrix function (essentially nonnegative matrix function) if A(t) is bounded,
continuous, and for all i 6= j,

aij(t) ≥ 0, t ∈ R.

Lemma 2.3. Let A(t) be an ENN-matrix function and w(t) be a nonzero, nonnega-
tive, and bounded solution of the equation

cẇ(t) = dẅ(t) + A(t)w(t), t ∈ R.

Then the following hold.

(1) There is a real number b > 0 such that if dj > 0, then

−bwj(t) ≤ ẇj(t) ≤ bwj(t), t ∈ R,

where wj is the jth component of w. Consequently, we have

wj(s) ≥ [w(t)e−bt]ebs, s ≤ t, (2.5)

wj(t) ≥ [w(s)ebs]e−bt, t ≥ s. (2.6)

In particular, wj(t0) > 0 for some t0 implies that wj(t) > 0 for all t ∈ R.
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(2) There is a real number δ > 0 such that if di = 0, then

wi(t) ≥ [wi(s)e
δs]e−δt for all t ≥ s.

In particular, wi(t0) > 0 implies that wi(t) > 0 for all t ≥ t0.

(3) If w 6≡ 0 and A(∞) = A2, then there exists a t∗ such that w(t) ≫ 0 for all t ≥ t∗.

(4) If A(−∞) = A1 and there exists a t∗ such that w(t) ≫ 0 for all t ≥ t∗, then
w(t) ≫ 0 for all t ∈ R.

(5) If A(−∞) = A1 and A(∞) = A2, then w 6≡ 0 implies w(t) ≫ 0.

Proof. Let α be a sufficiently large number such that for i = 1, · · · , n,

α + aii(t) ≥ 1, t ∈ R.

Then αI + A(t) is a positive matrix for all t ∈ R. For dj > 0, we rewrite the equation
for wj as

djẅj(t) − cẇj(t) − αwj(t) = −[αwj(t) +

n
∑

i=1

aji(t)wi(t)]. (2.7)

Let

γ−

j =
c −

√

c2 + 4djα

2dj

< 0

γ+
j =

c +
√

c2 + 4djα

2dj

> 0

Then wj(t) can be expressed by

wj(t) =
1

dj(γ
+
j − γ−

j )

∫ t

−∞

eγ
−
j

(t−s)[αwj(s) +

n
∑

i=1

aji(t)wi(s)]ds

+
1

dj(γ
+
j − γ−

j )

∫

∞

t

eγ
+

j
(t−s)[αwj(s) +

n
∑

i=1

aji(t)wi(s)]ds.

(2.8)

Thus we have

ẇj(t) =
γ−

j

dj(γ
+
j − γ−

j )

∫ t

−∞

eγ
−
j

(t−s)[αwj(s) +

n
∑

i=1

aji(t)wi(s)]ds

+
γ+

j

dj(γ
+
j − γ−

j )

∫

∞

t

eγ
+

j
(t−s)[αwj(s) +

n
∑

i=1

aji(t)wi(s)]ds.

(2.9)

Let
b = max{|γ−

j |, γ+
j : dj > 0}.
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Note that αwj(s) +
∑n

i=1 aji(t)wi(s) ≥ 0. By (2.8) and (2.9) one easily sees

−bwj(t) ≤ ẇj(t) ≤ bwj(t), t ∈ R, j = 1, · · · , n. (2.10)

From the last inequalities, we deduce that for any s < t,

wj(s) ≥ [wj(t)e
−bt]ebs, wj(t) ≥ [wj(s)e

bs]e−bt.

This completes the proof of Part (1).
If di = 0, then wi(t) satisfies the inequality

cẇi(t) + αwi(t) = αwi(t) +

n
∑

k=1

aik(t)wk(t) ≥ 0.

Part (2) of the lemma follows immediately from the above inequality with δ = α/c.
Now we prove Part (3). By (1) and (2), for any i, either wi ≡ 0 or there is a

ti such that wi(t) > 0 for all t ≥ ti. Since w 6≡ 0, there is at least one i such that
wi(t) > 0 for all t ≥ ti. Suppose the statement of Part (3) is false. Then, without
loss of generality (otherwise by re-ordering the components of w if necessary), we can
suppose that there are t∗ > 0 and a positive integer k < n such that

wi(t) > 0, t ≥ t∗, i = 1, 2, · · · , k, (2.11)

wj(t) ≡ 0, t ∈ R, j = k + 1, · · · , n. (2.12)

It is clear that the matrix αI + A(∞) = αI + A2 is positive and irreducible with
diagonal entries strictly positive. So is αI + A(t) for all sufficiently large t by the
continuity. It therefore follows from (2.11) and Lemma 2.1 that there is a sufficiently
large t0 > t∗ such that [αI +A(t0)]w(t0) has at least k+1 positive components. That
is, there is j with k + 1 ≤ j ≤ n such that

αwj(t0) +
∑

ji

aji(t)wi(t0) > 0.

If dj > 0, then (2.8) implies that

wj(t) > 0, t ∈ R.

If dj = 0, then

ẇj(t) +
α

c
wj(t) =

1

c
[wj(t) +

n
∑

k=1

aji(t)wi(t)]

implies that

wj(t) = e−
α
c
(t−t0)

[

wj(t0) +
1

c

∫ t

t0

e
αs
c [wj(s) +

n
∑

k=1

aji(s)wi(s)]ds

]

> 0
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for all t > t0. In either case we have a contradiction to (2.12).
For the proof of Part (4), recall that there is at least one dj 6= 0. Hence, by the

assumption, we have wj(t) > 0 for all t ∈ R. Arguing in the same way as for the
proof of Part (3), one is able to see that w(t) ≫ 0 for all t ∈ R.

Finally, it is obvious that Part (5) is a direct consequence of (3) and (4). �

Lemma 2.4. Let A(t) be an ENN-matrix function and w(t) be a strictly positive and
bounded function satisfying

cẇ(t) = dẅ(t) + A(t)w(t), t ∈ R.

(a) Suppose that A(t) → A2 and w(t) → 0 as t → ∞. Then there is an γ > 0 such
that

w(t) = γηeλ∗t + o(eλ∗t) as t → ∞.

where λ∗ < 0 and η is a strictly positive vector satisfying

[A2 + λ2
∗
d]η = cλ∗η.

[By Assumptions [A1], [A2], and Lemma 2.2, λ∗ < 0 and the strictly positive
vector η (up to a scalar multiplication) are uniquely determined by the matrix
A2.]

(b) Suppose that A(t) → A1 and w(t) → 0 as t → −∞. Then there are a µ > 0, a
strictly positive vector ξ ∈ Rn, and an integer k ≥ 0 such that

w(t) = (−1)ktkξeµt + o(tkeµt) as t → −∞.

Proof. First consider the case (a). By Part (1) of Lemma 2.3 we have wj(t) ≥
wj(0)e−bt for t ≥ 0 for at least a j. Hence

s∗ = inf{s : lim
t→∞

|w(t)|e−st = 0} ≥ −b > −∞.

Moreover, w(t) → 0 as t → ∞ implies that s∗ ≤ 0. We write w(t) as a solution of the
equation

cẇ(t) = dẅ(t) + A2w(t) + [A(t) − A2]w(t), t ∈ R. (2.13)

Now for T > 0 and s > s∗, the Laplace transform of w(T + ·),

ŵ(T, s) =

∫

∞

0

w(T + t)e−stdt,

is well defined. Applying the Laplace transform to (2.13) with s > s∗ yields

−cw(T ) + cŵ(T, s) = −dẇ(T ) − sdw(T ) + [s2d + A2]ŵ(T, s) + K(T, s), (2.14)

where

K(T, s) =

∫

∞

0

[A(T + t) − A2]w(T + t)e−stdt.
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By the same argument used in [3, Lemma 4.2] we can show that there are sequences
{Tn} and {sn} such that

Tn → ∞, sn > s∗, sn → s∗ as n → ∞

and
w(Tn)

‖ŵ(Tn, sn)‖
→ 0 as n → ∞, (2.15)

where ‖x‖ =
∑n

k=1 |xk| for x = (x1, · · · , xn) ∈ Rn. Moreover, from (2.15) and Part
(1) of Lemma 2.3 it follows that for dj 6= 0,

ẇj(Tn)

‖ŵ(Tn, sn)‖
→ 0 as n → ∞. (2.16)

The assumption
‖A(t) − A2‖ → 0 as t → ∞

yields that

Mn = sup{‖A(Tn + t) − A2‖ : t ≥ 0} → 0 as n → ∞.

By the definition of ‖ · ‖ and the positivity of w(t) we obtain that

‖K(Tn, s)‖ = ‖
∫

∞

0 [A(Tn + t) − A2]w(Tn + t)e−stdt‖

≤ Mn

∫

∞

0
‖w(Tn + t)‖e−stdt

= Mn‖
∫

∞

0
w(Tn + t)e−stdt‖

= Mn‖ŵ(T, s)‖.

(2.17)

It follows that
‖K(Tn, sn)‖

‖ŵ(Tn, sn)‖
≤ Mn → 0 as n → ∞. (2.18)

It is obvious that {ŵ(Tn, sn)/‖ŵ(Tn, sn)‖} has a convergent subsequence. Without
loss of generality suppose

lim
n→∞

ŵ(Tn, sn)

‖ŵ(Tn, sn)‖
= η̃. (2.19)

Then it is clear that η̃ > 0. Now dividing (2.14) by ‖ŵ(Tn, sn)‖ and letting n → ∞,
with the use of (2.15), (2.16), (2.18) and (2.19), we immediately obtain

cs∗η̃ = [s2
∗
d + A2]η̃.

It therefore follows from Part (ii) of Lemma 2.2 that we must have

s∗ = λ∗ < 0 and η̃ = γη
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for some γ > 0. The conclusion of Part (a) follows. The proof of Part (b) is essentially
the same as above. Let

µ = sup{τ : lim
t→−∞

|w(t)|e−τt = 0}.

Then 0 ≤ µ < ∞. For for T < 0 and τ < µ, let

w̃(T, τ) =

∫ 0

−∞

w(T + t)e−τtdt.

Then there are sequences {Tn} and {τn} such that

Tn → −∞, τn < µ, τn → µ as n → ∞

and
w(Tn)

‖w̃(Tn, τn)‖
→ 0 as n → ∞,

w̃(Tn, τn)

‖w̃(Tn, τn)‖
→ ξ > 0 as n → ∞.

(2.20)

From (2.20) we deduce that
cµξ = [µ2d + A1]ξ.

Thus ξ must be strictly positive. Moreover, it is obvious that µ > 0 because A1 is
unstable. For this case, since µ may not be a simple eigenvalue, we can express w(t)
in the form given in Part (b). �

3. Proof of Theorem 1.1

Proof. For a fixed c > 0, suppose u(x, t) = U1(ν · x + ct) and v(x, t) = U2(ν · x + ct)
are two monotone traveling wave solutions connecting the equilibria E1 and E2. Then

cU̇i(t) = dÜi(t) + f(Ui(t)), t ∈ R, i = 1, 2.

To show the uniqueness it suffices to show that U1 is a translation of U2. That is,
there is a constant a∗ such that

U1(t) = U2(t + a∗), t ∈ R.

For this purpose let us first establish the

Claim There are positive numbers γi, µi and strictly positive vectors ξi ∈ Rn, and

integers ki ≥ 0, such that for i = 1, 2,

Ui(t) = E2 − γie
λ∗tη + o(eλ∗t), as t → ∞, (3.1)

Ui(t) = E1 + (−1)kitkieµitξi + o(tkieµit), as t → −∞, (3.2)



Uniqueness of Traveling Waves 167

where λ∗ < 0 and the vector η are defined in Lemma 2.4 (a).

Proof of Claim For i = 1, 2, let Vi(t) = E2 − Ui(t) for t ∈ R. Then Vi(t) → 0 as
t → ∞. A straightforward computation shows that Vi(t) satisfies the equation

cv̇(t) = dv̈(t) + Ai(t)v(t),

where

Ai(t) =

∫ 1

0

Df(E2 − (1 − θ))Vi(t))dθ.

Thus, by Assumption [A1], Ai(t) is an ENN-matrix that converges to Df(E2) = A2

as t → ∞. Noting that Vi(−∞) = E2 − E1 ≫ 0, Lemma 2.3 (1) implies that Vi(t) is
strictly positive. It follows from Lemma 2.4 that

E2 − Ui(t) = Vi(t) = γie
λ∗tη + o(eλ∗t), as t → ∞

for some γi > 0. This proves (3.1).
To prove (3.2), let Wi(t) = Ui(t) − E1, i = 1, 2. Then

cẆi(t) = dẄi(t) + Bi(t)Wi(t)

with

Bi(t) =

∫ 1

0

Df(E1 + θWi(t))dθ.

It is clear that Wi(t) is nonnegative. Moreover

Wi(∞) = Ui(∞) − E1 = E2 − E1 ≫ 0

implies that there is a t∗ ∈ R such that Wi(t) ≫ 0 for all t ≥ t∗. Consequently we
have Wi(t) ≫ 0 for all t ∈ R by Lemma 2.3 (4). It is obvious that Bi(−∞) = A1.
(3.2) therefore follows from Lemma 2.4 (b) .

Now we consider two cases.

Case 1 µ1 6= µ2, or µ1 = µ2 and k1 6= k2.

Without loss of generality, we suppose µ2 < µ1, or k2 > k1 if µ1 = µ2. We define

a∗ = inf{a ∈ R : U2(t + a) ≫ U1(t), t ∈ R}.

Let us show that a∗ is a real number. First we have

U2(−∞) = E1 ≪ U1(0).

Hence, by continuity, there is an a0 such that U2(a0) ≪ U1(0). This implies that the
set

Ω = {a ∈ R : U2(t + a) ≫ U1(t), t ∈ R}

is bounded below. Next, by the assumption and (3.2), we see that there is a T1 < 0
such that
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U2(t) ≫ U1(t) for all t ≤ T1. (3.3)

Noticing that λ∗ < 0, we can pick a number a1 > 0 such that γ2e
λ∗a1 < γ1. Then by

(3.1) we have

U2(t + a1) − U1(t) = [γ1 − γ2e
λ∗a1 ]eλ∗tη + o(eλ∗t) as t → ∞.

It follows that there is a T2 > 0 such that

U2(t + a1) ≫ U1(t), t ≥ T2. (3.4)

Let a2 = T2 − T1 + a1. Then, the above inequality and the monotonicity of U1 and
U2 yield that for all t ∈ [T1, T2], we have

U2(t + a2) ≥ U2(T1 + a2) = U2(T2 + a1) ≫ U1(T2) ≥ U1(t). (3.5)

Since a2 > a1, from (3.3) and (3.4), it follows that

U2(t + a2) ≫ U1(t), t ∈ (−∞, T1] ∪ [T2,∞). (3.6)

Thus a2 ∈ Ω by (3.5) and (3.6). Hence Ω is nonempty and bounded below. This
implies a∗ is a real number. By the definition of a∗ and the continuity of Ui(t) for
i = 1, 2, we conclude that

U2(t + a∗) ≥ U1(t), t ∈ R.

We claim that U2(t+a∗) ≡ U1(t). If this is not the case, let w(t) = U2(t+a∗)−U1(t).
Then w(t) ≥ 0 and w 6≡ 0. In addition, we have

cẇ(t) = ẅ(t) + A(t)w(t),

where

A(t) =

∫ 1

0

Df
(

U1(t) + θ[U2(t + a∗) − U1(t)]
)

dθ

is an ENN-matrix function and

A(t) → A1 as t → −∞, and A(t) → A2 as t → ∞.

By Lemma 2.3 (5) and Lemma 2.4 we have w(t) ≫ 0 and

w(t) = γ3e
λ∗tη + o(eλ∗t) as t → ∞.

That is,
U2(t + a∗) ≫ U1(t), t ∈ R,

U2(t + a∗) = E2 − γ2e
λ∗a∗

eλ∗η + o(eλ∗t) as t → ∞

(3.7)

with
γ1 − γ2e

λ∗a∗

= γ3 > 0.
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Thus, by using (3.7) and the same discussion as above, we easily see that there is a
sufficiently small ǫ > 0 such that

U2(t + a∗ − ǫ) ≥ U1(t), t ∈ R.

This contradicts the definition of a∗, and hence we must have U2(t + a∗) ≡ U1(t).
That is, U1 is a translation of U2.

Case 2 µ1 = µ2 = µ and k1 = k2.
In this case we must have ξ2 = δξ1 for some constant δ > 0. Without loss of

generality, we can suppose δ = 1, for otherwise we can consider the translation

Ũ2(t) = U2(t + a) = (−1)ktkeµt[eµaξ2] + o(tkeµt) as t → −∞,

and choose a such that eµaδ = 1. It is obvious that Ũ2(t) is a monotone traveling wave
connecting E1 and E2. Now suppose U2 6≡ U1. Then, there is a t0 and an integer j
such that U1,j(t0) 6= U2,j(t0), where Ui,j(t) is the jth component of Ui(t). For clarity
let

U1,j(t0) > U2,j(t0). (3.8)

Let a∗ be defined as above. Then, in this case, we must have a∗ > 0 by (3.8). Also
we have

U2(t + a∗) ≥ U1(t), t ∈ R.

Note that a∗ > 0 implies that

U2(t + a∗) ≫ U1(t)

for all sufficiently negative t. It therefore follows that

U2(t + a∗) ≫ U1(t), t ∈ R.

By using the same argument as above, we deduce that for some sufficiently small
ǫ > 0, we have

U2(t + a∗ − ǫ) ≫ U1(t), t ∈ R.

This again leads to a contradiction. �
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