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Abstract. We study the existence, uniqueness, and exponential decay of solutions
for a semi-linear integrodifferential equation with a nonlocal initial condition

u′(t) = Au(t) +

∫ t

0

F (t − s)Au(s)ds + f(t, u(t)), t ≥ 0,

u(0) =

∫ ∞

0

g(s)u(s)ds + u0,

in a Banach space X , with A the generator of a strongly continuous semigroup. The
nonlocal condition can be applied in physics with better effect than the “classical”
Cauchy problem u(0) = u0 since more measurements at t ≥ 0 are allowed. The
variation of constants formula for solutions via a resolvent operator and the iteration
techniques are used in the study.
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1. Introduction

In this paper, we will study the existence, uniqueness, and exponential decay of
solutions for a semi-linear integrodifferential equation with nonlocal initial condition

u′(t) = Au(t) +

∫ t

0

F (t − s)Au(s)ds + f(t, u(t)), t ≥ 0, (1.1)

u(0) =

∫ ∞

0

g(s)u(s)ds + u0, (1.2)

in a Banach space X , with A the generator of a strongly continuous semigroup and
F (t) a bounded operator for t ≥ 0. g is a real-valued function.

The nonlocal condition can be applied in physics with better effect than the
“classical” Cauchy problem u(0) = u0 since more measurements at t ≥ 0 are allowed.
See, e.g., Byszewski [1], Byszewski and Lakshmikantham [2], Deng [3], Friedman [4],
Jackson [6], Liang, Liu and Xiao [7, 8], Liang and Xiao [9], Lin and Liu [10], and
references therein for other comments and motivations.

The exponential decay for (1.1) with local conditions, i.e., g = 0 in (1.2), is studied
in Grimmer [5]; the exponential decay for parabolic equations (no integral term in
(1.1)) with nonlocal conditions is studied in Deng [3] and Friedman [4]; the existence
of solutions for an equation with nonlocal conditions that is slightly different from
(1.1) is studied in Lin and Liu [10]. Here, we generalize the ideas in [3, 4, 5, 10]
and extend their studies to derive the existence and exponential decay for (1.1)-(1.2)
with nonlocal conditions. Also note that in Byszewski [1] and Lin and Liu [10], fixed
point arguments are used so that the existences of solutions are proven only for finite
intervals. Here, we will see that with the iteration techniques, studied, e.g., in Deng
[3] and Friedman [4], we can show the existence of solutions on R

+ for (1.1)-(1.2).
In the above mentioned papers [1, 2, 3, 4, 6, 10], the following idea is used: If a

property holds for a local problem (i.e., g = 0 in (1.2)) and if g is very small in some
sense, then that property also hold for the nonlocal problem. We will see that this
idea can also be used here to study the existence, uniqueness, and exponential decay
of solutions for (1.1)-(1.2). That is, we will put some smallness conditions on g to
study the nonlocal problem (1.1)-(1.2).

As in Lin and Liu [10], the resolvent operator will play an important role, so we
list the following hypotheses and definitions. We use B(X) to denote the space of all
linear and bounded operators on X , and use Y to denote the Banach space formed
from D(A) (the domain of A) endowed with the graph norm.

(H1) A generates a strongly continuous semigroup in Banach space X.

(H2) F (t) ∈ B(X), t ≥ 0. For x ∈ X, F ′(t)x is continuous for t ≥ 0,

Definition 1.1. [5, 11] R(·) is a resolvent operator of Eq.(1.1) if R(t) ∈ B(X) for
t ≥ 0 and satisfies

1. R(0) = I (the identity operator on X).

2. For all u ∈ X, R(t)u is continuous for t ≥ 0.
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3. R(t) ∈ B(Y ), t ≥ 0. For y ∈ Y, R(·)y ∈ C([0,∞), Y ) ∩ C1([0,∞), X) and

d

dt
R(t)y = AR(t)y +

∫ t

0

F (t − s)AR(s)yds

= R(t)Ay +

∫ t

0

R(t − s)F (s)Ayds, t ≥ 0. (1.3)

The existence and uniqueness of resolvent operators are guaranteed by the follow-
ing result.

Theorem 1.1. [5, 11] Let Assumptions (H1)–(H2) be satisfied. Then Eq.(1.1) has a
unique resolvent operator R.

Definition 1.2. A mild solution of Eq.(1.1)-(1.2) is a function u(·) ∈ C([0,∞), X)
which satisfies

u(t) = R(t)
[

∫ ∞

0

g(s)u(s)ds + u0

]

+

∫ t

0

R(t − s)f(s, u(s))ds, t ≥ 0.

A classical solution of Eq.(1.1)-(1.2) is a function u(·) ∈ C([0,∞), Y ) ∩ C1([0,∞), X)
which satisfies Eq.(1.1)-(1.2) for t ≥ 0.

In order to study the exponential decay of (1.1)-(1.2), we require that the resolvent
operator R decays exponentially. (Because in a special case when f = g = 0, solutions
are given by u(t) = R(t)u(0).) Thus we make the following hypothesis.

(H3) There are M, α > 0 such that ‖R(t)‖ ≤ Me−αt, t ≥ 0.

Since the exponential decay of the resolvent operator R for Eq.(1.1) is studied in
Grimmer [5], this hypothesis makes sense.

We close this section by showing the variation of constants formula, which gen-
eralizes some results in literatures when f(t, u) = f(t) and g = 0. We need other
hypotheses on f and g.

(H4) f ∈ C1([0,∞) × X, X). There is a constant p > 0 such that ‖f(t, u1) −
f(t, u2)‖ ≤ p‖u1 − u2‖, γ ≡ α − Mp > 0, and

∫ ∞

0 |g(s)|Me−γsds < 1.

(H5)
∫ ∞

0
g(s)u(s)ds ∈ D(A) if u(·) is a classical solution of (1.1).

Remark 1.1. Note that A is a closed operator, so that if g(s) = 0 for large s, or if
Au(·) is bounded on R

+ and g ∈ L1(R+), then (H5) is true, as
∫ ∞

0 g(s)Au(s)ds would
exist.

Theorem 1.2. Let (H1)-(H2) be satisfied and let R(·) be the resolvent operator of
Eq.(1.1). Assume that u0 ∈ D(A). If f ∈ C([0,∞) × X, X) and if u is a classical
solution of (1.1)-(1.2), then u is a mild solution of (1.1)-(1.2).

On the other hand, if f ∈ C1([0,∞)× X, X) and if u is a mild solution of (1.1)-
(1.2), then u ∈ C1([0,∞), X). If, in addition, u(0) ∈ D(A), then u is a classical
solution of (1.1)-(1.2).
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Next, if (H1)-(H4) are satisfied, then for each u0 ∈ X, the mild solution is
uniquely determined.

Proof. If f ∈ C([0,∞) × X, X) and if u is a classical solution of (1.1)-(1.2), then
Fubini’s Theorem can be used to show that u is a mild solution, see [5, 10] for details.
Next, if f ∈ C1([0,∞) × X, X) and if u is a mild solution, then we can show that
u(·) ∈ C1, and then verify that u is a classical solution of (1.1)-(1.2) if u(0) ∈ D(A).
Details will be omitted here since they are similar to those in [10].

For the uniqueness, we let u1 and u2 be two mild solutions of (1.1)-(1.2) for a
given u0 ∈ X and let w = u1 − u2. Then

w(t) = R(t)w(0) +

∫ t

0

R(t − s)[f(s, u1(s)) − f(s, u2(s))]ds,

w(0) =

∫ ∞

0

g(s)w(s)ds. (1.4)

Therefore, from (H3)-(H4), we have

‖w(t)‖ ≤ ‖R(t)w(0)‖ +

∫ t

0

‖R(t − s)[f(s, u1(s)) − f(s, u2(s))]‖ds

≤ ‖R(t)w(0)‖ +

∫ t

0

‖R(t − s)pw(s)‖ds

≤ ‖w(0)‖Me−αt +

∫ t

0

Me−α(t−s)p‖w(s)‖ds. (1.5)

Then from Gronwall’s inequality and (H4), we get

‖w(t)‖ ≤ ‖w(0)‖Me−αt+
R

t

0
Mpds

≤ ‖w(0)‖Me−(α−Mp)t = ‖w(0)‖Me−γt, t ≥ 0. (1.6)

Next, from (H4), we have ρ ≡
∫ ∞

0
|g(s)|Me−γsds < 1. Now, from (1.4) and (1.6), we

obtain

‖w(0)‖ ≤

∫ ∞

0

|g(s)|‖w(s)‖ds

≤

∫ ∞

0

|g(s)|‖w(0)‖Me−γsds

= ρ‖w(0)‖. (1.7)

This implies w(0) = 0 since ρ < 1, and therefore, from (1.6), we obtain w(t) = 0, t ≥
0. �

2. Existence and decay

In this section, we will obtain the existence, uniqueness and exponential decay of mild
and classical solutions for (1.1)-(1.2), by using the variation of constants formula and



Exponential Decay in Integrodifferential Equations 139

the iteration techniques.

Theorem 2.1. Let Assumptions (H1)–(H5) be satisfied. Then for every u0 ∈ D(A),
(1.1)-(1.2) has a unique mild solution, and the mild solution decays exponentially.

Proof. Define u1(·) ≡ 0 and for k ≥ 2 define uk to be the classical solutions of

u′
k(t) = Auk(t) +

∫ t

0

F (t − s)Auk(s)ds + f(t, uk(t)), t ≥ 0, (2.1)

uk(0) =

∫ ∞

0

g(s)uk−1(s)ds + u0. (2.2)

The existence and uniqueness of uk are guaranteed by [5, 11] and Theorem 1.2
since (H5) implies uk(0) ∈ D(A). And we have for k ≥ 2,

uk(t) = R(t)
[

∫ ∞

0

g(s)uk−1(s)ds + u0

]

+

∫ t

0

R(t − s)f(s, uk(s))ds, t ≥ 0. (2.3)

Next, define wk(t) = uk+1(t) − uk(t), t ≥ 0, k ≥ 1. Then

wk(t) = R(t)
[

∫ ∞

0

g(s)wk−1(s)ds
]

+

∫ t

0

R(t − s)
[

f(s, uk+1(s)) − f(s, uk(s))
]

ds, (2.4)

wk(0) =

∫ ∞

0

g(s)wk−1(s)ds, k ≥ 2,

w1(0) = u2(0) = u0.

From (2.4) and similar to (1.5)-(1.6), we have for k ≥ 1,

‖wk(t)‖ ≤ ‖wk(0)‖Me−γt, t ≥ 0. (2.5)

Thus, ‖w1(t)‖ ≤ ‖w1(0)‖Me−γt = ‖u0‖Me−γt. So that from (2.4),

‖w2(0)‖ ≤

∫ ∞

0

‖g(s)w1(s)‖ds

≤

∫ ∞

0

|g(s)|‖u0‖Me−γsds

= ‖u0‖

∫ ∞

0

|g(s)|Me−γsds

≡ ‖u0‖ρ. (2.6)

Therefore from (2.5), ‖w2(t)‖ ≤ ‖u0‖ρMe−γt. And hence

‖w3(0)‖ ≤

∫ ∞

0

‖g(s)w2(s)‖ds

≤ ‖u0‖ρ

∫ ∞

0

|g(s)|Me−γsds

= ‖u0‖ρ
2. (2.7)
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Thus

‖w3(t)‖ ≤ ‖u0‖ρ
2Me−γt, t ≥ 0. (2.8)

By induction, we have

‖wk(t)‖ ≤ ‖u0‖ρ
k−1Me−γt, t ≥ 0, k ≥ 1. (2.9)

Since ρ < 1, this implies that the series
∑

wk(t) is convergent. Hence the sequence
{uk(t)} is convergent. And we also have

‖uk(t)‖ ≤ ‖uk(t) − uk−1(t)‖ + ‖uk−1(t) − uk−2(t)‖ + ... + ‖u2(t) − u1(t)‖

= ‖wk−1(t)‖ + ‖wk−2(t)‖ + ... + ‖w1(t)‖

≤ ‖u0‖Me−γt
[

ρk−2 + ρk−2 + ... + 1
]

≤
‖u0‖M

1 − ρ
e−γt, t ≥ 0. (2.10)

Now, one can easily verify, by the Cauchy sequence and the diagonal sequence tech-
niques, that there exists u ∈ C([0,∞), X) such that

‖u(t)‖ ≤
‖u0‖M

1 − ρ
e−γt, t ≥ 0, (2.11)

and

lim
k→∞

sup
t≥0

‖uk(t) − u(t)‖ = 0. (2.12)

Next, since

uk(t) = R(t)
[

∫ ∞

0

g(s)uk−1(s)ds + u0

]

+

∫ t

0

R(t − s)f(s, uk(s))ds, (2.13)

one easily verifies that

u(t) = R(t)
[

∫ ∞

0

g(s)u(s)ds + u0

]

+

∫ t

0

R(t − s)f(s, u(s))ds. (2.14)

Therefore, Theorem 1.2 shows that u is the unique mild solution of (1.1)-(1.2). u

decays exponentially according to (2.11). �

Results for classical solutions can be obtained by using Theorem 1.2.

Theorem 2.2. Let Assumptions (H1)–(H5) be satisfied and u0 ∈ D(A). Let u be the
unique mild solution of (1.1)-(1.2) determined by Theorem 2.1. If u(0) ∈ D(A), then
u is the classical solution of (1.1)-(1.2) and u decays exponentially.
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