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Abstract. We consider the Getz type harvesting model with a delay

dN

dt
= N(t)





r(t)

1 +
(

N(g(t))
K(t)

)γ − m(t)



 − λ(t)N(t).

For this non-autonomous delayed differential equation we study the existence of
global solutions of the initial value problem, extinction and persistence conditions,
and the existence of periodic solutions.

AMS Subject Classifications: 34K13, 37N25, 92D25
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1. Introduction and Preliminaries

Consider the following standard differential equation which is widely used in Popula-
tion Dynamics [5,7,13]

dN

dt
= [β(t, N) − m(t, N)]N − λ(t)N, (1.1)
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where N = N(t) is the population biomass, β(t, N) is the per-capita fecundity rate,
m(t, N) is the per-capita mortality rate, and λ(t) is the harvesting rate per-capita. A
classical logistic harvesting model [7] has the following form

dN

dt
= r

[

1 −
N(t)

K

]

− Y (t).

Here Y (t) is a function of captures. It is a well-known fact [5,13] that the canon-
ical logistic model in some cases produces artificially complex dynamics, therefore it
would be reasonable to get away from the specific logistic form in studying population
dynamics and use more general classes of growth models [1-4]. For example, in order
to drop an unnatural symmetry of the logistic curve, recently we have considered [2]
the modified delay logistic form of Pella and Tomlinson or Richards’ growth delay
equation

dN

dt
= r

[

1 −

(

N(g(t))

K

)γ]

.

In equation (1.1) let β(t, N) be a Hill’s type function

β(t, N) =
r

1 + (N/K)γ
,

where r > 0, K > 0. Parameter γ > 0 is referred to by W. Getz [8] as the ”abruptness”
parameter.

Generally, models with the delay in the reproduction term recognize that for real
organisms it takes time to develop from newborns to reproductively active adults. If
we take into account that delay and assume that m(t, N) = m(t), then we have the
following time-lag model based on equation (1.1)

dN

dt
= N(t)





r(t)

1 +
(

N(g(t))
K(t)

)γ − m(t)



 − λ(t)N(t). (1.2)

Here t ≥ 0, r(t) > 0 is a fecundity factor, m(t) > 0 is a mortality factor, λ(t) > 0
is a harvesting factor, K(t) > 0 is a carrying capacity, g(t) is the time to develop
from newborns to reproductively active adults, 0 < g(t) ≤ t. For λ(t) ≡ 0 , r(t) ≡ r,
g(t) = t, m(t) ≡ m, K(t) ≡ K, equation (1.2) is the Getz type differential equation
[8] that describes dynamics of the marine population in a stable environment.

The paper is organized as follows. In the next section we consider proportional
harvesting and obtain the explicit conditions for the existence of a unique positive
solution of equation (1.2). In Section 3 sufficient conditions for the existence of
positive periodic solutions of equation (1.2) were obtained.
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2. Proportional Harvesting in Dynamic Environment

If we denote M(t) = m(t) − λ(t), then equation (1.2) has the following form

dN

dt
= N(t)





r(t)

1 +
(

N(g(t))
K(t)

)γ



 − M(t)N(t) (2.1)

with the initial function and the initial value

N(t) = ϕ(t), t < 0, N(0) = N0 (2.2)

under the following conditions:

(a1) γ > 0;

(a2) r(t), M(t), K(t) are continuous on [0,∞) functions, r(t) > 0, M(t) ≥ m > 0,
K(t) ≥ k > 0;

(a3) g(t) is a continuous function, g(t) ≤ t;

(a4) ϕ : (−∞, 0) → R is a continuous bounded function, ϕ(t) ≥ 0, N0 > 0.

Definition 2.1 A function N : R → R with continuous derivative is called a solution
of problem (2.1)-(2.2), if it satisfies equation (2.1) for all t ∈ [0,∞) and equalities
(2.2) for t ≤ 0.

If t0 is the first point, where the solution N(t) of (2.1)-(2.2) vanishes, i.e., N(t0) =
0, then we consider the only positive solutions of the problem (2.1)-(2.2) on the interval
[0, t0).

Theorem 2.1 Suppose (a1)-(a4) hold and

(1) inf
t≥0

(

r(t)

M(t)
− 1

)

> 0,

(2) sup
t≥0

(

r(t)

M(t)
− 1

)

< ∞,

(3) sup
t≥0

∫ t

g(t)

[r(s) − M(s)]ds < ∞,

(4) sup
t≥0

∫ t

g(t)

M(s)ds < ∞.

Then problem (2.1)-(2.2) has on [0,∞) a unique positive solution N(t) such that

min

{

N0, inf
t≥0

K(t)

(

r(t)

M(t)
− 1

)
1

γ

exp

[

− sup
t≥0

∫ t

g(t)

M(s)ds

]}

≤ N(t) (2.3)
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and

N(t) ≤ max

{

N0, sup
t≥0

K(t)

(

r(t)

M(t)
− 1

)
1

γ

exp

[

sup
t≥0

∫ t

g(t)

[r(s) − M(s)]ds

]}

. (2.4)

Proof. The existence of the unique local solution is a consequence of well-known
results for nonlinear delay differential equations (see, for example, [9,10,13]). Clearly

N(t) = N0 exp







∫ t

0

[

r(s)

1 +
(

N(g(s))
K(s)

)γ − M(s)

]

ds







,

hence the local solution (2.1)-(2.2) is positive. If [0, α) is the maximal interval of the
existence of this solution, where limt→a− N(t) = +∞ for α < ∞.

Eq. (2.1) implies that

dN

dt
≤ [r(t) − M(t)]N(t),

therefore

N(t) ≤ N0 exp

{
∫ t

0

[r(s) − M(s)]ds

}

.

Then the local solution N(t) is bounded on the maximal interval [0, α) of the existence
of this solution, and we have a contradiction. Hence the maximal interval of the
existence of N(t) is [0,∞) and the global solution is positive. Therefore we have to
prove only inequalities (2.3)-(2.4).

Suppose that dN
dt

> 0 for any t > 0. Then (2.1) implies that

r(t)

1 +
(

N(g(t))
K(t)

)γ − M(t) > 0

or

N(g(t)) < K(t)

(

r(t)

M(t)
− 1

)
1

γ

,

and we have dN
dt

≤ N(t)(r(t) − M(t)). Finally

N(t) ≤ N(g(t)) exp

{

∫ t

g(t)

[r(s) − M(s)]ds

}

≤ K(t)

(

r(t)

M(t)
− 1

)
1

γ

exp

{

∫ t

g(t)

[r(s) − M(s)]ds

}

.

The latter inequality proves (2.4) for dN
dt

> 0. If dN
dt

< 0 for any t > 0 inequality
(2.4) is evident.
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Suppose now that {tn} is the sequence of the points where the function N(t) has
the local maximum. Then dN

dt
(tn) = 0, hence

N(g(tn)) = K(tn)

(

r(tn)

M(tn)
− 1

)
1

γ

.

In the interval [g(tn), tn] we have

dN

dt
≤ N(t)[r(t) − M(t)],

then

N(t) ≤ N(g(tn)) exp

{

∫ t

g(tn)

[r(s) − M(s)]ds

}

.

Hence

N(tn) ≤ N(g(tn)) exp

{

∫ tn

g(tn)

[r(s) − M(s)]ds

}

.

Inequality (2.4) is satisfied since supt≥0 N(t) = supn N(tn).

Suppose now that dN
dt

< 0 for any t > 0. Then

r(t)

1 +
(

N(g(t))
K(t)

)γ − M(t) < 0

and

N(g(t)) > K(t)

(

r(t)

M(t)
− 1)

)
1

γ

.

Equation (2.1) implies dN
dt

≥ −M(t)N(t). Therefore

N(t) ≥ N(g(t)) exp

{

−

∫ t

g(t)

[r(s) − M(s)]ds]

}

≥ K(t)

(

r(t)

M(t)
− 1

)
1

γ

exp

{

−

∫ t

g(t)

[r(s) − M(s)]ds

}

.

Hence inequality (2.3) has been proven for dN
dt

< 0.

If dN
dt

> 0 for any t > 0, then inequality (2.3) is evident.
Suppose now that {τn} is the sequence of the points where the function N(t) has the
local minimum. Then dN

dt
(τn) = 0 and

N(g(τn)) = K(τn)

(

r(τn)

M(τn)
− 1

)
1

γ

.

In the interval [g(τn), τn] we have

dN

dt
≥ −M(t)N(t),
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therefore

N(t) ≥ N(g(τn)) exp

{

−

∫ t

g(τn)

M(s)ds

}

and

N(τn) ≥ N(g(τn)) exp

{

−

∫ τn

g(τn)

M(s)ds

}

.

Since inft≥0 N(t) = infn N(τn), inequality (2.3) is true in this case, therefore we
proved Theorem 2.1. �

3. Periodic Proportional Harvesting in a Dynamic

Environment

Periodic harvesting is used frequently as a tool by fishery managers to protect a stock
during a spawning season for a defined period of time [5-7,12]. Consider

dN

dt
= N(t)





r(t)

1 +
(

N(g(t))
K(t)

)γ − m(t)



 − λ(t)N(t). (3.1)

Now we assume that r, K, m and λ are all positive continuous T -periodic functions.
Function g(t) is defined as g(t) = t− θ(t), where θ(t) is a T -periodic function. If fish
reproduce primarily in the spring of the year, the functions r(t) and m(t) might be
modeled by some periodic functions, such as

r(t) = r0 + Ar cos(2π(t − 0.25)),

where 0 < Ar ≤ r0,
m(t) = m0 + Am cos(2π(t − 0.25)).

If the food supply peaks each year in the fall, then

K(t) = K0 + Ak cos(2π(t − 0.75)),

where 0 < Ak ≤ K0. To introduce a periodic harvesting rate we used

λ(t) = 0.5 sin
π(t − n − tstart)

H

if n + tstart < t < n + tstart + H, n = 0, 1, 2, .., and λ(t) = 0 otherwise, where H is the
harvesting time, tstart is the harvest starting time within one year, n is the number
of years, e.g., if H = 0.25 and tstart = 0.25 (harvest in the summer season only).

Denote M(t) = m(t) − λ(t) . Equation (3.1) takes the following form

dN

dt
= N(t)





r(t)

1 +
(

N(t−θ(t))
K(t)

)γ − M(t)



 . (3.2)
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Theorem 3.1 Let M(t), K(t), θ(t) and r(t) be T -periodic functions. Suppose (a1)-
(a4) hold and M(t) ≥m> 0, r(t) − M(t) ≥r> 0 for some positive constants m and r.
If at least one of the following conditions hold:

(b1) inf
t≥0

[

r(t)

M(t)
− 1

]

Kγ(t) > 1

(b2) sup
t≥0

[

r(t)

M(t)
− 1

]

Kγ(t) < 1

then equation (3.2) has at least one periodic positive solution N0(t).

To prove this result we will use the following Lemma [14].

Lemma 3.1 Consider the delay differential equation

dN

dt
= ±N(t)G(t, N(t − θ(t, N(t)))), (3.3)

where functions G and θ ∈ C(R2, R). We also assume that G and θ are T -periodic
functions with respect to the first argument. Suppose that there exist constants B, α
and β > 0 such that:

(I) when |x| < B , the inequality |G(t, ex)| ≤ β holds uniformly for t ∈ R, and
when |x| > B , the inequality xG(t, ex) > 0 holds uniformly for t ∈ R.

(II) one of the following conditions holds:

(i) when x < −B, then G(t, ex) > −α holds uniformly for t ∈ R

(ii) when x > B, G(t, ex) < α holds uniformly for t ∈ R.

Then equation (3.3) has at least one positive T-periodic solution.

Proof of Theorem 2. Denote

G(t, u) = M(t) −
r(t)

1 +
(

u
K(t)

)γ ,

then

G(t, ex) = M(t) −
r(t)

1 +
(

ex

K(t)

)γ .

We have
|G(t, ex)| ≤ M(t) + r(t) ≤ sup

t≥0
[M(t) + r(t)] = β.

Hence for every B > 0 the first part of statement (I) of Lemma 1 holds for |x| < B.
Now we have to prove that for |x| > B the inequality xG(t, ex) > 0 is true.
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Suppose (b1) holds. The inequality G(t, ex) > 0 is equivalent to

x >
1

γ
ln

[

r(t)

M(t)
− 1

]

Kγ(t).

Denote

B =
1

γ
sup
t≥0

ln

[

r(t)

M(t)
− 1

]

Kγ(t).

Condition (b1) implies that B > 0. We also have B < ∞. Hence for x > B we have
xG(t, ex) > 0. Let x < −B. The inequality G(t, ex) < 0 is equivalent to

x <
1

γ
ln

[

r(t)

M(t)
− 1

]

Kγ(t).

This inequality is satisfied by (b1):

ln

[

r(t)

M(t)
− 1

]

Kγ(t) > 0.

Therefore it follows that xG(t, ex) > 0.
To check the first condition of part (II) of Lemma 1 we have

G(t, ex) = M(t) −
r(t)

1 +
(

ex

K(t)

)γ ≥ M(t) − r(t) > 0.

Hence for every positive x and α we have G(t, ex) > −α. Then first part of condition
(II) of Lemma 1 holds, therefore equation (3.2) has at least one positive T -periodic
solution. If the second condition (b2) is satisfied then the proof of the Theorem 3.1
is similar. �
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