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1. Introduction

For any metric spaces U and W we denote by C(U,W ) the class of all continuous
functions from U to W . Let E be an arbitrary Banach space with the norm ‖ · ‖.
Let a > 0, r > 0, and R+ = [0,+∞). For a function z : [−r, a] → E, and t ∈ [0, a]
we define the function zt : [−r, 0] → E by zt(τ) = z(t + τ), τ ∈ [−r, 0]. Given
the functions f : [0, a] × C([−r, 0], E) × C([−r, 0], E) → E, ϕ ∈ C1([−r, 0], E), and
ξ, η : [0, a]× E → [0, a].

We consider the problem

x′(t) = f(t, xξ(t,x(t)), x
′

η(t,x(t))), t ∈ [0, a], (1.1)

x(t) = ϕ(t), t ∈ [−r, 0], (1.2)

where xξ(t,x(t)) is the restriction of x to the set [ξ(t, x(t))− r, ξ(t, x(t))], t ∈ [0, a], and
this restriction is shifted to the set [−r, 0]. The same convention is applied to x′

η(t,x(t)).
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Put x′(t) = z(t) for t ∈ [0, a]. Then the Cauchy problem (1.1), (1.2) is equivalent
to the following problem

z(t) = f(t, (V z)ξ(t,(V z)(t)), zη(t,(V z)(t))), t ∈ [0, a], (1.3)

z(t) = ϕ′(t), t ∈ [−r, 0], (1.4)

where

(V z)(t) = ϕ(0) +

∫ t

0

z(s)ds. (1.5)

Particular cases of equation (1.1) arise as a model for a two - body problem of
classical electrodynamics and were studied extensively by Driver [4]-[6].

Neutral equations with state dependent delays have attracted the attentions of
several authors in recent years [1], [4] - [13], [16].

Using the Banach fixed point theorem we can prove the existence and uniqueness
theorem for problem (1.1), (1.2) (see Remark 2.3). Unfortunately this method involves
strong conditions concerning the function f . This condition can be slightly weakened
if it is supposed more on the functions ξ, and η.

In this paper we prove by using the comparison method an existence and unique-
ness result for (1.1), (1.2) under conditions involving some relation between the Lip-
schitz constants of the function f , and the estimations imposed on the functions ξ, η
(see Remark 3.1). A general formulation of the comparison method can be found in
[20]. This method has been used in various versions and under various assumptions
on given functions for different problems concerning ordinary or partial differential
equations, integral differential equations, functional differential or functional integral
equations, and general functional equations in some abstract spaces (see [2], [3], and
[14]-[20]).

2. Assumptions and lemmas

We define

(Lg)(t) = l(t)g(β(t)), and (Kg)(t) = k(t)

α(t)
∫

0

g(s)ds,

where t ∈ [0, a], g, k, l ∈ C([0, a],R+), and α, β ∈ C([0, a], [0, a]). Put

L0 = J, and Ln = LLn−1, n = 1, 2, . . . ,

where J denotes the identity operator in C([0, a],R). We can write

(Lng)(t) = ln(t)g(βn(t)),

where

β0(t) = t, βn+1(t) = β(βn(t)), n = 0, 1, . . . , t ∈ [0, a],
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l0(t) = 1, ln+1(t) = l(t)ln(β(t)), n = 0, 1, . . . , t ∈ [0, a].

Let us define

Mg =

+∞
∑

n=0

Lng

with the pointwise convergence of the series in [0, a]. We need the following lemmas.

Lemma 2.1. Suppose that functions k, l, h ∈ C([0, a],R+) are nondecreasing, α, β ∈
C([0, a], [0, a]) are nondecreasing, α(t), β(t) ∈ [0, t], and

(Mh)(t) < +∞, s̄(t) =M(kα)(t) < +∞, t ∈ [0, a],

and

sup
t∈(0,a]

s̄(t)

t
< +∞,

Then

(i) there exists ḡ ∈ C([0, a],R+) which is a nondecreasing, and unique solution of
the equation

g =MKg +Mh (2.1)

in the class P ([0, a],R+) of upper semicontinuous functions defined on [0, a];

(ii) the function ḡ is a nondecreasing, and unique solution of the equation

g = Kg + Lg + h (2.2)

in the class

P ([0, a],R+, ḡ) = {g ∈ P ([0, a],R+) : ‖g‖⋆ < +∞, } ,

where
‖g‖⋆ = inf {c ∈ R+ : g(t) ¬ cḡ(t), t ∈ [0, a]} ;

(iii) the function g = 0 is the unique solution of the inequality

g ¬ Kg + Lg (2.3)

in the class P ([0, a],R+, ḡ).

Proof. At first we prove (i). It is quite clear that the solution of equation (2.1) can
be considered in the class C([0, a],R+). Put

‖g‖χ = sup
t∈[0,a]

exp(−χt)g(t), g ∈ C([0, a],R+),

with χ > Λ = sup
t∈(0,a]

s̄(t)
t

.
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Now we can prove that the operator MK is a contraction i. e. ‖MK‖χ < 1.
Indeed, from the inequality exp(εt)− 1 ¬ ε exp(t) for ε ∈ [0, 1], t ∈ R+, we have

‖MKg‖χ ¬ sup
t∈[0,a]

exp(−χt)
∞
∑

n=0

ln(t)k(βn(t))

α(βn(t))
∫

0

g(s)ds

¬ sup
t∈[0,a]

exp(−χt)

+∞
∑

n=0

ln(t)k(βn(t))

α(βn(t))
∫

0

[g(s) exp(−χs)] exp(χs)ds

¬ ‖g‖χ sup
t∈[0,a]

exp(−χt)

+∞
∑

n=0

ln(t)k(βn(t))

α(βn(t))
∫

0

exp(χs)ds

¬
‖g‖χ
χ
sup
t∈[0,a]

exp(−χt)
+∞
∑

n=0

ln(t)k(βn(t))[exp(χα(βn(t))) − 1]

¬
‖g‖χ
χ
sup
t∈(0,a]

exp(−χt)

+∞
∑

n=0

ln(t)k(βn(t))

[

exp(χ
α(βn(t))

t
t)− 1

]

¬
‖g‖χ
χ
sup
t∈(0,a]

exp(−χt)

+∞
∑

n=0

ln(t)k(βn(t))α(βn(t))
1

t
exp(χt)

¬
‖g‖χ
χ
sup
t∈(0,a]

s̄(t)

t

¬
Λ

χ
‖g‖χ.

Hence it follows that ‖MK‖χ < 1. Now the assertion (i) follows from the Banach
fixed point theorem.

Now we prove (ii). At first we show that any solution of equation (2.1) is a
solution of equation (2.2). Indeed, if ḡ is a solution of (2.1), then from the equality
LMg =Mg − g we get

Kḡ + Lḡ + h = Kḡ + L(MKḡ +Mh) + h

= Kḡ + LMKḡ + LMh+ h

= Kḡ +MKḡ −Kḡ +Mh− h+ h

= MKḡ +Mh

= ḡ.

We observe that for any solution ḡ of equation (2.1)

Lnḡ = LnMKḡ + LnMh =

+∞
∑

i=n

LiKḡ +

+∞
∑

i=n

Lih,
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hence we get
Lnḡ → 0 if n→ +∞.

If g̃ ∈ P ([0, a],R+, ḡ) is a solution of equation (2.2), then by induction we obtain
easily the following

g̃ =
n−1
∑

i=0

LiKg̃ +
n−1
∑

i=0

Lih+ Lng̃, n = 1, 2, . . . (2.4)

Since g̃ ∈ P ([0, a],R+, ḡ), then for some c ­ 0 we have 0 ¬ g̃ ¬ cḡ, now according to
Lng̃ ¬ cLnḡ, we infer Lng̃ → 0 if n→ +∞. If we let n→ +∞ in relation (2.4) we get
g̃ =MKg̃+Mh i.e. g̃ is the solution of (2.1), but this equation has only the solution
ḡ, thus g̃ = ḡ, and (ii) is proved.

Finally we prove (iii). If g ∈ P ([0, a],R+, ḡ) is the solution of inequality (2.3) then
by induction we get

g ¬

n−1
∑

i=0

LiKg + Lng, n = 1, 2, . . .

We have for some c ∈ R+, g ¬ cḡ. From here we find that g satisfies the inequality
g ¬MKg.

Because of ‖MK‖χ < 1 we get that g = 0 is the unique solution of (2.3) in the
class C([0, a],R+) with the norm ‖ · ‖χ. Thus g = 0 is the unique solution of (2.3) in
the class with the supremum norm. Lemma is proved. 2

Remark 2.1. If assumptions of Lemma 2.1 are satisfied for h̄ ∈ C([0, a],R+), where
h̄(t) ¬ h(t), t ∈ [0, a], then the suitable solution g̃ of equation (2.1) with h̄ instead of h
established in Lemma 2.1, is the unique solution of the equation (2.2) with h replaced
by h̄ in the class P ([0, a],R+, ḡ).

This fact follows immediately from the part (ii) of the proof of Lemma 2.1.

In the space C([−r, 0], E) we define the norm

‖v‖0 = sup
τ∈[−r,0]

‖v(τ)‖,

where v ∈ C([−r, 0], E). We write

B([−r, a], ḡ) =
{

u ∈ C([−r, a], E) : u |[−r,0]= ϕ
′, ‖u(t)‖ ¬ ḡ(t), t ∈ [0, a]

}

,

where ḡ is defined in Lemma 2.1.

Assumption H1. Suppose that

(i) there exist nondecreasing functions k̄, l̄, σ, δ : [0, a] → R+, and ᾱ, β̄ : [0, a] →
[0, a], such that ᾱ(t), β̄(t) ∈ [0, t], and

‖f(t, u, v)− f(t, ū, v̄)‖ ¬ k̄(t)‖u− ū‖0 + l̄(t)‖v − v̄‖0,
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ξ(t, y) ¬ ᾱ(t), η(t, y) ¬ β̄(t),

|ξ(t, y)− ξ(t, ȳ)| ¬ σ(t)‖y − ȳ‖, |η(t, y)− η(t, ȳ)| ¬ δ(t)‖y − ȳ‖

for (t, u, v), (t, ū, v̄) ∈ [0, a]× C([−r, 0], E)× C([−r, 0], E), y, ȳ ∈ E;

(ii) ϕ ∈ C1([0, a], E) and ‖ϕ′(τ)‖ ¬ ḡ(0) for τ ∈ [−r, 0].

The following estimation is a consequence of the assumption H1:

‖f(t, u, v)‖ ¬ k̄(t)‖u‖0 + l̄(t)‖v‖0 + γ(t),

where (t, u, v) ∈ [0, a]×C([−r, 0], E)×C([−r, 0], E), and γ(t) = sup
s∈[0,t]

‖f(s, θ, θ)‖, and

θ denotes the zero in the space C([−r, 0], E). We define the operator F as follows

F [z](t) = f(t, (V z)ξ(t,(V z)(t)), zη(t,(V z)(t))), t ∈ [0, a],

F [z](t) = ϕ′(t), t ∈ [−r, 0],

where V is given by (1.5).

Lemma 2.2. If Assumption H1, and assumptions of Lemma 2.1 are satisfied with
α(t) = ᾱ(t), β(t) = β̄(t), l(t) = l̄(t), k(t) = k̄(t), h(t) = γ(t) + k̄(t)‖ϕ(0)‖, and let ḡ
be the corresponding solution of (2.2), then

F : B([−r, a], ḡ)→ B([−r, a], ḡ),

Proof. Let v ∈ B([−r, a], ḡ), and w(t) = F [v](t). Then for t ∈ [0, a] we have

‖w(t)‖ = ‖f(t, (V v)ξ(t,(V v)(t)), vη(t,(V v)(t)))‖

¬ k̄(t)‖(V v)ξ(t,(V v)(t))‖0 + l̄(t)‖vη(t,(V v)(t))‖0 + γ(t)

¬ k̄(t)

ᾱ(t)
∫

0

ḡ(s)ds+ l̄(t)ḡ(β̄(t)) + k̄(t)‖ϕ(0)‖ + γ(t)

= ḡ(t).

Therefore ‖w(t)‖ ¬ ḡ(t) for t ∈ [0, a]. Hence it follows that w ∈ B([−r, a], ḡ), and the
lemma is proved. 2

Assumption H2. Suppose that

(i) there exist p, b, d ∈ R+, such that

‖f(t, u, v)− f(t̄, u, v)‖ ¬ p|t− t̄|,

|ξ(t, y)− ξ(t̄, y)| ¬ b|t− t̄|, and |η(t, y)− η(t̄, y)| ¬ d|t− t̄|

for ‖v‖0 ¬ ρ = ḡ(a), ‖u‖0 ¬ ρ̄ = ᾱ(a)ρ+ ‖ϕ(0)‖, and ‖y‖ ¬ ρ̃ = aρ+ ‖ϕ(0)‖,
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(ii) the compatibility condition

ϕ′(0−) = f(0, ϕ, ϕ
′),

is satisfied, where ϕ′(0−) denotes the left hand derivative of the function ϕ at
the point t = 0.

Put

A = p+ k̄(a)ḡ(a)[b + ḡ(a)σ(a)], and B = l̄(a)[d+ ḡ(a)δ(a)].

We introduce the following class of functions

D([−r, a], ḡ, λ) = {z ∈ B([−r, a], ḡ) : ‖z(t)− z(t̄)‖ ¬ λ|t− t̄|, t, t̄ ∈ [0, a]} ,

where the constant λ is fixed, and it satisfies the condition λ ­ A[1 −B]−1.

Lemma 2.3. If Assumption H2, and assumptions of Lemma 2.2 are satisfied, and if
B < 1, then the operator F maps D([−r, a], ḡ, λ) into itself.

Proof. Let z ∈ D([−r, a], ḡ, λ). It follows from Lemma 2.2, that F [z] ∈ B([−r, a], ḡ).
Now we have

‖F [z](t)−F [z](t̄)‖ ¬ p|t− t̄|+ k̄(t)‖(V z)ξ(t,(V z)(t)) − (V z)ξ(t̄,(V z)(t̄))‖0

+l̄(t)‖zη(t,(V z)(t)) − zη(t̄,(V z)(t̄))‖0

¬ p|t− t̄|+ k̄(t)ρ|ξ(t, (V z)(t))− ξ(t̄, (V z)(t̄))|

+l̄(t)λ|η(t, (V z)(t))− η(t̄, (V z)(t̄))|

¬ p|t− t̄|+ k̄(t)ρ[b|t− t̄|+ σ(t)‖(V z)(t)− (V z)(t̄)‖]

+l̄(t)λ[d|t − t̄|+ δ(t)‖(V z)(t)− (V z)(t̄)‖]

¬ (A+Bλ)|t− t̄| ¬ λ|t− t̄|

for t, t̄ ∈ [0, a]. Hence it follows that F [z] ∈ D([−r, a], ḡ, λ), and the proof is complete.
2

Remark 2.2. If E = R
n, and the Assumptions of Lemma 2.3 are satisfied, then the

problem (1.3), (1.4) has at least one solution z̄ ∈ D([−r, 0], ḡ, λ).
We see at once that the continuous operator F maps the bounded, closed, and

convex set D([−r, 0], ḡ, λ) into its compact subset F [D([−r, a], ḡ, λ)]. Hence, and from
the Schauder fixed - point theorem it follows that F has at least one fixed point.

For an arbitrary Banach space we have the following result.

Remark 2.3. If assumptions of Lemma 2.3 are satisfied, and q < 1, where

q = a
{

k̄(a)[ρσ(a) + 1] + λl̄(a)δ(a)
}

+ l̄(a),

then problem (1.3), (1.4) has a unique solution in D([−r, a], ḡ, λ).

It is obvious that under these assumptions the operator F is a contraction in the
space D([−r, 0], ḡ, λ). The assertion of this remark follows from the Banach fixed -
point theorem.

We shall relax this restrictive condition.
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3. The main theorem

For the function v ∈ C([−r, 0], E) we define the function ωv : [−r, a]→ E by

(ωv)(t) = v(t), t ∈ [−r, 0],

(ωv)(t) = v(0), t ∈ [0, a].

Let us define the sequence {zn}, where z0 is an arbitrary function from the space
B([−r, a], ḡ), by relations
(i) z0(t) = (ωϕ

′)(t) for t ∈ [−r, a],
(ii) if zn : [−r, a]→ E is given then

zn+1(t) = F [zn](t) for t ∈ [0, a],

zn+1(t) = ϕ′(t) for t ∈ [−r, 0].

To prove the convergence of the sequence {zn} we define the sequence {gn} as follows

gn+1 = Kgn + Lgn, n = 0, 1, . . . ,

g0 = ḡ,

where ḡ is a solution of equation (2.2) with functions k, l, α, β, and h given by


























































k(t) = k̄(t)[1 + ρσ(t)] + λl̄(t)δ(t),

l(t) = l̄(t),

α(t) = t,

β(t) = β̄(t),

h(t) = max
s∈[0,t]

‖F [ωϕ′](s)− ϕ′(0)‖,

(3.1)

and t ∈ [0, a]. By induction, we can prove the following lemma (see [18]).

Lemma 3.1. Suppose that assumptions of Lemma 2.1 are satisfied with functions
k, l, α, β, h given by relations (3.1). Then

0 ¬ gn+1 ¬ gn ¬ ḡ, n = 0, 1 . . . ,

and
lim
n→+∞

gn(t) = 0 uniformly on [0, a].

Theorem 3.1. If Assumptions H1, H2, and assumptions of Lemma 2.1 are satisfied
for functions k, l, α, β, and h defined by relations (3.1) then there exists the only
one solution z̄ ∈ D([−r, a], ḡ, λ) of the problem (1.3), (1.4). The sequence {zn} is
convergent to z̄ uniformly on [0, a], and the following estimations

‖z̄(t)− zn(t)‖ ¬ gn(t), n = 0, 1, . . . , t ∈ [0, a], (3.2)

hold.
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Proof. First we note that from assumptions of this theorem it follows that the As-
sumptions of Lemmas 2.2 and 2.3 are satisfied. Hence zn ∈ D([−r, a], ḡ, λ). Now we
prove the estimations

‖zn(t)− z0(t)‖ ¬ ḡ(t), n = 0, 1, . . . , t ∈ [0, a], (3.3)

and
‖zn+k(t)− zn(t)‖ ¬ gn(t), n, k = 0, 1, . . . , t ∈ [0, a]. (3.4)

Estimate (3.3) is obvious for n = 0. Assume that estimate (3.3) holds for a certain
n > 0. Then for n+ 1 we have

‖zn+1(t)− z0(t)‖ ¬ ‖F [zn](t)−F [z0](t)‖ + ‖F [z0](t)− z0(t)‖

¬ k̄(t)‖(V zn)ξ(t,(V zn)(t)) − (V z0)ξ(t,(V z0)(t))‖0

+l̄(t)‖(zn)η(t,(V zn)(t)) − (z0)η(t,(V z0)(t))‖0 + h(t)

¬
{

k̄(t)[1 + ρσ(t)] + l̄(t)λδ(t)
}

t
∫

0

ḡ(s)ds+ l̄(t)ḡ(β̄(t)) + h(t)

= ḡ(t),

so the estimate (3.3) holds for n = 0, 1, . . ., t ∈ [0, a]. In the same manner we can prove
the estimate (3.4). It follows from Lemma 3.1, that the sequence {zn} is convergent
to the solution z̄ of the problem (1.3), (1.4). It is obvious, that z̄ ∈ D([−r, a], ḡ, λ).
Letting k → +∞ in the estimate (3.4) we get the estimate (3.2) holds.

To prove uniqueness we assume that z̃ ∈ D([−r, a], ḡ, λ) is another solution of the
problem (1.3), (1.4). Let

w(t) = max
s∈[0,t]

‖z̃(s)− z̄(s)‖.

Now we have

w(t) ¬ max
s∈[0,t]

k̄(s)‖(V z̃)ξ(s,(V z̃)(s)) − (V z̄)ξ(s,(V z̄)(s))‖0

+ max
s∈[0,t]

l̄(s)‖z̃η(s,(V z̃)(s)) − z̄η(s,(V z̄)(s))‖0

¬ max
s∈[0,t]

{

k̄(s)[1 + ρσ(s)] + λδ(s)l̄(s)
}

∫ s

0

‖z̃ − z̄‖τdτ + max
s∈[0,t]

l̄(s)‖z̃ − z̄‖s

¬ (Kw)(t) + (Lw)(t).

Therefore w is a solution of the inequality (2.3), thus w(t) = 0, and z̃(t) = z̄(t) for
t ∈ [0, a]. The proof is finished. 2

Remark 3.1. If Assumptions H1, and H2 are satisfied, and if functions k, l, h ∈
C([0, a],R+), α, β ∈ C([0, a], [0, a]) are defined by relations (3.1), and there exist
l̃, k̃ ∈ R+, β̃ ∈ [0, 1], such that l(t) ¬ l̃, k(t) ¬ k̃, β(t) ¬ β̃t, and h(t) ¬ Htµ for a
certain H,µ ∈ R+, then the assertion of Theorem 3.1 holds, if l̃β̃µ < 1, B < 1, and
A[1 −B]−1 ¬ λ.
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[2] T. Cz lapiński, On some nonlinear Volterra integral functional equations in sev-
eral variables, Anal. Math. 20 (1994), 241 - 253.

[3] Z. Denkowski, A. Pelczar, On the existence and uniqueness of solutions of some
partial differential functional equations, Ann. Polon. Math. 35 (1978), 261 - 304.

[4] R.D. Driver, A two - body problem of classical electrodynamics: the one - di-
mensional case, Ann. Physics, 1 (1963), 122 - 142.

[5] R.D. Driver, A functional - differential system of neutral type arising in a two
- body problem of classical electrodynamics, In: International Symposium on
Nonlinear Differential Equations and Nonlinear Mechanics, pp. 474 - 484, Acad.
Press, New York, 1963.

[6] R.D. Driver, A neutral system with state dependent delay, J. Differential Equa-
tions, 54 (1984), 73 - 86.

[7] L.J. Grimm, Existence and continuous dependence for a class of nonlinear equa-
tions, Proc. Amer. Math. Soc., 29 (1971), 467 - 473.

[8] J.K. Hale, M.A. Cruz, Existence, uniqueness, and continuous dependence for
hereditary systems, Ann. Math. Pura. Appl., 85 (1970), 63 - 81.

[9] F. Hartung, T.L. Herdman, J. Turi, On existence, uniqueness and numerical
approximation for neutral equations with state - dependent delays, Appl. Numer.
Math., 24 (1997), 393 - 409.

[10] F. Hartung, T.L. Herdman, J. Turi, Parameter indentification in classes of neu-
tral differential equations with state - dependent delays, Nonlinear Anal. 39
(2000), 305 - 325.

[11] F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, Functional differential equa-
tions with state - dependent delay: theory and and applications, In Handbook of
Differential Equations: Ordinary Differential Equations, vol. 3, Elsevier, North -
Holand, (2006), 435 - 545.

[12] Z. Jackiewicz, Existence and uniqueness of solutions of neutral delay - differential
equations with state dependent delays, Funkcialaj Ekvacioj, 30 (1987), 9 - 17.



18 A. Go laszewska, J. Turo

[13] Z. Jackiewicz, A note on the existence and uniqueness of solutions of neutral
functional - differential equations with state dependent delays, Comment. Math.
Univ. Carolin. 36 (1995), 15 - 17.

[14] Z. Kamont, Initial problems for neutral functional differential equations with
unbounded delay, Studia Scient. Math. Hungarica 40 (2003), 309 - 326.

[15] Z. Kamont, M. Kwapisz, On the Cauchy problem for differential - delay equations
in a Banach space, Math. Nachr. 74 (1976), 173 - 267.

[16] M. Kwapisz, J. Turo, Existence and uniqueness of solutions for some integral -
functional equation, Commentationes Mathematicae 23 (1983), 259 - 267.

[17] M. Kwapisz, J. Turo, Some integral - functional equations, Funkcialaj Ekvacioj
18 (1975), 107 - 162.

[18] M. Kwapisz, J. Turo, On the existence and convergence of succesive approxima-
tions for some functional equations in a Banach space, J. Differential Equations
16 (1974), 298 - 318.

[19] A. Pelczar, Some functional differential equations, Dissert. Math. 100 (1973),
1 - 114.
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