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Thermal infrared imaging is used to capture the temperature distribution of the human skin and employed in various medical
applications. Often visual images are taken in conjunction with thermograms. Clinicians are interested to cross-reference
the infrared and visual images of a patient, either to see which part of the anatomy is affected by a certain disease or to
judge the efficacy of treatment. In this paper, we show that image registration techniques can be used effectively to generate
such an overlay of visual and thermal infrared images to provide a useful visualisation. Following a skin detection step,
which segments areas corresponding to the patient in the visual image, registration techniques, either intensity- or landmark-
based, are employed to accurately align the two images. The proposed approach is shown to be effective for a variety of
applications, ranging from clinical studies such as monitoring the evolution of lesions in dermatology (psoriasis, dermatitis)
or in immunology (scleroderma, lupus), to the most innovative applications of functional infrared imaging, like emotion
recognition through a combination of infrared imaging-based computation of autonomic responses and facial expression
recognition.

1. INTRODUCTION

Thermal infrared imaging is a non-invasive, non-contact,
passive, and radiation-free imaging modality to capture
the natural thermal radiation generated by an object at a
temperature above absolute zero. Often, visual images
are captured in conjunction with thermograms, for
example to relate inflamed skin areas to the human
anatomy, which in turn is useful for medical diagnosis as
well as for assessing the efficacy of any treatment.
Currently, this process requires great expertise and is
subject to the individual clinician’s ability to mentally
map the two distinctly different images.

Image registration is the process of geometrically
aligning or overlaying two images taken from different
sensors or perspectives and/or at different times, and is a
crucial part of many medical imaging applications.
Images are aligned by solving for the optimal
transformation, expressed as a combination of scaling,
translation and rotation, that will map information from
one image to the other one. Registration is often used to
monitor growth, verify the effects of treatment or to make
comparisons of patient data with anatomically normal
subjects.

In this paper, we show how image registration can
be effectively used to overlay thermal infrared images
and visual images of a patient in order to relate areas
that are of interest due to their thermal pattern to the

human anatomy. After capturing both infrared and visual
images, the visual image undergoes a skin detection step
that is used to separate the patient from the background.
Intensity-based image registration, which requires no user
interaction, is then employed to superimposed the two
images and the generated overlay is presented to the user.
Should this automatic approach lead to inaccurate results,
in a further step a landmark-based registration technique
is utilised where alignment is based on control points
defined by the user. The generated system was employed
at the Institute for Advanced Biomedical Technology at
Foundation G. D’Annunzio University in Chieti, for,
among others, studying the evolution of the clinical
scenario in patients suffering for Raynaud’s phenomenon
and scleroderma [12, 15], and analysis of the emotional
response in individuals exposed to audio-video stimuli
through autonomic thermal effects and facial expressions
[18, 14].

2. BACKGROUND

2.1. Thermal Infrared Imaging

Thermal infrared imaging uses a camera with sensitivities
in the infrared to provide a picture of the temperature
distribution of human skin [7]. It is a non-invasive, non-
contact, passive, radiation-free technique that can be
employed in combination with anatomical investigations
(e.g., based on x-rays or CT/MRI investigations) and can
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reveal problems when the anatomy is otherwise normal.
The radiance from human skin can be characterised as
an exponential function of the surface temperature which
in turn is influenced by the level of blood perfusion in
the skin. Thermal infrared imaging is therefore well suited
to pick up changes in blood perfusion which might occur
due to inflammation, angiogenesis or other causes. It has
been shown early [21] that asymmetries in temperature
distributions as well as hot and cold spots are strong
indicators of an underlying dysfunction [13]. Thermal
infrared imaging has been successfully employed to
detect breast cancer [1, 5], diagnose Raynaud’s
phenomenon [11], and to monitor local scleroderma [2].
Various image processing and analysis techniques have
been successfully utilised in acquiring and interpreting
medical infrared images (see e.g. [17, 23]) and have been
shown to be useful and important tools for clinical
diagnosis.

2.2. Image Registration

Image registration is used to geometrically align two
images taken from different sensors or perspectives and/
or different times. One of the images is assigned as
reference (or fixed) image while the other serves as sensed
(or moving) image. The sensed images is then
transformed using a combination of scaling, translation
and rotation operations so as to best match the reference
image. However, finding this best fit is intrinsically
difficult because of the various geometric deformations
caused by the diverse methods of image capture as well
as by image noise and other factors. In medical image
analysis, registration is often used to monitor growth,
verify the effects of treatment or to make comparisons of
patient data with anatomically normal subjects [10].

Image registration is an intensive research area with
many registration techniques introduced in the literature.
In general, most of these can be divided into two classes:
landmark-based and intensity-based registration
algorithms [24]. Landmark-based methods require
specification of pairs of corresponding control points in
both images. These control points are then utilised to
determine the mapping between the two images where
the goodness of fit is usually determined in terms of the
deviations of the original and transformed landmarks.
Obviously, in this approach the registration accuracy is
inherently dependent on the accurate placement of the
landmarks. Although careful manual specification of
control points will typically lead to good registration
accuracy, this method is time consuming and success
relies heavily on the user’s expertise. Control points can
also be extracted automatically, however this proves
difficult and unreliable in many cases and often requires
certain domain specific knowledge. In contrast,
intensitybased image registration is not based on control

points. Here, the complete image data is used to arrive at
an appropriate transform. This is achieved by iterating
through transform optimisation, image resampling and
feature-matching stages. Of these, feature matching is
the most important part as it specifies a similarity metric
which measures the fit between reference and sensed
image.

3. METHODS

Our system is designed to provide an overlay of visual
and thermal infrared images to be presented to the user/
clinician. Superimposing both image types allows to
relate areas of certain thermal patterns to the anatomy of
the person as well as to monitor efficacy of any treatment.
After pre-processing, which importantly involves
segmenting the image area corresponding to the patient
through a skin detection step, intensity-based image
registration based on a mutual information similarity
metric is employed to align the two images. This is
performed using a series of intelligent agents which
collaborate on a blackboard architecture, providing an
efficient and effective framework for image registration.
Superimposed images are presented to the user for
visualisation, where the user is able to adjust the relative
importance of the individual modalities in an interactive
manner.

3.1. Image Pre-processing and Segmentation

In our approach we are primarily employing intensity-
based image registration to produce the overlay of visual
and infrared images of patients. As mentioned above,
intensity-based registration is able to utilise all available
image data in order to arrive at an accurate mapping
between the two images. However, this also means that
any confounding image information that might lead to
incorrect alignment needs to be dealt with. In particular,
while the background area of infrared images taken in a
temperature controlled lab is typically well separated from
the patient’s body, the same contrast must be achieved
for the visual image. Whereas for infrared images a simple
thresholding algorithm [16] is sufficient to segment the
foreground (i.e. the patient) from the background, visual
images need a more elaborate analysis. In our approach,
we make use of the fact that infrared imaging picks up
the skin temperature, and therefore employ a skin
detection technique on the visual image to segment the
area corresponding to the patient. For this, we adopt, with
some variations, the method introduced in [4] which is
based on the fact that the hues of human skin occupy
only a small region in colour space. The algorithm, which
operates on the visual (RGB) image, proceeds in the
following steps:

Step 1: The R, G, and B values at each pixel are
transformed into a log-opponent colour representation by
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with
L(C) = 105 log10 (C + 1 + n) C = {R, G, B}

where n represents some random noise (in the
range (0; 1)) to prevent banding artefacts in dark
regions. I  is the resulting intensity channel,
whereas R

g
 and B

y
 are red-green and blue-yellow

chromaticity channels.
Step 2: A measure of texture amplitude, T, is derived from

the intensity channel I by calculating a difference
image between the original image and a median
filtered version of it, where the size of the median
filter depends on the image resolution. The
resulting texture channel T is then again median
filtered as are the opponent channels R

g
 and B
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(at a finer scale compared to the texture channel).
Step 3: Hue H and saturation S are calculated as
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Step 4: Pixels that fall within a certain hue-saturation
range and do not exceed a texture threshold are
identified. In particular, all pixels that fall within
{T < 5 and 110 < H < 155 and 5 < S < 60}
or
{T < 5 and 130 < H < 170 and 30 < S < 130}
are marked as skin pixels.

Step 5: Using morphological operations holes are filled
and edges smoothed to provide the final output
of the skin detector.

Step 6: Pixels that are not identified as part of skin regions
are set to black, thus effectively removing the
background.

3.2. Registration

After pre-processing, both the infrared and visual image
will contain of a clearly separated foreground area
corresponding to the patient, while the background is set
to zero intensity in both images. Since, as mentioned
above, landmark-based registration approaches are time-
consuming, we are primarily interested in employing an
intensity-based technique in order to provide a fully

automatic method of generating visual-infrared overlays.
In intensity-based methods, the choice of similarity metric
is crucial for successful registration. Since the images
are of different modalities, direct comparison of image
intensities will lead to poor results, and we are therefore
using a similarity metric based on the mutual information
MI(I, V) between infrared image I and visual image V,
defined as [22]

MI(I, V) = H(V) – H(V \ I) (4)
where H(V) is the marginal entropy of the visual image
while H(V \ I) represents the joint entropy calculated from
intensities of the infrared and visual images.

Not surprisingly, the similarity computation stage is
complex and therefore represents a considerable
performance bottleneck when employed in an iterative
registration procedure. Based on a worker/manager
model, we therefore employ a distributed blackboard
system, where the workload is spread between a number
of intelligent agents [20].

In this framework, the registration process begins
with the partitioning of visual and thermal images into
segments. After calculation of transform parameters, for
each sample point in the visual segment a corresponding
intensity in the infrared segment is calculated. Intensities
at non-grid positions are derived using B-spline based
interpolation [8]. A local Parzen histogram is then
generated from retrieved intensities by a worker agent
and placed onto the blackboard.

When all worker agents have terminated, the manager
agent is able to construct a global Parzen histogram from
the local histograms now available on the blackboard.
By estimating the density distribution of the global
histogram, an entropy value in the form of a gradient is
then calculated. Regular step gradient descent
optimisation [9] is employed by the manager agent in
order to advance transform parameters in the direction
of the gradient. During each iteration of the optimisation
process, the step length through the transform search
space is calculated using a bipartition scheme. Once
updated, transform parameters are then propagated to all
worker agents via the blackboard and the procedure is
repeated until the algorithm has converged. Finally, the
image segments are accumulated by the manager agent
to assemble the registered sensed image.

Our employed framework is flexible and can be
employed to either distribute the registration of single
images as outlined above or to distribute the processing
of many images in batch mode. It should also be noted
that the framework can also be employed for registering
3-D volume datasets in an equally efficient and effective
way [19].

After successful registration, a composite image is
created. This is performed by computing the weighted
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sum of the respective pixel values of the original visual
image and the thresholded thermogram. Equal weights
will generate an average of the two images whereas
different weights will put more emphasis on one of the
two modalities. The actual weightings between the two
modalities can be determined by the user and can be
controlled interactively.

Although the system by default performs intensity-
based registration to provide a fully automated system,
in some cases this approach does not produce an accurate
overlay. In such instances the user has the possibility to
switch to a landmark-based algorithm. Corresponding
control points then need to be specified by the user in
both the visual and the infrared image. Based on these
landmarks the best transform is then calculated to align
the two images.

4. RESULTS

Thermal images for the present study were acquired by
means of a digital thermal camera (FLIR SC3000,
FlirSystems, Sweden), with a focal plane array of
320x240 QWIP detectors, capable of collecting the
thermal radiation in the 8-9 µm band, with a 0.02 second
time resolution, and 0.02 K temperature sensitivity.

Figures 1 to 3 give examples of visual-infrared image
pairs to show how our proposed method works. Each
figure shows the original visual image, the thermal
infrared image, the visual image segmented based on the
output of the skin detection step, and the final, overlaid
image. As can be seen, in all cases an accurate overlay
of the two image types is achieved. It can also be noticed
that the skin detection step does not have to perform
perfectly in extracting the area corresponding to the
patient (e.g., in Figure 1 areas corresponding to the hair
and beard are (correctly) not classified as skin regions).

Figure 1 shows the distribution of the facial
cutaneous temperature in a healthy subject. The generated
images permit to identify the anatomical correspondence
of the facial region exhibiting the largest temperature
variations associated with emotional responses and
expressions. This capability is very important as it permits
to understand which association is set among facial (i.e.,
visual) and thermal (i.e, autonomic) expression of
emotions. The output of Figure 1 allows for an enhanced
Facial Action Coding System, which is at the basis of
automatic recognition of facial expression [3].

Figure 2 shows the distribution of the trunk cutaneous
temperature in a healthy subject. In this case, the

Figure 1: Example 1 of Visual-infrared Overlay: Original Visual Image, Infrared Image, Segmented Visual Image, Composite Image
(from Left to Right, Top to Bottom)
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generated images allow to easily associate the
temperature distribution of given regions of interest with
the subject’s anatomy.

Figure 3 shows the distribution of the hand
cutaneous temperature in an healthy subject. The
generated images permit to localise superficial vessels,
which appear either colder or  warmer than the
surrounding tissue, on the visual image, where they
cannot be visually recognised and localised. This
capability is extremely helpful in a variety of conditions
(fistula or scleroderma, for example) where the clinician
needs to access or (non-invasively) monitor the vessel
geometry, or in the assessment of morphea (localised

scleroderma) patients [6]. Figure 3 also shows how the
weights between the two imaging modalities can be set
so as to put more or less emphasis on one of the original
images.

Finally, Figure 4 gives an example of the application
where the user is performing a landmark-rather than an
intensity-based registration. Control points are placed on
one of the images which are then copied to the other
image. Landmarks can be adjusted as a complete set
through rotation, translation and scaling operations or
individually. Provided the control points are placed
correctly, landmark-based registration generates highly
accurate overlay images.

Figure 2: Example 2 of Visual-infrared Overlay: Original Visual Image, Infrared Image, Segmented Visual Image, Composite Image
(from left to right, top to bottom)

Figure 2: Example 3 of Visual-infrared Overlay. Top row: Original Visual Image, Infrared Image, Segmented Visual Image. Bottom
row; three Different Overlays Generated through Different Weightings between Visual and Infrared Images
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Figure 4: Examples of Landmark-based Registration. Control
Points have been set for the Visual Image and Copied
over to the Infared Image

5. CONCLUSIONS

In this paper we have presented our system for
superimposing visual and infrared medical images. In a
pre-processing step, the image area corresponding to the
patient is extracted using a skin detection algorithm.
Intensity-based multi-modal registration based on a
mutual information is then applied to geometrically align
the two images. This process is performed by a set of
intelligent agents collaborating via a blackboard
architecture. In case the registration fails, the user has
the possibility to employ a landmark-based registration
method after specification of corresponding control points
in both images.

The system is employed at the Institute for Advanced
Biomedical Technology at Foundation G. D’Annunzio
University in Chieti for monitoring the evolution of the
clinical scenario in patients suffering from Raynaud’s
phenomenon and scleroderma, dermatologic diseases,
and recovery from burns. Another important application
for which the system is being used is in the field of
neuropsychology, for studying emotional responses
through autonomic thermal effects and facial expressions.

While at the moment the system is restricted to
overlaying static images, in future we will look at
incorporating facilities to superimpose dynamic
sequences. In addition, we are interested at providing
overlays of images that have been taken at different times,
typically many months apart, of the same patient. These
will for example prove useful in monitoring of how a
disease is developing, or whether the current treatment
shows any effects.
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