
International Journal for Computational Vision and Biomechanics, Vol. 3, No. 1, January-June 2010

Serials Publications © 2010 ISSN 0973-6778

Segmentation of Carotid Artery Ultrasound Images Using
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This paper proposes a scheme for segmenting carotid artery ultrasound images using graph cuts segmentation approach.
Region homogeneity constraints, edge information and domain specific information are incorporated during the segmentation
process. A graph with two terminals (source and sink) is formed by considering every pixel as a graph node. Each pair of
neighbouring nodes is connected by a weighted edge, where the weight is set to a value proportional to the intensity of the
gradient along them. Moreover, each graph node is connected to the source and the sink terminals with weights that reflect
the confidence that the corresponding pixel belongs to the object and the background, respectively. The segmentation problem
is solved by finding the minimum cut through the constructed graph. Experiments using a dataset comprised of 40 B-mode
carotid artery ultrasound images demonstrates good segmentation results with (on average) 0.677 overlap with the gold
standard images, 0.690 precision, and 0.983 sensitivity.
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1. INTRODUCTION

According to the World Health Organization, there are
over 20.5 million stroke cases worldwide, where 5.5
million of these cases are fatal. In Canada, approximately
16,000 Canadians die from stroke every year. Vascular
plaque, a consequence of atherosclerosis, results in an
accumulation of lipids, cholesterol, smooth muscle cells,
calcifications and other tissues within the arterial wall. It
reduces the blood flow within the artery and may
completely block it. As plaque layers build up, it can
become either stable or unstable. Unstable plaque layers
in a carotid artery can be a life-threatening condition. If
a plaque ruptures, small solid components (emboli) from
the plaque may drift with the blood stream into the brain.
This may cause a stroke. Early detection of unstable
plaque plays an important role in preventing serious
strokes.

Currently, carotid angiography is the standard
diagnostic technique to detect carotid artery stenosis and
the plaque morphology on artery walls. This technique
involves injecting patients with a radio-active dye. Then,
the carotid artery is examined using X-ray imaging.
However, carotid angiography is an invasive technique.
It is uncomfortable for patients and has some risk factors,
including allergic reaction to the injected dye, renal
failure, exposure to ionizing radiation, as well as arterial
puncture site complications, e.g., pseudoaneurysm and
arteriovenous fistula formation.

Ultrasound imaging provides an attractive tool for
carotid artery examination. The main drawback of
ultrasound imaging is the poor quality of the produced

images. It takes considerable effort from clinicians to
extract significant information about carotid artery
contours and the possible existence of plaque layers that
may exist. This task may require a highly skilled clinician.
Furthermore, manual extraction of carotid artery contours
generates a result that is not reproducible. Hence, a
computer aided diagnostic (CAD) technique for
segmenting carotid artery contours is highly needed.

Mao et al. [1] proposed a scheme for extracting the
carotid artery walls from ultrasound images. The scheme
uses a deformable model to approximate the artery wall.
However, the result accuracy depends, to a large extent,
on the appropriate estimation of the initial contour.
Furthermore, the deformable model takes a considerable
amount of time to approach the equilibrium state. It is
worth mentioning that the equilibrium state of a
deformable model does not guarantee the optimal state
or contour shape.

Abolmaesumi et al. [2] proposed a scheme for
tracking the center and the walls of the carotid artery in
real-time. The scheme uses an improved star algorithm
with temporal and spatial Kalman filters. The major
drawback of this scheme is the estimation of the weight
factors used by Kalman filters. In the proposed scheme,
these factors are estimated from the probability
distribution function of the boundary points. In practice,
this distribution is usually unknown.

Da-chuan et al. [3] proposed a method for automatic
detection of intimal and adventitial layers of the common
carotid artery wall in ultrasound images using a snake
model. The proposed method modified the Cohen’s snake
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[4] by adding spatial criteria to obtain the contour with a
global maximum cost function. The proposed snake
model was compared with the ziplock snake model [5]
and was found to give superior performance. However,
the computational time for the proposed model was
significantly high. It took a long amount of time for the
snake to reach the optimum shape.

Hamou et al. [6] proposed a segmentation scheme
for carotid artery ultrasound images. The scheme is based
on Canny edge detector [7]. The scheme requires three
parameters. The first parameter is the standard deviation
of the Gaussian smoothing kernel used to smooth the
image before applying edge detection process. The
second and the third parameters are upper and lower
bound thresholds to mask out the insignificant edges from
the generated edge map. The authors empirically tuned
these parameters, based on their own database of images.
This makes the proposed scheme cumbersome when used
with images from different databases.

Abdel-Dayem et al. [8] proposed a scheme for carotid
artery contour extraction. The proposed scheme uses a
uniform quantizer to cluster image pixels into three major
classes. These classes approximate the area inside the
artery, the artery wall and the surrounding tissues. A
morphological edge extractor is used to extract the edges
between these three classes. The system incorporates a
pre-processing stage to enhance the image quality and to
reduce the effect of the speckle noise in ultrasound
images. A post-processing stage is used to enhance the
extracted contours. This scheme can accurately outline
the carotid artery walls. However, it cannot differentiate
between relevant objects with small intensity variations
within the artery tissues. Moreover, it is more sensitive
to noise.

Abdel-Dayem et al. [9] used the watershed
segmentation scheme [10] to segment the carotid artery
ultrasound images. Watershed segmentation schemes
usually produce over-segmented images. Hence, a
region merging stage is used to merge neighbouring
regions based on the difference on their average pixel
intensity. A single global threshold is needed during the
region merging process. If this threshold is properly
tuned, the proposed scheme produces accura te
segmentation results.

Abdel-Dayem et al. [11] integrated multi-resolution-
analysis with their watershed-based segmentation scheme
[9] to reduce the computational cost of the segmentation
process and at the same time reduce the sensitivity of the
results with respect to noise. In this scheme, the image is
decomposed into a pyramid of images at different
resolutions using wavelet transform. Then, the lowest
resolution image is segmented using Abdel-dayem et al.
segmentation scheme [9]. Finally, the segmented image
is projected back to produce the full resolution image.

Abdel-Dayem et al. [12] proposed a scheme for
segmenting carotid artery ultrasound images using the
fuzzy region growing technique. Starting from a user
defined seed point within the artery; the scheme creates
a fuzzy connectedness map for the image. Then, the fuzzy
connectedness map is thresholded using an automatic
threshold selection mechanism to segment the area inside
the artery. The proposed scheme is a region-based
scheme. Hence, it is resilient to noise. It produces accurate
contours. This gain can be contributed to the fuzzy nature
of objects within ultrasound images. Moreover, it is
insensitive to the seed point location, as long as it is
located inside the artery. However, the calculation of the
fuzzy connectedness map is a computationally expensive
process. To overcome this problem, Abdel-Dayem et al.
[13] applied their fuzzy region growing scheme in multi-
resolutions. In this configuration, the computational
complexity is reduced as the fuzzy connectedness map
is calculated for the lowest resolution image which has a
size of 1/4N of the original image size, where N is the
number of decomposition levels.

Abdel-Dayem et al. [14] used the fuzzy c-means
clustering algorithm to segment the carotid artery
ultrasound images. In this scheme, the image pixels are
clustered into three classes, representing the area inside
the artery, the artery wall and the surrounding tissues.
Local statistics, extracted from a 5×5 image block centred
on every pixel, are employed during the clustering
process. This scheme produces accurate contours in most
cases. However, it sometimes fails due to the shadowing
effect that may exist in ultrasound images.

The previous segmentation schemes are either
region-based or edge-based. By integrating both region
and edge information with domain specific information
during the segmentation process, we hope that better
segmentation results would be achieved. Graph-based
segmentation schemes will be our vehicle to achieve such
integration. This paper is an extension of our previous
work [15] that uses graph cuts technique to segment
carotid artery ultrasound images. More details and
experimental results are included in this paper.

It is worth mentioning that, there are other various
research directions that deal with carotid artery ultrasound
images. One of these directions incorporates artificial
intelligence systems to examine plaque layers over carotid
artery walls [16] [17]. Another research direction is based
on fluid dynamic-based systems. They use blood velocity
and pressure to estimate the elasticity of the carotid artery
walls [18] [19] or calculating the shear stress in carotid
arteries [20] [21]. Other techniques [22] [23] try to
estimate the arterial wall velocity using Doppler
ultrasound images. However, these directions are outside
the scope of our research, which is image processing-
based systems only.
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The rest of this paper is organized as follows.
Section 2 describes the graph cuts segmentation
approach. Section 3 describes the proposed scheme in
details. Section 4 presents the results. Finally, Section 5
offers the conclusions of this paper.

2. IMAGE SEGMENTATION VIA GRAPH CUTS

Image segmentation can be formulated as an energy
minimization problem. The minimization of such an
energy function corresponds to partitioning image pixels
into object and background segments. Several
optimization techniques can be used to minimize such
energy function [24] [25] [26] [27]. The success of the
graph cuts based segmentation schemes can be attributed
to the combination of both region and edge information
during the segmentation process. The region information
forces the homogeneity of the segmented area.
Meanwhile, the incorporation of the edge information
prevents the leak (i.e. overgrowth of the segmented
region) that generally appears in most region-based
segmentation schemes.

image is segmented by finding the minimum cost cut on
the graph. The minimum cut problem can be solved using
various standard algorithms from combinatorial
optimization. These algorithms can be classified into two
major classes, the push-relabel [28][29] and the
augmenting paths [30] [31] [32] [33] [34] [35]. In this
paper we used Boykov et al. algorithm [35] due to its
efficient execution time. The speed up in this algorithm
is achieved by building two search trees, one from the
source and the other from the sink. Then, the algorithm
tries to reuse these trees and never start building them
from scratch. The major drawback of this algorithm is
that the produced cut is not necessarily the optimum one.
However, this approximation is acceptable in most image
processing applications.

Figure 1: A Graph Constructed for a Three-pixel Image

In order to segment an image, a weighted graph is
created, in which, each node in the graph corresponds to
an image pixel. Two special terminal nodes are added to
the graph, namely: source node and sink node,
representing the object and the background segments,
respectively. All non-terminal graph nodes (i.e., image
pixels) are connected to the source and the sink nodes
with edges referred to as terminal-links. Neighbouring
nodes are connected by weighted edges called neighbour-
links. Figure 1 shows a graph constructed for an image
with three pixels.

A cut on the graph is defined as a subset of graph
edges that separate the source from the sink node. The
cost of a cut is the summation of its edge weights. The Figure 2: The Block Diagram of the Proposed Scheme
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3. THE PROPOSED SOLUTION

The proposed scheme consists of four major stages. These
stages are: (1) pre-processing, (2) graph construction and
minimum cut finding, (3) post-processing, and
(4) boundary extraction. Figure 2 shows the block
diagram of the proposed method. In the following
subsections, a detailed description of each stage is
introduced.

3.1. Pre-processing Stage

Ultrasound images suffer from several drawbacks. One
of these drawbacks is that ultrasound images have
relatively low contrast. Another severe problem is the
presence of random speckle noises, caused by the
interference of the reflected ultrasound waves. These
factors severely degrade any automated processing and
analysis of the images. Hence, it is crucial to enhance
the image quality prior to any further processing. In this
stage we try to overcome these problems by performing
two pre-processing steps. The first is a histogram
equalization step [36] to increase the dynamic range of
the image gray levels. In the second step, the histogram
equalized image is filtered using a median filter to reduce
the amount of the speckle noise in the image. It was
empirically found that a 3×3 median filter is suitable for
the removal of most of the speckle noise without affecting
the quality of the edges in the image.

3.2. Graph Construction and Minimum Cut Finding

In this stage, the pre-processed image is segmented using
graph cuts-based segmentation approach, described in
Section 2. First, a two terminal weighted graph is
constructed for the image under consideration. Second,
the weights of terminal-links and neighbour-links are set.
Finally, the minimum cut through the graph is generated
using Boykov et al. algorithm [35]. Graph nodes that
remain connected to the source node represent object
pixels, whereas nodes connected to the sink node
represent background pixels.

The weight of a terminal-link is set to a value that
reflects our confidence that the given pixel belongs to
either the object or the background. Due to the nature of
the carotid artery ultrasound images, the area inside the
artery (which is the object of interest) is darker than the
rest of the image. Hence, pixels with intensities less than
a certain object threshold µobject are connected by terminal
links to both source and sink nodes with weights equal
to one and zero, respectively. Meanwhile, pixels with
intensities greater than a background threshold µbackground
are connected by terminal links to the source and sink
nodes with weights equal to zero and one, respectively.
This way, the domain specific information is considered.
All other nodes are connected to source and sink nodes
with links that have certain weights. A terminal link

weight (for a given node) is calculated by a non-negative
decreasing function of the absolute differences between
the node’s intensity and the object and the background
thresholds, µobject, µbackground, respectively (this represents
a region homogeneity constraint). In the proposed
scheme we used an exponential function to calculate the
terminal-link weights, as described in Equation (1) and
Equation (2).
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where, W
P,Source

 and W
P,Sink are the weights of the terminal-

link connecting node P to the source and the sink nodes,
respectively. I

P
 is the intensity of pixel P. µobject and

µbackground are the object and the background thresholds,
respectively. � is a regulating term, used to control the
rate of decay for the exponential weight function. This
regulating term allows the weight function to cope up
with the fuzzy (or defused) boundaries of the objects
within the ultrasound images. We empirically set µobject
and µbackground to 10% of the lower and higher intensity

Figure 3: The 8-connectivity Neighbourhood System, used to
Calculate the Neighbour Link Weight between Points
P and Q
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ranges, respectively. Whereas a is set to 2% of the total
intensity range. Hence, for 8-bit images, we set µobject to
25, µbackground to 230 and a to 5. Note that, in ultrasound
images, the object of interest appears darker than the
background.

We used the 8-connectivity neighbourhood system,
as shown in Figure 3, to assign the neighbour-link
weights. These weights are set based on local gradients
according to Equation (3),

2

, ,
P QI I

P QW e

�� �� � ��� �� (3)

where, W
P,Q

 is the weight of the neighbour-link connecting
nodes P and Q, I

P
 and I

Q
 are the intensities of pixels P

and Q, respectively, and s is the standard deviation of
the gradient magnitude through the image. Note that
neighbour-link weights represent the edge information.

By finding the minimum cut through the graph edges,
a binary image, which separates the object from the
background, is formed. The extracted object contains the
area inside the carotid artery and some dark objects that
usually exist in a given ultrasound image. The user can
specify a seed point within the artery to extract the artery
wall and neglect all other objects which are outside the
region of interest.

3.3. Post-processing Stage

The objective of this stage is to smooth the edges of the
segmented area and to fill any gaps or holes that may
present due to the presence of noise in ultrasound images.
Hence, we used a morphological opening operation [36]
[37] with a rounded square structuring element of size
W. The size of the structuring element can be adjusted,
based on the maximum gap size in the segmented area,
according to Equation (4),

W = (h × 2) + 1, (4)
where, W is the size of the structuring element and h is
the maximum gap size that exists in the segmented image.
We empirically found that generally, the maximum gap
size does not exceed two pixels. Hence we used a 5×5
structuring element.

3.4. Boundary Extraction Stage

The objective of this stage is to extract the boundaries of
the segmented regions. Various edge detection schemes
can be used for this purpose [36]. In our system, we use
a morphological-based contour extraction mechanism
[36], [37]. First, the image produced by the previous stage
is morphologically eroded using a 3×3 rounded square
structuring element. Then, the eroded image is subtracted
from the non-eroded image to obtain the boundary of the
segmented region, which represents the artery wall. This
operation can be described by Equation (5),

Boundary (A) = A – (A � B),
where, A is the post-processed image, B is the structuring
element and � is the erosion operator. Finally, the
extracted contour is superimposed on the histogram
equalized image to produce the final output of the
proposed scheme.

4. RESULTS

Our proposed system was tested using a set of 40 B-
mode ultrasound images. These images were obtained
using ultrasound acquisition system (Ultramark 9 HDI
US machine and L10-5 linear array transducer) and were
digitized with a video frame grabber. These images were
carefully inspected by an experienced clinician and
artery contours were manually highlighted to represent
gold standard images. These gold standard images are
used to validate the results produced by our proposed
systems.

We used the image shown in Figure 4 to demonstrate
the output produced by our proposed system. This image
is a typical carotid artery ultrasound image, where the
arterial lumen is complicated by speckle noise.
Figure 5(a) shows the output after the histogram
equalization step, while Figure 5(b) shows the histogram
of the image shown in Figure 5(a). Comparing the two
histograms shown in Figure 4(b) and Figure 5(b) reveals
that the histogram equalization step increases the dynamic
range and the contrast of the image. Unfortunately, the
histogram equalization step increases the speckle noise
that exists in ultrasound images. However, the next step
in the pre-processing stage will compensate for this
drawback. Figure 6 shows the image produced by
applying a 3×3 median filter to the histogram equalized
image shown in Figure 5(a). This image represents the
output from the pre-processing stage. In order to show
the importance of applying the median filter, in Figure 7,
we magnify the area inside the artery region of interest
before and after this step. Comparing Figure 7(a) and
Figure 7(b) reveals that the amount of noise within the
artery is reduced. This noise reduction step has great
impact in the accuracy of the segmentation results during
the following stages of the proposed scheme.

Figure 8(a) shows the segmented area produced by
applying the minimum cut of the graph constructed from
the pre-processed image shown in Figure 6. The image
contains some objects that are outside the region of
interest. Figure 8(b) shows the image shown in
Figure 8(a) after applying a morphological opening
operation using a 5×5 rounded square structuring element
(the post-processing stage). Comparing Figure 8(a) and
Figure 8(b) demonstrates the importance of the post-
processing in filling any gaps and smoothing the
boundaries of the segmented area.
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Figure 4: (a) The Original Carotid Artery Ultrasound Image, (b)
the Histogram of the Image Shown in (a)

Figure 5: (a)The Image Shown in Figure 4(a) After Applying the
Histogram Equalization Step, (b) the Histogram of the
Image Shown in(a)

(a)

(b)

Figure 6: The Histogram Equalized Image Shown in Figure 5
after Applying a 3×3 Median Filter

Figure 7: (a) The region of interest in the histogram equalized
image, (b) the ROI after the noise removal step



Segmentation of Carotid Artery Ultrasound Images using Graph Cuts 67

Figure 9(a) shows the boundary of the segmented
area. This image represents the output of the contour
extraction stage. Finally, Figure 9(b) shows the final
output of the proposed scheme, where the extracted
contour is superimposed on the histogram equalized
image. By selecting a seed point within the artery, the
proposed scheme can extract the region of interest, while
neglecting all other components. This result is shown in
Figure 10. Figure 11 shows the gold standard image (the
artery contour is manually highlighted by an experienced
clinician) for same test case, shown in Figure 10. The
subjective comparison between Figure 10 and Figure 11
showed that the proposed scheme produces accurate
artery contour.

To demonstrate the contribution of the neighbour-
link weights in the final segmentation results, Figure 12
shows The output of the proposed scheme when only the
terminal-link weights are active (hard constraints). The
comparison between Figure 10 and Figure 12 reveals that
the incorporation of the neighbour-link weights improves
the segmentation results, as they tend to hang
neighbouring pixels together to produce meaningful
objects.

To evaluate the performance of the proposed scheme,
we objectively compared it with our recent three schemes
[11][13][14]. The comparison results are presented in
Section 4.1.

4.1. Objective Analysis

The results produced by the proposed system (for the
entire set of fifty images) were objectively compared to
the gold standard images (the clinician segmented
images). Three different performance measures were used
in the comparison. These measures are the overlap ratio,
precision, and sensitivity. Figure 13 shows the definition
of the true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) terms. Equations (6), (7)

Figure 8: (a) The Segmented Image Produced by Applying the
Minimum Cut Algorithm, (b) the Image Shown in (a)
After Applying a Morphological Opening Operation
using a 5×5 Rounded Square Structuring Element. This
is the Output Produced by the Post-processing Step

Figure 9: (a) The Boundary of the Segmented Area. This is the
Output from the Contour Extraction Stage, (b) the
Final Output (the Histogram Equalized Image with the
Carotid Artery Contour Highlighted)

Figure 10:The Output of the Proposed Scheme when the user
Specifies a Seed Point within the Artery Area

Figure 11: The Gold Standard Image, where the Artery Contour
is Highlighted by an Experienced Clinician
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and (8) show the definition of the overlap ratio, the
precision and the sensitivity, respectively:

TP
Overlap ratio

FN TP FP
� � � (6)

TP
Precision

TP FP
� � (7)

and

TP
Sensitivity

TP FN
� � (8)

The objective analysis over the entire set of 40 test
images revealed that on average the proposed scheme
produces an overlap ratio of 0.677, a precision of 0.690
and a sensitivity of 0.983. Table 1 summarizes the
performance of the proposed system over the entire set
of images. Table 2 through Table 4 show the
corresponding values for fuzzy c-means scheme [14],
multi-resolution and fuzzy region growing scheme [13],
and multi-resolution and watershed scheme [11],
respectively.

The comparison between Table 1 and Table 2 through
Table 4, as well as Figure 14, Figure 15, and Figure 16
shows that the proposed scheme improves both the
overlap ratio and the precision measures. However, the
sensitivity remains within approximately the same range.
It is worth mentioning that the proposed system as well
as the systems presented in [11], [13] and [14] tend to
overestimate the artery contour. As a result of this, they
have a tendency to produce higher values for the
sensitivity measure. Currently, we attempt to collect more
comprehensive and challenging images for further
experimentation.

Table 1
Performance Measures of the Proposed Scheme over 40

Test Images

Overlap Precision Sensitivity
ratio

Average 0.677 0.690 0.983

Standard deviation 0.147 0.161 0.023

95% confidence [0.632, 0.722] [0.640, 0.739] [0.976, 0.990]
interval

Table 2
Performance Measures of Fuzzy c-means Scheme

[14] over 40 Test Images

Overlap ratio Precision Sensitivity

Average 0.655 0.663 0.986

Standard deviation 0.152 0.161 0.016

95% confidence [0.608, 0.702] [0.614, 0.713] [0.982, 0.991]
interval

Table 3
Performance Measures of Multi-resolution and Fuzzy Region

Growing Scheme [13] over 40 Test Images

Overlap ratio Precision Sensitivity

Average 0.584 0.588 0.992

Standard deviation 0.159 0.164 0.010

95% confidence [0.534, 0.633] [0.537, 0.639] [0.989,0.995]
interval

Figure 12:(a) The Segmented Image Due to the Hard Constraint
Only, (b) the Final Output of the Proposed Scheme
when only the Hard Constraints are Applied

Figure 13:The Definition of the True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN)
Terms, used to Calculate the Overlap Ratio, the
Precision and the Sensitivity
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Table 4
Performance Measures of Multi-resolution and Watershed

Scheme [11] over 40 Test Images

Overlap ratio Precision Sensitivity

Average 0.662 0.677 0.976

Standard deviation 0.140 0.154 0.029

95% confidence [0.618, 0.705] [0.629, 0.724] [0.967, 0.985]
interval

Figure 14:The 95% Confidence Interval of the Overlap Ratio
Produced by the Proposed Graph-cut Scheme, Fuzzy
c-means Scheme [14], Multi-resolution and Fuzzy
Region Growing Scheme [13], and Multi-resolution and
Watershed Scheme [11]

Figure 16:The 95% Confidence Interval of the Sensitivity
Measure Produced by the Proposed Graph-cut Scheme,
Fuzzy c-means Scheme [14], Multi-resolution and
Fuzzy Region Growing Scheme [13], and Multi-
resolution and Watershed Scheme [11]

Figure 15:The 95% Confidence Interval of the Precision Measure
Produced by the Proposed Graph-cut Scheme, Fuzzy
c-means Scheme [14], Multi-resolution and Fuzzy
Region Growing Scheme [13], and Multi-resolution and
Watershed Scheme [11]

5. CONCLUSION

In this paper, we proposed a novel scheme for
highlighting the carotid artery contour in ultrasound
images. The proposed scheme is based on using a graph
cut approach to segment the image. The graph weights
are formed in terms of both local intensity gradients (edge
feature), as well as, penalty weights to assign every pixel
to either object or background areas (region feature).
Then, the image is segmented by finding the minimum
cut through the graph. Experimental results over a set of
sample images showed that the proposed scheme provides
a good estimation of carotid artery contours.
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