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In this paper, we propose a coarse segmentation scheme for highlighting suspicious lesions in digital mammogram images.
The proposed scheme is intended to be used in a multi-stage segmentation paradigm for accurate localization of suspicious
masses. The major objective of the proposed scheme is to reduce the search space when further stages search for abnormalities.
The proposed scheme uses the image histogram to estimate the Bayes threshold that can segment suspicious lesions from
normal breast tissues with minimum probability of classification error. We also present a block-based measure that can
objectively assess the computer-segmented images, compared with the clinician-segmented ones.

Experimental results over a set of sample images (consists of 50 normal and 50 abnormal cases) showed that the proposed
scheme produces accurate highlighting results, compared with the manual results produced by clinicians. It achieves a true
positive fraction, a precision and an overlap ratio of 1.0 for the entire fifty abnormal cases (when used in the screening
mode). Meanwhile, the 95% and the 99% confidence intervals for the false positive fraction, calculated over the fifty normal
cases, are [0.017, 0.183] and [0, 0.209], respectively (when used in the screening mode).

When the proposed scheme is used in diagnosis or follow up mode, we used our block-based measure with 32×32 block size
to report the performance of the system. The results shows that the 95% and 99% confidence intervals (calculated over the
fifty abnormal images) for the true positive fraction are [0.842, 0.938] and [0.827, 0.953], for the false positive fraction
are [0.101, 0.203] and [0.084, 0.219], for the precision are [0.538, 0.691] and [0.514, 0.715], and for the overlap ratio
are [0.483, 0.623] and [0.461, 0.645], respectively. Meanwhile, the 95% and 99% confidence intervals for the false positive
fraction (calculated over the fifty normal images) are [0.002, 0.078] and [0, 0.09], respectively. However, if we consider all
hundred images together, the 95% and 99% confidence intervals for the false positive fraction are [0.062, 0.130] and
[0.052, 0.140], respectively.

It is worth mentioning that, the output produced by the proposed scheme represents preliminary estimates that will be fine-
tuned using more advanced stages that employ both pattern classification and artificial intelligence techniques (future
work).

Key Words—Digital mammogram image, image segmentation, Bayes decision theory, thresholding, block-based performance
measure.

I. INTRODUCTION

According to the World Health Organization, more than
1.2 million women worldwide is diagnosed with breast
cancer per year. Every year, nearly 21,000 women are
diagnosed with breast cancer in Canada alone. Breast
cancer is the most frequently diagnosed cancer in women.
Early detection of breast abnormalities plays a vital role
in increasing the survival rate.

Currently, mammography is the most reliable method
for detecting breast abnormalities. Till now, it is the only
exam approved by the U.S. Food and Drug
Administration (FDA) to screen breast cancer in women
who do not show any signs or symptoms of the disease,
where the diagnostic accuracy depends on the clinician’s
experience. In order to increase the accuracy of the
diagnostic process, an automated scheme for detecting
breast abnormalities that can accurately segment
suspicious regions for further investigations is needed.

Segmentation is the process of extracting an object
of interest in an image from its background. Binary
thresholding is the simplest segmentation technique that
converts an image into a binary one. This segmentation
method depends on the appropriate selection of the
threshold value. Various criteria can be exploited during
the threshold selection process [1].

Kobatake et al. [2] proposed a scheme for segmenting
suspicious masses on digital mammograms. The proposed
segmentation scheme was based on the use of an IRIS
filter, which has the capability of capturing circular and
rounded convex objects even if they have intensities very
close to the background. However, the design of the IRIS
filter is not a trivial task. The researchers empirically
adjusted the filter parameters based on their own
database. This makes the system cumbersome when used
on different image sets.

Brake et al. [3] proposed a segmentation scheme
based on a statistical analysis of the gradient-orientation
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map of the image. It is assumed that masses appear in
mammograms as nearly circular bright regions. Thus in
the gradient orientation map, suspicious masses are
expected to appear as circular regions with many
gradients pointing toward the center. The analysis of the
gradient orientation map was carried out over a local
window around each pixel. However, the major drawback
of this method is the need to select an appropriate window
size for optimal detection. Moreover, this scheme is very
sensitive to the accuracy of calculating the orientation
map and the spatial scale used to compute the derivatives.

Liu et al. [4] proposed a segmentation scheme based
on multiresolution analysis. The wavelet transform is used
to decompose the image into a pyramid of images at
different resolutions. Then, several features from the
images in different resolutions are extracted using a
certain window size. A binary tree classifier is used to
generate a probability map of the image. The probability
map is filtered using a median filter to eliminate isolated
positive responses and then, a low pass filter is used to
smooth the probability map. Finally, the probability map
is thresholded to segment the image into suspicious and
non-suspicious tissues. However, this scheme has several
drawbacks. First, like all classification techniques, the
success of this method depends on the appropriate
selection of the feature vector, as well as the availability
of representative training data. Second, the proposed
scheme is sensitive to the used wavelet filter and the
number of decomposition levels. Moreover, the proposed
scheme depends on several parameters including the
window size used to extract the features, the sizes of both
the median and the low pass filters, and the threshold
used to segment the probability map. The authors did
not include any information on how to adjust those
parameters. Hence, the scheme can not be reproduced.

Valverde et al. [5] proposed a deformable-based
model for segmenting suspicious masses on digital
mammogram images. The forces acting on the deformable
model vertices are defined such that the points do not
cluster on the contour. However, this scheme violates the
main objectives of a Computer Aided Diagnostic (CAD)
system which is to provide assistance in detecting
suspicious lesions that may have been missed by the
clinician. With this scheme, the clinician has to detect
and draw the contours of all suspicious regions and hence,
if he misses any region there is no way to compensate
for this human error. Moreover this scheme is sensitive
to the initial contour estimation. This makes the proposed
scheme cumbersome for clinical purposes.

Catanzariti et al. [6] proposed a segmentation scheme
based on Gabor filters, feature extraction and
classification. First, the image is decomposed into
different frequency bands using a set of Gabor filters.
From these images, various features are extracted. Finally,

a neural network is used to classify the image pixels into
suspicious and non-suspicious regions. However,
designing Gabor filters is not a trivial process. The filter
choice and the features’ selection will have a crucial effect
on the results. Moreover, the neural network parameters
and the choice of the training data will affect the overall
system performance.

Abdel-Dayem et al. [7] proposed a scheme for
detecting suspicious regions in digital mammogram
images. The proposed scheme is based on image
thresholding, where the optimal threshold is determined
by minimizing the fuzzy entropy of the image. While this
scheme produces excellent results for abnormal breast
tissue cases, it produces fair results when dealing with
normal cases.

Various promising schemes [8] [9] [10] [11] [12] [13]
were introduced. They employ different strategies (e.g.,
neural networks, pattern classification, wavelets, fractal
modeling, and stochastic modeling) to extract breast
abnormalities. While each scheme has its own merit, it
suffers from various shortcomings. We are not going into
a detailed discussion regarding those schemes, as we do
not intend to compete with any of them. Our goal is to
propose a coarse segmentation scheme for preliminary
extraction of a limited small set of candidate suspicious
lesions in mammogram images for further comprehensive
processing. Our scheme can be viewed as a preprocessing
stage, which can be incorporated into other advanced
detection schemes, aiming at reducing the search space
for improved performance. The scheme uses the image
histogram to estimate the Bayes threshold value that can
identify suspicious areas. It is fully image dependant and
automated, where all parameters are calculated based on
the image under consideration. Hence, the proposed
scheme can be used with any database of images without
any customization or user interaction.

The rest of this paper is organized as follows.
Section II describes the proposed scheme in more detail.
Section III presents the results of the proposed scheme,
as well as the block-based performance evaluation
measure. Finally, Section IV offers the conclusions of the
paper.

II. THE PROPOSED SOLUTION

The proposed scheme consists of five stages, namely:
preprocessing to remove markers and other labels from
the image, histogram analysis and curve fitting to
approximate the image histogram as a summation of
Gaussian functions, Bayesian threshold estimation to find
a threshold that can discriminate between normal and
abnormal tissues with minimal probability of
classification error, image thresholding to produce a
binary mask image highlighting the locations of
suspicious tissues (if any) and finally, contour extraction



Coarse Segmentation of Suspicious Tissues in Digital Mammogram Images using Bayesian... 43

to find the contours of the highlighted areas. Fig. 1 and
Fig. 2 show the block and the pseudo code of the
proposed scheme, respectively. In the following
subsections, a detailed description of each stage is
presented.

various techniques that can be used [20] [21], including
image histogram. Due to its simplicity, we use the image
histogram as an estimator for the probability density
function. The second part is a smoothing, or curve fitting,
of the estimated probability density function.

The inspection of mammogram images reveals that
they usually have two or three distinguished ranges of
intensity levels. These ranges represent the background
of the x-ray film (which appears as the darkest area in
the images), the normal breast tissues in the middle of
the image histogram and finally, suspicious regions
(if they exist) appear as the brightest areas in the
mammogram image. Hence, the histograms of
mammogram images are expected to have bimodal
(normal mammogram images) or trimodal (suspicious
mammogram images) shapes. This fact motivates the use
of curve fitting techniques to approximate the histogram
data as a weighted sum of positive Gaussian-shaped
functions, each with a different mean and variance. In
the proposed scheme we assume that the image histogram
can be approximated using three Gaussian functions as
shown in (1):

3

1

( ) ( , , )i i i
i

h x a N x
�

�
� � � �� (1)
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where
i = 1 in the darkest area of the image histogram,
i = 2 in the mid tone area of the histogram, and
i = 3 in the brightest area of the histogram.
This assumption will be validated in Section  III using

the correlation coefficient. Note that, the use of three
Gaussian functions is suitable for approximating both
trimodal and bimodal shapes. In the bimodal case, our
model will force the data to be clustered into three classes.
As the first Gaussian represents homogeneous area (the
background of the x-ray film), the algorithm tends to split
the area representing normal breast tissues into two
overlapping classes, where their means will be very close
to each other and they will be located at the same side of
their intersection point. The scheme checks this condition
to distinguish between normal and abnormal images and
hence, it reacts accordingly. Fig. 3(a) shows a typical
histogram of a mammogram image which has a trimodal
shape, whereas Fig. 3(b) shows an example of a bimodal
shape. It is worth mentioning that, theoretically, it is

Figure 1: The block diagram of the proposed scheme

Module Name Suspicious Tissues Detection 
Input  Mammogram image I 
Output Mammogram image with suspicious tissues are highlighted O 
Variables The Bayesian_threshold 
 T  /*The final threshold value*/ 
Description   
Begin 

Step 1: (Histogram Analysis and Curve Fitting) 
Find the histogram of image I. 
Approximate the image histogram as the summation of 3 Gaussian 
functions by applying the least square errors curve fitting scheme to 
the image histogram to get the values of three Gaussian function 
parameters, ai , �i and �i, where i = 1, 2, and 3. 

Step 2: (Bayesian Threshold Estimation) 
Find the Bayesian_threshold as the intersection between the 2nd and 
3rd Gaussian functions. 
IF  (Bayesian_threshold > �2) and (Bayesian_threshold < �3) 

Then set T ?  Bayesian_threshold 
Else  set T ? 1+  maximum intensity value of image I 

Step 3: (Image Thresholding) 
Threshold the input image I using the calculated threshold T. 
Remove small objects from the segmented image. 

Step 4: (Contour Extraction) 
Find the contour of the segmented area and superimpose it on the 
original image I to generate the output image O. 

Return (the output image O). 
End 

Figure 2: The pseudo code of the proposed algorithm

(a) Preprocessing

According to Mammography Quality Standards Act
(MQSA), all mammogram images should have markers
to identify both view and lateral information. These
markers, as well as pectoral muscles and chest ribs which
appear in some mammographic views, may severely
affect any automated processing of mammogram images.
Hence, it is crucial to remove these regions prior to any
processing. Various schemes [14] [15] [16] [17] [18] [19]
found in literature, were proposed to address this
challenging task. However, this direction is outside the
scope of our paper. For simplicity, we manually
preprocessed the images in our database to void those
regions from contributing to the segmentation process.

(b) Histogram Analysis and Curve Fitting

This stage consists of two parts. First, the probability
density function of image pixels is estimated. There are
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possible to extract the breast area only and neglect the
background of the x-ray film. In this case, the image
histogram can be modeled as a summation of two
Gaussian functions instead of three. However, this
requires the use of an efficient automatic breast border
extractor. To avoid, these complications, our scheme deals
with the whole image, where the background of the x-
ray film is modeled as a Gaussian function. After the
curve fitting stage, the scheme focuses on the second and
the third Gaussian functions and neglects the first one
(which corresponds to the background of the x-ray film).

Various curve fitting techniques can be used to fit
the histogram data [22] [23]. In the proposed scheme,
we used the Least Squares Error (LSE) curve fitting
technique [22] [23], however, any other curve fitting
scheme can be used. In LSE, the parameters ai, mi and si
are selected to minimize the following cost function:
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where h(x) is the actual histogram function, ˆ( )h x is the
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number of intensity levels in the mammogram image.
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This produces a set of nonlinear equations that can
be numerically solved. In the proposed scheme, we used
the TABLE CURVE package which has several built-in
curve fitting functions as defined in [24].

(c) Bayesian Threshold Estimation

Bayesian decision theory is an important approach in the
field of statistical pattern classification [25] [26].
Consider a classification problem in which there are two
classes, �1 and �2. The a posteriori probability P(�i/x)
measures the probability that the state of nature being Éi
given that the value x has been measured. For a given
decision boundary �, the probability of the classification
error is calculated according to the following equation:
P(error) = P ( x is assigned to the wrong class)

= P (assigning x to �1, while x actually belongs
   to �2)
+ P (assigning x to �2, while x actually belongs
   to �1)    (7)

Assuming that the a posteriori probability functions
for both classes are known, the classification error
probability for a certain decision boundary ±  can be
calculated as shown in Fig. 4. According to Bayesian
decision theory, the probability of error can be minimized
by moving the decision boundary to the point of
intersection of the two a posteriori probability functions
(point x* in Fig. 4). This point represents the Bayes
decision boundary.

The objective of this stage is to estimate a threshold
that can discriminate normal breast tissues, which are
approximated by the second Gaussian function in (1),
from suspicious regions, which are approximated by the
third Gaussian function in (1), if any. The threshold is
selected to be the point of intersection between these two
Gaussians. This threshold represents the Bayes decision
boundary that produces the minimum probability of
classification error between normal and suspicious
tissues.

In case of normal images, the means of the second
and the third Gaussian functions should be located at the

Figure 3: Typical histograms for mammogram images: (a)
trimodal shape histogram; (b) bimodal shape
histogram
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same side of their intersection point (the hypothetical
decision boundary) as shown in Fig. 5. The proposed
scheme checks for this condition and if it is satisfied, the
threshold is set to a value that is greater than the maximum
intensity level of the mammogram image. Hence, the
thresholding operation will not yield any suspicious
regions.

objects’ table containing information about image objects.
This information includes a pixel to represent each object
and the number of pixels in each object. Table entries
that correspond to objects smaller than a certain threshold
value (16 in our experiments) are eliminated from the
suspicious object’s table.

Figure 4: The probability of classification error for a non-optimal
decision boundary ±. If the decision boundary is moved
to x*, the area labeled as reducible error is eliminated.
This point represents the Bayes decision point

Figure 5: A sample of two Gaussian functions in which their
means are located at the same side of their intersection
point. This is what happens when dealing with normal
mammogram image cases

(d) Image Thresholding

In this stage, the original mammogram image is
thresholded using the threshold (which is determined in
Section  II.C) to produce a binary image that highlights
the locations of suspicious tissues.

Analysis of the mammogram images revealed that
very small isolated regions are usually irrelevant. Fig. 6
shows a mammogram image where different block sizes
were highlighted. From this figure, we can conclude that
regions smaller than sixteen pixels (4×4 blocks) have
higher probability of being artifacts than being suspicious
lesions. It is worth mentioning that these small regions
are smaller than the clinician’s resolution, which will be
empirically determined in Section  III.

In our scheme we group pixels in the segmented
image into connected objects and produce a suspicious

Figure 6: Blocks with various block sizes superimposed over a
mammogram image

(e) Contour Extraction

The objective of this stage is to extract the boundary of
the area that is segmented in the previous stage (Section 
II.D). We used a morphology edge detector [27] [28].
First, the segmented area is morphologically eroded using
a 3×3 rounded structuring element. Then the eroded
image is subtracted from the segmented image to produce
the contour of the segmented area. This operation can be
described by the following equation:

Boundary (A) = A – (A ¸ B), (8)
where A is the segmented image, B is a 3×3 rounded
structuring element, and ̧  is the erosion operation. Finally
the contours of the segmented areas are superimposed
on the original image to highlight the suspicious masses
in the mammogram image.
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III. RESULTS

(a) Experimental Setup

The scheme is implemented using C language. The test
images used in this research were obtained from the USF
Digital Database for Screening Mammography (DDSM)
[29]. These images were digitized and saved in a
compressed raw format. The database contains different
sets of normal and abnormal images collected from
patients belonging to different race groups. These images
come from two different hospitals; namely Massachusetts
General Hospital and the Wake Forest University School
of Medicine. Table 1 shows the percentage breakdown
of patients by race. The database also offers gold standard
images which were segmented by experienced clinicians
and validated by biopsy tests. In our experimentations,
we divided the images into two sets. The first set consists
of fifty images that contain masses with different sizes.
The second set consists of fifty images representing
normal breast images. The proposed scheme can be used
with both Cranio-Caudal (CC) and Mediolateral-Oblique
(MLO) views. However, in case of MLO views, a breast
boundary extractor is needed, as a pre-processing stage,
to remove the areas representing the chest muscles which
usually appear in these views. For simplicity, we used
CC views only in our tests.

Table 1
The Percentage Breakdown of Patients by Race [29]

Group Name Massachusetts Wake Forest University
General Hospital School of Medicine

Asian  2.06 %  0.2 %
Black  4.12 % 20.4 %
Spanish Surname  6.55 %  1.8 %
American Indian  0.00 %  0.1 %
Other  0.75 %  0.1 %
Unknown 30.34 %  0.3 %
White 56.18 % 77.0 %

We calculated the average correlation coefficient for
the entire sets of mammogram images to measure how
well the calculated curves fit the original data. The
correlation coefficient is defined as:
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y is the mean of actual data values, and
x is the mean of estimated values

The correlation coefficient value ranges from -1 to
1. The closer the absolute value of the correlation
coefficient to 1, the better the fit is. We found that the
average absolute correlation coefficient for the entire sets
of mammogram images approached 0.93 (the minimum
absolute correlation coefficient = 0.77, while the
maximum = 0.99). These high values of the correlation
coefficients support our claim that the histograms of
mammogram images can be approximated as the
summation of three Gaussian functions.

We also found that for the fifty normal images, the
means of the second and the third Gaussian functions
appear at the same side of their  intersection
point. Hence, this result validates our claim shown in
Fig. 5.

The results produced by our scheme were compared
to the clinician segmented images (the gold standard
images). This comparison was based on both subjective
and objective analysis. Section  III.B presents the
subjective comparison results for both abnormal (Section 
III. B.1) and normal cases (Section  III. B.2). In Section 
III.C, we present our proposed block-based objective
measure. Section  III. C.1 and Section  III. C.2 offer
analysis for some cases in which the proposed
segmentation scheme produced unexpected objective
performance assessment in both the abnormal and normal
cases, respectively. Section  III. D presents general
comments about the proposed scheme.

(b) Subjective Analysis

(i) Abnormal Case

Fig. 7(a) shows one of the mammogram images that were
used to test the proposed scheme. Fig. 7(b) shows the
manually highlighted image (The gold standard) for the
case shown in Fig. 7(a). Fig. 7(c) shows the histogram
of the original image with the approximation function
ˆ( )h x produced from the first stage of the proposed scheme

(i.e. histogram analysis and curve fitting stage). The
second and the third Gaussian functions intersect at
intensity value equal to 205.90, which is greater than µ2
(i.e., 163.22) and less than µ3 (i.e., 230.29). This means
that the decision boundary appears between the means
of the two Gaussian functions. Hence this value is used
as the Bayes threshold (Bayes decision boundary).
Fig. 7(d) shows the segmented suspicious area produced
by thresholding the original mammogram image shown
in Fig. 7(a) using the calculated Bayes threshold. Fig. 7(e)
shows the final output from the proposed scheme, where
the input image with the suspicious mass is highlighted.
Finally, Fig. 7(f) shows the parameters of the
approximation function ˆ( )h x , defined in (1). By
comparing Fig. 7(b) and Fig. 7(e), we can subjectively
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conclude that the proposed scheme was able to accurately
highlight the suspicious mass from the mammogram
image.

(ii) Normal Case

Fig. 8(a) shows a mammogram image for a normal breast.
Fig. 8(b) shows the histogram of the image with the

approximation function ˆ( )h x . Fig. 8(c) shows the
parameters a

i
, µ

i
, and �

i
, defined in (1). The second and

the third Gaussian functions intersect at infinity. The
means of both functions (i.e., 167.07 and 188.30) are
located at the same side of the intersection point. Hence,
the threshold is set to a large number, yielding no
suspicious regions in this image.

(c) Objective Analysis

Typically, the terms true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) are used to
measure the performance of detecting the presence or
absence of an abnormality in an image. From these terms,
the sensitivity, the specificity, the precision and the
overlap ratio of the system are defined as:

Sensitivity (a.k.a., the true positive fraction) = 
TP

TP FN�
(10)

Specificity (a.k.a., the true negative fraction) = 
TN

TN FP�
(11)

Figure 7: Abnormal case subjective analysis: (a) the input mammogram image “suspicious case 11”; (b) the mammogram image
with the suspicious mass manually highlighted (gold standard image); (c) the histogram of the input mammogram image
with the approximation curve, where the second and third Gaussian functions intersect at intensity 205.90 (the Bayes
threshold); (d) the segmented mass using the Bayes threshold (t* = 205.90); (e) the final output of the proposed scheme;

and (f) the parameters of the function ˆ( )h x  produced by the curve fitting stage
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Sometimes the false positive fraction is reported
instead of the specificity where,

False positive fraction = 1FP
Specificity

TN FP
� �� (12)

Precision = 
TP

TP FP� (13)

Overlap ratio = 
TP

TP FP FN� � (14)

Unfortunately, there is no standard method for
counting the TP, FP, TN and FN terms. They may be
considered as image-based (very coarse) or pixel-based
(very fine). Image-based measures may be suitable for
screening mammograms. However, these methods do not
consider the localization of detected masses. On the other
hand, using pixel-based measures may provide
misleading results. This can be attributed to the fact that
most clinicians usually over segment suspicious tumor
regions. Fig. 9 shows sample of mammogram images,
where suspicious tumor regions were over segmented.
This poor annotation negatively affects any pixel-based
performance measure. Due to the lack of a standard
evaluation method, individual researchers usually attempt

to define their own criterion. For example, both Kobatake
et al. [2] and Catanzariti et al. [6] did not mention how
they counted the TP, FP, TN and FN terms. Brake et al.
[3] assumed the tumor was detected if the pixel with the
highest degree of suspiciousness was located inside the
clinician’s annotation. Fig. 10 shows a hypothetical
example that illustrates the weakness of Brake’s
assumption. In this figure, even thought the highest
suspicious pixel lies within the clinician’s annotation,
there are huge areas of both FNs and FPs that were
completely ignored in their reported performance
measure. Liu et al. [4] considered a computer finding as
a true positive, if its area is overlapped by at least 50%
with the clinician’s annotation.

Figure 8: Normal case subject ive analysis:  (a) the input
mammogram image “normal case 24”;  (b) the
histogram of the input mammogram image with the
approximation curve produced by the first stage of the
proposed scheme, where the second and third Gaussian
functions intersect at infinity. The means of both
funct ions are located at the same side of the
intersection point. Hence, the threshold is set to a large
number, yielding no suspicious regions in the image;

and (c) The parameters of the function ̂( )h x  produced
by the curve fitting stage

Figure 9: Sample of mammogram images where the clinician
over estimated the size of the suspicious tumors. This
poor annotation negatively affect any pixel-based
performance measure

Figure 10: A hypothetical example in which the pixel having the
highest degree of suspiciousness lies completely within
the area annotated by the clinician. This example
demonstrates the weakness in the assumption made by
Brake et al. [3] to asses the performance of their scheme
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The lack of a standard measures makes it difficult to
compare between different schemes. Hence, we presented
our block-based objective performance criterion in an
attempt to unify the way of calculating these performance
measures. An early version of this block-based objective
performance criterion was introduced in our previous
work [7].

In this measure, both the computer-segmented and
clinician-segmented images are divided into n´n blocks.
A block is labeled as a suspicious block if it contains at
least one suspicious pixel. Then, the corresponding blocks
in both images are compared. If both blocks are labeled
as suspicious blocks, it is considered a true positive
finding. If a block in the computer-segmented image is
marked as suspicious and the corresponding block in the
clinician-segmented image is not marked, the block is
considered a false positive finding. However, if a block
in the clinician-segmented image is marked as suspicious
and the corresponding computer-segmented block is not

marked, the block is considered a false negative finding.
Other blocks are considered as true negative findings.
Fig. 11(a) shows a hypothetical graphical example of the
performance evaluation labeling process. Note that, at
image borders, for simplicity, we consider a part of a
block as a complete block (border condition). Fig. 11(b)
shows the definition of the TP, FP, TN and FN terms.
Note that, if n is set to equal one, our measure converges
to a pixel-based criterion. On the other hand, if n is set to
equal the entire image size, our measure converges to an
image-based screening criterion.

We started our analysis by calculating the true
positive fraction and the false positive fraction for our
system when operated in the screening mode. In this
mode, the main emphasis is on whether the image has
suspicious regions or not, without taking into account
the localization factor (i.e., the overlap with the gold
standard annotations). Table 2 and Table 3 show the TP,
FP, TN, FN block counts, the true positive fraction, the

Figure 11: The block-based performance measure: (a) a hypothetical example to demonstrate the used performance criteria, where
the image is divided into non blocks, the ellipse represents the clinician-segmented area, the shaded area represents the
computer findings, and a block is labeled as a suspicious block if it contains at least one suspicious pixel.; (b) definition of
the true positive (TP), false positive (FP), true negative (TN) and false negative (FN). Near the image borders, we consider
a block part as a complete block for simplicity; and (c) the TP, TN, FP and FN counts, as well as the calculations of the true
positive, true negative and false positive fractions for the hypothetical example in (a)
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Table 2
The Performance Criterion Applied to Cancer Cases using the Entire Image (in Block Counts, where the

Block Size Equals the Entire Image)

Case # Case Name TP FP TN FN True False Precision Overlap
Positive Positive ratio
Fraction   Fraction

1 c1_0020_LCC.pgm 1 0 0 0 1 N/A 1 1
2 c1_0011_RCC.pgm 1 0 0 0 1 N/A 1 1
3 c1_0014_RCC.pgm 1 0 0 0 1 N/A 1 1
4 c1_0016_RCC.pgm 1 0 0 0 1 N/A 1 1
5 c1_0019_RCC.pgm 1 0 0 0 1 N/A 1 1
6 c1_0020_RCC.pgm 1 0 0 0 1 N/A 1 1
7 c1_3022_RCC.pgm 1 0 0 0 1 N/A 1 1
8 c1_3049_LCC.pgm 1 0 0 0 1 N/A 1 1
9 c1_3065_RCC.pgm 1 0 0 0 1 N/A 1 1
10 c1_3066_LCC.pgm 1 0 0 0 1 N/A 1 1
11 c1_3084_RCC.pgm 1 0 0 0 1 N/A 1 1
12 c2_0022_RCC.pgm 1 0 0 0 1 N/A 1 1
13 c2_0023_LCC.pgm 1 0 0 0 1 N/A 1 1
14 c2_0028_LCC.pgm 1 0 0 0 1 N/A 1 1
15 c2_0050_LCC.pgm 1 0 0 0 1 N/A 1 1
16 c2_0051_RCC.pgm 1 0 0 0 1 N/A 1 1
17 c2_0061_RCC.pgm 1 0 0 0 1 N/A 1 1
18 c2_0071_LCC.pgm 1 0 0 0 1 N/A 1 1
19 c2_0073_RCC.pgm 1 0 0 0 1 N/A 1 1
20 c2_0074_LCC.pgm 1 0 0 0 1 N/A 1 1
21 c2_0075_LCC.pgm 1 0 0 0 1 N/A 1 1
22 c2_0079_LCC.pgm 1 0 0 0 1 N/A 1 1
23 c2_0081_LCC.pgm 1 0 0 0 1 N/A 1 1
24 c2_0082_LCC.pgm 1 0 0 0 1 N/A 1 1
25 c2_0086_RCC.pgm 1 0 0 0 1 N/A 1 1
26 c2_0088_LCC.pgm 1 0 0 0 1 N/A 1 1
27 c2_0093_LCC.pgm 1 0 0 0 1 N/A 1 1
28 c2_0094_RCC.pgm 1 0 0 0 1 N/A 1 1
29 c2_0100_RCC.pgm 1 0 0 0 1 N/A 1 1
30 c2_0108_LCC.pgm 1 0 0 0 1 N/A 1 1
31 c2_0111_LCC.pgm 1 0 0 0 1 N/A 1 1
32 c2_0112_LCC.pgm 1 0 0 0 1 N/A 1 1
33 c2_0118_LCC.pgm 1 0 0 0 1 N/A 1 1
34 c2_0121_RCC.pgm 1 0 0 0 1 N/A 1 1
35 c2_0131_RCC.pgm 1 0 0 0 1 N/A 1 1
36 c2_0133_LCC.pgm 1 0 0 0 1 N/A 1 1
37 c2_0137_LCC.pgm 1 0 0 0 1 N/A 1 1
38 c2_3088_LCC.pgm 1 0 0 0 1 N/A 1 1
39 c3_1017_LCC.pgm 1 0 0 0 1 N/A 1 1
40 c3_1027_LCC.pgm 1 0 0 0 1 N/A 1 1
41 c3_1035_RCC.pgm 1 0 0 0 1 N/A 1 1
42 c3_1036_LCC.pgm 1 0 0 0 1 N/A 1 1
43 c3_1050_RCC.pgm 1 0 0 0 1 N/A 1 1
44 c3_1055_LCC.pgm 1 0 0 0 1 N/A 1 1
45 c3_1060_LCC.pgm 1 0 0 0 1 N/A 1 1
46 c3_1084_RCC.pgm 1 0 0 0 1 N/A 1 1
47 c4_1076_RCC.pgm 1 0 0 0 1 N/A 1 1
48 c4_1082_RCC.pgm 1 0 0 0 1 N/A 1 1
49 c4_1089_LCC.pgm 1 0 0 0 1 N/A 1 1
50 c4_1107_LCC.pgm 1 0 0 0 1 N/A 1 1

Total 50 0 0 0
Sample Average 1 N/A 1 1

Sample Standard Deviation 0 N/A 0 0
95% confidence interval [1,1] N/A [1,1] [1,1]
99% confidence interval [1,1] N/A [1,1] [1,1]
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Table 3
The Performance Criterion Applied to Normal Cases using the Entire Image (in Block Counts, where the Block Size

Equals the Entire Image)

Case # Case Name TP FP TN FN True False Precision Overlap
Positive Positive ratio
Fraction Fraction

1 A_0061_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
2 A_0061_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
3 A_0062_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
4 A_0062_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
5 A_0074_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
6 A_0074_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
7 A_0076_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
8 A_0076_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
9 A_0096_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
10 A_0097_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
11 A_0097_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
12 A_0108_LCC.pgm 0 1 0 0 N/A 1 0 0
13 A_0108_RCC.pgm 0 1 0 0 N/A 1 0 0
14 A_0114_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
15 A_0114_RCC.pgm 0 1 0 0 N/A 1 0 0
16 A_0124_LCC.pgm 0 1 0 0 N/A 1 0 0
17 A_0124_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
18 A_0133_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
19 A_0133_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
20 A_0146_LCC.pgm 0 1 0 0 N/A 1 0 0
21 A_0146_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
22 A_0149_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
23 A_0149_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
24 A_0150_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
25 A_0150_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
26 A_0158_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
27 A_0203_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
28 A_0203_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
29 A_0215_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
30 A_0215_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
31 A_0216_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
32 A_0216_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
33 A_0223_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
34 A_0223_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
35 A_0238_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
36 A_0238_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
37 A_0239_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
38 A_0239_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
39 A_0243_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
40 A_0243_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
41 A_0246_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
42 A_0246_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
43 A_0250_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
44 A_0250_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
45 A_0254_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
46 A_0254_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
47 A_0255_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
48 A_0255_RCC.pgm 0 0 1 0 N/A 0 N/A N/A
49 A_0260_LCC.pgm 0 0 1 0 N/A 0 N/A N/A
50 A_0260_RCC.pgm 0 0 1 0 N/A 0 N/A N/A

Total 0 5 45 0
Sample Average N/A 0.10 N/A N/A

Sample Standard Deviation N/A 0.30 N/A N/A
95% confidence interval N/A [0.017, 0.183] N/A N/A

99% confidence interval N/A [0, 0.209] N/A N/A
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false positive fraction, the precision and the overlap ratio
(calculated for every individual image) for the abnormal
and normal images, respectively.

We also calculated the true positive fraction and the
false positive fraction for our system using various block
sizes. In this experiment, we dealt with the hundred test
images as one large mosaic image, and then we calculated
our measures based on the total number of blocks. Fig. 12
shows the receiver operating characteristic (ROC) curve
for the true positive fraction and the false positive fraction
of our system using various block sizes. The analysis of
the ROC curve reveals that the system maintains the same
level of true positive fraction of 1.0 with decreased false
positive fraction when the block size is reduced from
256×256 to 128×128. By reducing the block size to
64×64, the true positive fraction approached 0.993 with
0.12 false positive fraction. With 32×32 block size, the
proposed scheme has a true positive fraction of 0.885
with 0.077 false positive fraction. The true positive
fraction drops faster when the block size is further
reduced. Hence, there is a trade off between the true
positive fraction and the false positive fraction when
using a large block size (screening mode) or a small block
size (maximizing the localization of the detected region).

To select a suitable block size, we analyzed the sizes
of the areas annotated by clinicians. The analysis revealed
that the average size of the gold standard areas (over the
entire set of abnormal images) is 13190 pixels which can
roughly be approximated by a square shape of 115×115
pixels. Fig. 6 shows various block sizes superimposed
over a mammogram image to get a feeling of how big
the blocks, relative to the total image size. Fig. 13 shows

a histogram representing the distribution of the block
sizes that can approximate the gold standard annotations.
The histogram is calculated by finding the smallest block
size that may completely cover each annotated object in
the gold standard images. From this histogram, only one
area (2% of all used abnormal images) needs a block
smaller than 32×32 pixels and three areas (6% of all used
abnormal images) need blocks smaller than 64×64 pixels.
However, all other areas can be covered by blocks larger
than 64×64 pixels (92% of all used abnormal images).
This means that the clinician’s precision is greater than
32×32 pixels in 98% of all cases (i.e., clinicians usually
neglect regions smaller than 32×32 pixels). In other
words, the gold standard data is reasonably accurate for
regions greater than or equal to 32×32 pixels. This
coincides with the results deducted from the ROC curve,
Fig. 12, in which the true positive fraction does not
change until we used a 32×32 blocks and then, it reduces
dramatically. Hence, we find it quite reasonable to report
our performance measure based on 32×32 block size.

Table 4 and Table 5 show the TP, FP, TN, FN block
counts, the true positive fraction, the false positive
fraction, the precision and the overlap ratio (calculated
for every individual image), for the abnormal and normal
images using 32×32 block size. The 95% and 99%
confidence intervals (calculated over the fifty abnormal
images) for the true positive fraction are [0.842, 0.938]
and [0.827, 0.953], for the false positive fraction are
[0.101, 0.203] and [0.084, 0.219], for the precision are
[0.538, 0.691] and [0.514, 0.715], and for the overlap
ratio are [0.483, 0.623] and [0.461, 0.645], respectively.
Meanwhile, the 95% and 99% confidence intervals for
the false positive fraction (calculated over the fifty normal
images) are [0.002, 0.078] and [0, 0.09], respectively.
However, if we consider all hundred images together, the
95% and 99% confidence intervals for the false positive
fraction are [0.062, 0.130] and [0.052, 0.140],
respectively.

Figure 12:ROC analysis for the entire sets of images using various
block sizes

Figure 13:The histogram of the block sizes that approximate the
areas annotated by the clinician
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Table 4
The Performance Criterion Applied to Cancer Cases (in Block Counts) using 32×32 Blocks

Case # Case Name TP FP TN FN True False Precision Overlap
Positive Positive ratio
Fraction  Fraction

1 c1_0020_LCC.pgm 39 14 50 0 1 0.22 0.74 0.74
2 c1_0011_RCC.pgm 15 2 103 0 1 0.02 0.88 0.88
3 c1_0014_RCC.pgm 3 3 40 1 0.75 0.07 0.50 0.43
4 c1_0016_RCC.pgm 6 3 52 0 1 0.05 0.67 0.67
5 c1_0019_RCC.pgm 48 9 97 0 1 0.08 0.84 0.84
6 c1_0020_RCC.pgm 17 20 72 0 1 0.22 0.46 0.46
7 c1_3022_RCC.pgm 3 1 86 0 1 0.01 0.75 0.75
8 c1_3049_LCC.pgm 4 52 55 0 1 0.49 0.07 0.07
9 c1_3065_RCC.pgm 16 11 98 0 1 0.1 0.59 0.59
10 c1_3066_LCC.pgm 6 4 70 0 1 0.05 0.60 0.60
11 c1_3084_RCC.pgm 6 0 76 0 1 0 1.00 1.00
12 c2_0022_RCC.pgm 18 2 23 1 0.95 0.08 0.90 0.86
13 c2_0023_LCC.pgm 4 0 88 1 0.8 0 1.00 0.80
14 c2_0028_LCC.pgm 16 15 69 8 0.67 0.18 0.52 0.41
15 c2_0050_LCC.pgm 12 17 27 0 1 0.39 0.41 0.41
16 c2_0051_RCC.pgm 14 6 62 0 1 0.09 0.70 0.70
17 c2_0061_RCC.pgm 24 2 0 0 1 1 0.92 0.92
18 c2_0071_LCC.pgm 97 8 31 15 0.87 0.21 0.92 0.81
19 c2_0073_RCC.pgm 2 0 86 9 0.18 0 1.00 0.18
20 c2_0074_LCC.pgm 11 7 38 1 0.92 0.16 0.61 0.58
21 c2_0075_LCC.pgm 12 10 42 0 1 0.19 0.55 0.55
22 c2_0079_LCC.pgm 9 7 49 4 0.69 0.12 0.56 0.45
23 c2_0081_LCC.pgm 27 0 52 8 0.77 0 1.00 0.77
24 c2_0082_LCC.pgm 5 20 165 5 0.5 0.11 0.20 0.17
25 c2_0086_RCC.pgm 4 6 63 2 0.67 0.09 0.40 0.33
26 c2_0088_LCC.pgm 17 0 69 3 0.85 0 1.00 0.85
27 c2_0093_LCC.pgm 5 10 60 0 1 0.14 0.33 0.33
28 c2_0094_RCC.pgm 18 42 50 0 1 0.46 0.30 0.30
29 c2_0100_RCC.pgm 10 20 19 0 1 0.51 0.33 0.33
30 c2_0108_LCC.pgm 9 0 34 5 0.64 0 1.00 0.64
31 c2_0111_LCC.pgm 8 0 28 3 0.73 0 1.00 0.73
32 c2_0112_LCC.pgm 45 25 45 9 0.83 0.36 0.64 0.57
33 c2_0118_LCC.pgm 2 3 53 2 0.50 0.05 0.40 0.29
34 c2_0121_RCC.pgm 9 8 59 3 0.75 0.12 0.53 0.45
35 c2_0131_RCC.pgm 6 0 87 0 1 0 1.00 1.00
36 c2_0133_LCC.pgm 28 22 25 1 0.97 0.47 0.56 0.55
37 c2_0137_LCC.pgm 13 11 62 3 0.81 0.15 0.54 0.48
38 c2_3088_LCC.pgm 5 2 30 0 1 0.06 0.71 0.71
39 c3_1017_LCC.pgm 34 13 90 4 0.89 0.13 0.72 0.67
40 c3_1027_LCC.pgm 13 2 78 1 0.93 0.02 0.87 0.81
41 c3_1035_RCC.pgm 6 28 50 0 1 0.36 0.18 0.18
42 c3_1036_LCC.pgm 11 12 95 0 1 0.11 0.48 0.48
43 c3_1050_RCC.pgm 4 9 69 0 1 0.12 0.31 0.31
44 c3_1055_LCC.pgm 4 11 105 0 1 0.09 0.27 0.27
45 c3_1060_LCC.pgm 5 4 230 0 1 0.02 0.56 0.56
46 c3_1084_RCC.pgm 2 8 130 0 1 0.06 0.20 0.20
47 c4_1076_RCC.pgm 2 0 116 0 1 0 1.00 1.00
48 c4_1082_RCC.pgm 9 7 62 0 1 0.1 0.56 0.56
49 c4_1089_LCC.pgm 5 9 69 1 0.83 0.12 0.36 0.33
50 c4_1107_LCC.pgm 2 24 85 0 1 0.22 0.08 0.08

Total 690 489 3394 90
Sample Average 0.89 0.15 0.61 0.55

Sample Standard Deviation 0.17 0.19 0.28 0.25
95% confidence interval [0.842, [0.101, [0.538, [0.483,

0.938] 0.203] 0.691]  0.623]
99% confidence interval [0.827, [0.084, [0.514, [0.461,

0.953] 0.219] 0.715]  0.645]
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Table 5
The Performance Criterion Applied to Normal Cases (in Block Counts) using 32×32 Blocks

Case # Case Name TP FP TN FN True False Precision Overlap
Positive Positive ratio
Fraction Fraction

1 A_0061_LCC.pgm 0 0 81 0 N/A 0 N/A N/A
2 A_0061_RCC.pgm 0 0 94 0 N/A 0 N/A N/A
3 A_0062_LCC.pgm 0 0 125 0 N/A 0 N/A N/A
4 A_0062_RCC.pgm 0 0 110 0 N/A 0 N/A N/A
5 A_0074_LCC.pgm 0 0 157 0 N/A 0 N/A N/A
6 A_0074_RCC.pgm 0 0 162 0 N/A 0 N/A N/A
7 A_0076_LCC.pgm 0 0 175 0 N/A 0 N/A N/A
8 A_0076_RCC.pgm 0 0 173 0 N/A 0 N/A N/A
9 A_0096_LCC.pgm 0 0 66 0 N/A 0 N/A N/A
10 A_0097_LCC.pgm 0 0 83 0 N/A 0 N/A N/A
11 A_0097_RCC.pgm 0 0 136 0 N/A 0 N/A N/A
12 A_0108_LCC.pgm 0 79 51 0 N/A 0.61 0 0
13 A_0108_RCC.pgm 0 54 83 0 N/A 0.39 0 0
14 A_0114_LCC.pgm 0 0 112 0 N/A 0 N/A N/A
15 A_0114_RCC.pgm 0 73 65 0 N/A 0.53 0 0
16 A_0124_LCC.pgm 0 2 98 0 N/A 0.02 0 0
17 A_0124_RCC.pgm 0 0 118 0 N/A 0 N/A N/A
18 A_0133_LCC.pgm 0 0 122 0 N/A 0 N/A N/A
19 A_0133_RCC.pgm 0 0 156 0 N/A 0 N/A N/A
20 A_0146_LCC.pgm 0 41 49 0 N/A 0.46 0 0
21 A_0146_RCC.pgm 0 0 101 0 N/A 0 N/A N/A
22 A_0149_LCC.pgm 0 0 142 0 N/A 0 N/A N/A
23 A_0149_RCC.pgm 0 0 128 0 N/A 0 N/A N/A
24 A_0150_LCC.pgm 0 0 89 0 N/A 0 N/A N/A
25 A_0150_RCC.pgm 0 0 98 0 N/A 0 N/A N/A
26 A_0158_RCC.pgm 0 0 112 0 N/A 0 N/A N/A
27 A_0203_LCC.pgm 0 0 93 0 N/A 0 N/A N/A
28 A_0203_RCC.pgm 0 0 169 0 N/A 0 N/A N/A
29 A_0215_LCC.pgm 0 0 177 0 N/A 0 N/A N/A
30 A_0215_RCC.pgm 0 0 168 0 N/A 0 N/A N/A
31 A_0216_LCC.pgm 0 0 53 0 N/A 0 N/A N/A
32 A_0216_RCC.pgm 0 0 66 0 N/A 0 N/A N/A
33 A_0223_LCC.pgm 0 0 144 0 N/A 0 N/A N/A
34 A_0223_RCC.pgm 0 0 68 0 N/A 0 N/A N/A
35 A_0238_LCC.pgm 0 0 70 0 N/A 0 N/A N/A
36 A_0238_RCC.pgm 0 0 130 0 N/A 0 N/A N/A
37 A_0239_LCC.pgm 0 0 78 0 N/A 0 N/A N/A
38 A_0239_RCC.pgm 0 0 80 0 N/A 0 N/A N/A
39 A_0243_LCC.pgm 0 0 227 0 N/A 0 N/A N/A
40 A_0243_RCC.pgm 0 0 148 0 N/A 0 N/A N/A
41 A_0246_LCC.pgm 0 0 65 0 N/A 0 N/A N/A
42 A_0246_RCC.pgm 0 0 61 0 N/A 0 N/A N/A
43 A_0250_LCC.pgm 0 0 76 0 N/A 0 N/A N/A
44 A_0250_RCC.pgm 0 0 63 0 N/A 0 N/A N/A
45 A_0254_LCC.pgm 0 0 53 0 N/A 0 N/A N/A
46 A_0254_RCC.pgm 0 0 51 0 N/A 0 N/A N/A
47 A_0255_LCC.pgm 0 0 110 0 N/A 0 N/A N/A
48 A_0255_RCC.pgm 0 0 96 0 N/A 0 N/A N/A
49 A_0260_LCC.pgm 0 0 158 0 N/A 0 N/A N/A
50 A_0260_RCC.pgm 0 0 168 0 N/A 0 N/A N/A

Total 0 249 5458 0
Sample Average N/A 0.04 N/A N/A

Sample Standard Deviation N/A 0.14 N/A N/A
95% confidence interval N/A [0.002, 0.078] N/A N/A
99% confidence interval N/A [0, 0.09] N/A N/A
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(i) Abnormal Cases Analysis

In some cases in Table 4, the produced objective results
seemed unacceptable in terms of high false negative or
high false positive block counts. Hence, we subjectively
investigated these cases and compared the computer-
highlighted with the clinician-highlighted images. In the
following figures, we superimpose 32×32 blocks (appear
in white color) over the computer highlighted images, to
illustrate how the TP, FP, TN and FN terms are calculated.

Fig. 14 presents cases: “suspicious case 14”,
“suspicious case 18”, “suspicious case 19”, and
“suspicious case 23”, that produce high false negative
blocks. The subjective comparison between the output
produced by our scheme and the clinician images for
these cases indicate that the high false negative blocks

in these images are attributed to the fact that the clinician-
highlighted regions are larger than the actual suspicious
lesions. Since our scheme highlights the core of the same
regions, it consequently fulfils the objective of CAD
systems in attracting the clinician’s attention to the
specific location.

Fig. 15 shows sample cases, “suspicious case 8”,
“suspicious case 28”, “suspicious case 41” and
“suspicious case 50”, which produce high false positive
blocks. The subjective analysis of such cases indicated
that the false detected regions usually represent either
chest wall or milk ducts that appear brighter than the rest
of the breast tissues, as in Fig. 15 (a) and (d). However,
these areas are clearly unsuspicious, and hence they can
be easily excluded by the clinician without confusion.

Figure 14:Samples of the abnormal cases in which the proposed scheme produces high false negative rates: (a)(b)(c)(d) are the
images that produced by our scheme: suspicious cases 14, 18, 19 and 23, respectively; and (e)(f)(g)(h) are the clinician-
highlighted images for the same case shown in (a)(b)(c)(d), respectively. The contour generated by the clinician is larger
than actual suspicious region. This give rise to the false negative performance measure. Note that our scheme highlights
the core of suspicious region and attracts the attention of the clinician to focus on this area. The white blocks that appear
in the computer-highlighted images represent the 32×32 blocks that were used to count the TP, FP, TN and FN terms
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Figure 15:Sample of abnormal cases, in which the proposed scheme produces high false positive blocks: (a),(b),(c),(d) the images
produced by our scheme for the suspicious cases 8, 28, 41 and 50, respectively; and (e),(f),(g),(h) the clinician-highlighted
images for the same cases shown in (a),(b),(c),(d). The majority of the false detected areas are located near the chest walls
(as in (a) and (d)). Other areas appear near the bright milk duct at the upper part of the breast (as in (a)). These areas can
be easily excluded by the clinician. In (b) the proposed scheme successfully detected the cancerous regions in addition to
other bright regions that need further clinician’s investigation. In (c) the proposed scheme highlighted the whole cancerous
regions, while the clinician just highlighted the mass center. Note that, the white blocks that appear in the computer-
highlighted images represent the 32×32 blocks that were used to count the TP, FP, TN and FN terms

For “suspicious case 28”, Fig. 15(b), the proposed scheme
highlighted the cancerous regions in addition to other
bright regions in the images that need further
investigations. For “suspicious case 41”, Fig. 15(c), the
clinician just highlighted the mass center while the
proposed scheme highlighted the entire suspicious region.
Hence, our scheme takes extra precautions against
missing a potential mass.

Fig. 16 shows “suspicious case 32” which produces
both high false positive and false negative blocks. The
subjective analysis of this case indicated that the clinician
used a free-hand style plot to highlight the suspicious
region. This gives rise to the false negative block counts.
However, our schemes highlighted nearly the same region
with better localization. Moreover, the clinician used his

experience and intelligence to exclude the bright regions
near the breast nipple, as they are more likely to represent
network of milk ducts. Our scheme utilizes the pixel
intensities only to highlight suspicious areas. That is why
our scheme produced high false positive block count.

(ii) Normal Cases Analysis

Table 5 shows that the proposed scheme produces
relatively high false positive results in few cases. Fig. 17
shows samples of such normal cases, “normal case 12”,
“normal case 13”, “normal case 15” , “normal case 16”,
and “normal case 20”, that produce high false positive
blocks. As the figure shows, most of the false detected
areas represent milk ducts and/or chest wall that are
clearly unsuspicious and would not affect the clinician
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Figure 17:Samples of normal cases in which the proposed scheme
produces high false positive rates: (a) normal case 12;
(b) normal case 13; (c) normal case 15; (d) normal case
16; and (e) normal case 20. The false detected areas
are located near the chest wall and milk ducts. These
areas can be easily excluded by the clinician. Note that,
the white blocks that appear in the computer-
highlighted images represent the 32×32 blocks that
were used to count the TP, FP, TN and FN terms

Figure 16: Sample of an abnormal case, in which the proposed
scheme produces both high false positive and false
negative blocks: (a) the images produced by our scheme
for the suspicious cases 32; and (b) the clinician-
highlighted image for the same cases shown in (a). The
proposed scheme accurately highlighted the brightest
suspicious regions in the image; while the clinician used
a free-hand style plot to highlight nearly the same
regions. Note that, the white blocks that appear in the
computer-highlighted images represent the 32×32 blocks
that were used to count the TP, FP, TN and FN terms

decision, i.e., similar to the high false positive in normal
cases (Section  III. C.1).

(d) General Comment

Unfortunately, we are unable to compare our scheme with
others found in literature. We have neither the source code
nor the set of images used by other researchers. However,
the proposed scheme has several attractive features. First,
it is fully automated (i.e. no user input is required).
Second, all parameters are calculated based on the image
under consideration. These features make the system
portable (it operates with any image database without the
need of any customization and produces the same level
of performance). Finally, it is simple and easy to
implement. Hence, the proposed scheme overcomes the
shortcomings of the previous research works [2] [3] [4]
[5] [6] [7] as discussed in Section  I.

It is worth mentioning that the proposed scheme is
designed to be used as a highlighting tool. In our future
work, a module to automatically extract the chest wall,
as well as further classification steps will be added to the
proposed system to filter out many of the false positive
areas.

IV. CONCLUSIONS

We proposed a scheme to provide an initial guess of
suspicious masses in digital mammogram images, for
further comprehensive processing. The scheme
approximates the image histogram as a summation of
three Gaussian functions with different means and
standard deviations. These parameters are determined
using the least square errors curve fitting technique.
Bayesian decision theory is then applied to estimate the
threshold that produces the minimum probability of
classification error. Based on the value of this threshold,
relative to the location of the second and the third
Gaussian functions, the image is thresholded to highlight
suspicious areas, if any. Finally, the contours of the
highlighted regions, if any, are extracted and
superimposed on the original mammogram image. The
paper also presented a block-based performance criterion
to assess the computer generated results.

The results produced by the proposed scheme (over
a set of fifty abnormal and fifty normal images) were
subjectively and objectively compared with the manually
highlighted images that are provided by the DDSM
database. The experimental results revealed that the
proposed scheme achieved a true positive fraction of 1.0
for the entire fifty abnormal cases, when used in the
screening mode. At the same time, the 95% and the 99%
confidence intervals for the false positive fraction,
calculated over the fifty normal cases, are [0.017, 0.183]
and [0, 0.209], respectively. When used in diagnosis or
follow up mode, more localization is required. In this
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case, our proposed block-based measure is used to report
the performance of our scheme. The analysis revealed
that 32×32 block size is higher than the clinician’s
precision. Hence, we adopted this block size as our
measuring unit to report the system’s performance. We
found that the 95% and 99% confidence intervals
(calculated over the fifty abnormal images) for the true
positive fraction are [0.842, 0.938] and [0.827, 0.953],
for the false positive fraction are [0.101, 0.203] and
[0.084, 0.219], for the precision are [0.538, 0.691] and
[0.514, 0.715], and for the overlap ratio are [0.483, 0.623]
and [0.461, 0.645], respectively. In the meantime, the 95%
and 99% confidence intervals for the false positive
fraction (calculated over the fifty normal images) are
[0.002, 0.078] and [0, 0.09], respectively. On the other
hand, if we consider all hundred images together, the 95%
and 99% confidence intervals for the false positive
fraction are [0.062, 0.130] and [0.052, 0.140],
respectively. In conclusion, the proposed scheme can be
utilized as a coarse segmentation stage to limit the search
space for detecting/highlighting suspicious lesions on
digital mammogram images.
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