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A novel multi-class object classification techniqueisproposed in this paper which useskernel tricksfor extracting nonlinear
features and employs eigenvectors for separating object classes in the extracted features. The basis of the method is to
employ kernel principal component analysis (KPCA) prior to using principal component analysis (PCA) for mapping input
space to a higher dimensional feature space through a non-linear map. The conversion of non-linear data by gaussian
kernel (via radial basis function) into linear form for its simplification and application of PCA isreferred as'kernel trick'.
The employed data sets include our Smart Cars data which are images of the moving vehicles and some other generic
databases. The obtained results emphasize the representation of the multi-class objects in their feature spaces, how the
features are separated among the object classes and classification results. e also introduce eigenvectors as a classifier in
this paper and, therefore, the proposed method does not require any conventional classifiers for the classification.
Eigendimension matching conforms whether an image feature is 'in-space’ or 'out-space’ by comparing the dimensional
ranges. The experimental results show the robustness of the feature separation using kernel tricks with our car database
that leads to the cars’ classification from its viewpoint. Further experiments with other generic databases and various

traffic scenarios show the remarkable performance of separating and classifying objects of the the proposed method.

1. INTRODUCTIONAND MOTIVATION

In computer vision problems, data structuresinclude linear
and non-linear classes. PCA (principa component analyss)
isaclassical and one of the most popular methods which
successfully handles linear data setsin order to extract the
features from the data. In fact, PCA finds an orthonormal
transformati on to maximize the scatter of the data samples
by generating a set of orthonormal basis vectors. However,
it fails to extract the right features in given data if the
variation among the data samplesisnon-linear and the data
samples vary in their appearance, pose and illumination
conditions. Moreover, PCA isinadequateto anayzereal data
such as detection and classification of real objectswith non-
linear characterigtics. Recently, KPCA hasbeen re-invented
and introduced for solving such problemsin computer vision
applications. The idea of the kernel trick isto project the
input data into a high dimensional feature space F with a
non-linear mapping at first, and then the data are analyzed
in F sothat non-linear re ations of input data can be featured.
An exampleresult of KPCA'seffort for clustering non-linear
dataisshownin Fig. 1 and theoriginal dataisshownin Fg.
1. Thekernd trick hasfirstly been successfully implemented
in SVM classifier for structura risk minimization [17].
Scholkopf [26] introduced the Kerndl trick in machinevision
problems. Since the kernel trick is used firstly to map the
input datainto theimplicit feature space F, and then PCA is
performed in F to extract non-linear principal components
of theinput data, KPCA not only inheritsthe good properties
of PCA, but also possesses the capability of non-linear
representation and classification. Therefore, it has been

demonstrated to be more efficient than PCA in abject
recognition and classification [13, 32] to describe the real
non-linear images.

Oncefeature extraction and representati on of the objects
aredone, objects' classification isthe next challenging step.
In fact, feature extraction and representation are the
preliminary steps for visual classification. However, we need
toemploy aclassfier for learning the sd ected features Many
popular classfiersemployed for thistask that includes SYM
(support vector machines), Bayes classifier, Perceptron,
Fisher linear discriminant, etc. However, most of the
classifiers work under the assumption that the features of
the data sets should linearly be separable. In this particul ar
study, our images of the objects include various views of
themoving cars, airplanes, pedestrians, road side obstacles,
etc. and they are taken under natural environments that
includes occlusion, variouslighting conditionsand different
geometrical condition. Therefore, asimplelinear separation
method for classifying the class and non-class features are
not optimal [30] for thisparticular problem.

In this paper, we propose akernel trick for overcoming
the above mentioned shortcomingsin dealing with our non-
linear objects feature selection. This paper also introduces
an eigenvector (or eigendimension) based classification
technique which does not rely either on object class or
category. We take the essential idea of the kernel trick asit
convertsthe non-linear feature by mapping input spaceto a
higher dimens onal feature space, through anon-linear map,
wherethe dataislinearly separabl e by the traditional PCA.
It isworthwhileto mention that in practice wedo not have
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to compute the expensive higher dimensional mapping as
we can achieve the same effect by using the kernel trick.
Thismapping will solvethe problem of nonlinear distribution
of low level image features [2]. In classification, the
eigendimension matching algorithm requires only few
eigenvectorsfor performing the classification of the sel ected
features. As aresult, we discard most of the dimensions (or
eigenvectors) in the final stage of classification which
certainly speeds up the classification process.

This paper is organized as follows: Section 2 outlines
previous work related to this topic. Mathematical
background of developing PCA and KPCA are given in
Section 3. The proposed algorithm, the eigendimension
matching, is given in Section 4. Section 5 describes details
of the data sets and experimental procedures along with
experimental results. Section 6 discusses various issues
related to the proposed algorithm. Section 7 concludesthis
paper with hinting for itsfurther extension.

2. PREVIOUSWORK

Detection and classification in an unconstrained environment
is always achallenging problem. In the past, many fruitful
methods have been developed for the object detection [8]
and classification [14-16]. In general, object detection can
mainly be done in two ways: part based [1, 2, 25, 26] and
shape based object recognition [21-23]. In the part based
approach, an object structure is encoded by using a set of
patches covering important parts of theobject. These patches
themselves are detected using interest point operators, such
as SIFT. In addition, affine invariant approach isalso well
known for object detection. In thisapproach, small patches
areextracted from theimagewhich are characterized by view
point invariant descriptors [2]. These descriptors are used
to match the object. Shape or appearance based methods
useaglobal approach for capturing the object structure. PCA
[7] isone of the powerful techniques for extracting global
structure from a high dimensional data set. It has become
well-known to the vision communities after its successful
application for extracting facial features in the Eigenfaces
method [27-28]. However, PCA is only capable of linear
feature extraction and, therefore, it is not suitable for non-
linear feature selection. KPCA, on the other hand, was
introduced as a non-linear extension of PCA in spectrum
analysis [17] and object analysis [26], which computes the
principal components in a high dimensional feature space
related to theinput space. Our interest ison non-linear data
and, therefore, we focus on using the kernel trick for our
non-linear datasets. Yang [32] and Moghaddam [20]
compared the face recognition performance and Eigenfaces
method by using Kernel PCA with the cubic polynomial
kernel and Gaussian kernel, respectively. Many other
researchers [9, 11, 18] have attempted to employ this
technique particularly for face detection. Baudat [3] applied
kernd trick for generalizing the discriminant features KPCA
isalso used to model the variability in classes of 3D-shapes

[24, 29]. Liu [17] has recently employed it for recognition
of facial expression using Gabor filters. Features derived
by Gabor filters were non-linearly projected onto higher
dimensional feature space by employing fractional power
polynomia asakernd function. Our main focusisto classify
moving vehicles' image featureswhich include multi-class
and objectswith non-linear characteristics.

For vehicletracking and classification, we have seen a
number of systems proposed [8, 10, 12, 14-16, 33]. Modd
based approaches have mostly been employed to track and
detect vehicles. In [15, 16], a model based moving object
classification approach that uses parameterized 3D models
is proposed. 3D wireframe models [14-16, 33] have also
been successfully employed for car tracking. Background
subtraction models, when vehiclesare well separated, have
been explored in [8, 19]. To our knowledge, the only
application of PCA for car classification is that of
Bogomolov et al. [4]. They have employed this technique
by combining motion and appearance features. It should be
noted that little attention has been given in the mentioned
worksfor analyzing non-linearity in theimage features. For
the classification, on the other hand, traditional classifiers
employed for classifying the object features include Bayes
classifier, SVM, Discriminant functions, etc. In most of the
shape based models, Smilarity measuresusng L1 or L2 norm
are employed for classifying the features and/or objects. In
the PCA approach, many classifiers have been proposed
previoudy, for example, Euclidean distance-based classifier
[5, 21, 22], Mahalanobis distance-based classifier [5, 23],
minimum subspace angle-based classifier [6] and support
vector machine-based classifier [24]. These traditional
classifiers only work with linearly separable datasets.
However, we introduce a new classifier called
eigendimensi on matching-based classfier that work for both
linear and non-linear datasets. We have found a similar
proposal in Weiss sworks[31] on image segmentation using
eigenvectors where he segmented the images by grouping
method. Theway he created and employed eigenvectorsare
completely different with our eigendimension matching
algorithm.

Thisstudy will concentrate on separating and clustering
the feature spaces by appropriately designing aradial basis
function (rbf) for the gaussian kernel. Oncethefeaturesare
separated with respect to the datasets, we then define the
maximum and minimum ranges of chasen eigendimensions
to dassify thefeature spaces between car and non-car images
and also car viewpoints. It isworthwhiletomention that the
present study employs car’s viewpoint images for training
the system. We develop the kernelized feature space using
these viewpoint images (negative and positive samples) and
then classify the respective feature spaces by matching the
eigendimensions. In thetesting session, any viewpoint image
is sufficient to detect the particular object in the database.
The classificationsdo not depend only on two-d ass prablems
asproposed in [2] but it can successfully classify the multi-
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Figure 1: Example of KPCA’'s robustness for clustering non-linear data.

class problems. As mentioned earlier, we employ only the
gaussian kernel inthisparticular study defining aright rbf
valuefor separating the multi-class feature space.

3. NON-LINEAR FEATURE EXTRACTION

Given aset of images x, whichislinearly separable, where
k=1,..,Mandx e R". Theimageset is centered by

M
2 %=0 ()
k=1
PCA diagonalizesthe covariance matrix,
1y T
C= V; XX )

Eigenvalue equation, 1, = Cp is solved wherep is
eigenvector matrix for eigenvalues 4 > 0 and ygRN . First
few eigenvectors are used as the basi s vectors of the lower
dimensional subspace. Eigen features are then derived by
projecting the samples onto these basis vectors. Hence the
equation 2 is equivalent to

A(X, V) = (X,.Cv) (3)
foral k=1..M.

The dot product F of the linear feature space can be
computed as

F=vx, (4)
foral k=1..M.

For computing non-linear feature space, Kernel PCA is
performed by first mapping the data from input spaceto a
higher dimensional feature space, i.e., using a map
¢ : RN — F, and then performing a linear PCA in F. Now,
the covariance matrix in this new space F becomes

— 1M T
C:VJZ:; ¢(Xj )¢(XJ) (5)

The eigenvalue problem now becomes 3y = ¢y for
non-linear space. We do not have to explicitly compute the
non-linear map ¢. We can achievethe samegoal by using a
kernel functions. In certain cases, it is possibleto compute
dot productsin these high dimens onal feature spaceswithout
actualy having toexplicitly carry out themapping into these
spaces. If the subsequent processing can becarried out using
dot products exclusively, then we can work in the high
dimensional space without explicitly mapping into the
spaces. We employ dot products of theform

(X, %) = (@(X), (X)) (6)

which allow usto compute the value of the dot product in F
without having to explicitly compute the map @, as shown
in Eq. 6.

Kernel functions can also be thought of as functions
measuring similarity between instances. The kernel value
will be greater if two samples aresimilar, otherwiseit falls
off to zeroif samples aredistant. The most used kernelsare
shown in Table 1.

Table 1
Kernel Functions

(I —x; 1)

k(X ;) =exp—;"—
K(X, %) =(X "X, +a),d=12,...
tanh(k(x, X;) +a)

Gaussian Kernel

Polynomial Kernel

Sigmoid Kernel

After parforming thekernd trick, it isimportant to note
that all solutionsV liein the span of ¢(x,),..,d(X,)- This
has two useful consequences. Firdt,

Ap(x,) V) = (#(x,)-CV) (7
forall k=1,...,M
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Second, thereexist coefficientse, (i =1,..,M) such that,

M
\ :Zai¢(xi) (8)
i=1
Combining Eg. 7 and Eq. 8 we get thefollowing Eq. 9
A2 ($x)-6(x)) = ﬁZ @ (606): 260 D@ (x) 906D ()

Definingan M x M gram matrix K by the Eq. 10
K= (4(x)-4(x)) (10)

we arrive at the eigenvalue problem for solving non-zero
eigenvalues, asillustrated below in Eq. 11.

MiKa =K ’a (11)
The next step isto normalize the eigenvectors ¢, .., ¢, -
Thelast septoKerne PCA involvesprincipal component
extraction. Thisis performed by computing the projection of
atest sample ¢(x) onto the eigenvectors V¥in F:

(V¥ .9(x) = Z o (#(%,)-9(X)). (12)
The Eq. 12 can simply bere-written as
f=VTg(x)=A'B (13)

whereA=a;,.., oy and B =[¢(x)4(x),...4(x)(X)].

* jistheimage feature point
* kyisthetotal number of imagesin the dataset
» Listhenumber of selected elgendimensions

subspace (j}

I<ml
&
found = false
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&
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count = count +1

print resuits

Figure 2: Program Sructure for matching eigendimensions.

4. EIGENDIMENSION MATCHINGALGORITHM

The eigen decomposition of araw data resultsin a feature
space that can be defined by eigenvectors. Each eigenvector
is called an eigendimension. Similar data will be heavily
clustered around an area and dissimilar data will be
separated. Separation of a region based on e gendimension
is proposed in this paper. Thisis an attractive approach in
that, it isbased on matching of few eigendimensionsfor the
classification. In this method, we need to calculate the
minimum and maximum range of each eigendimension of
thetraining datasets. The classification decisions are:

»  Every sdlected eigendimens on of thetesting dataset
should be greater than or equal to the minimum
range of the corresponding eigendimension of the
training dataset.

» Every sdlected eigendimens on of thetesting dataset
should belesser than or equal tothe maximum range
of the corresponding e gendimension of thetraining
dataset.

It can be formulated as:
min(gi)<Zj <max(g))i=1..,L (14)
A flow chart of the proposed al gorithm which usesthe
commonly known Matlab notations, isgivenin Fig. 2.

5. EXPERIMENT AND RESULTS

This section is dedicated towards describing the data sets
used in the experiments, how our experiments were
conducted and highlighting the obtained results. We have
conducted experiments employing our databases along with
some other standard databases. Our databasesinclude Smart
Carsand RTA database coll ected by our group but they are
not available in public domain. The standard databases
include Caltech car-back (www.vision.caltech.edu) and
UIUC non-car. The main focusis our Smart Cars database
where we have put maximum effort for developing and
separating thefeature space, and classifying the objects from
their viewpoints. This experiment emphasizes on the
classification of moving vehicleimages, since we need on
identifying the vehicles around our smart car for assisting
thedriver.

5.1 Data Set

We evaluated our object classification (mainly car images)
using e gendi mension matching on four different data sets.
The Smart Cars data sets include various cars orientati ons
(mainly car front, car back and car sde) and these viewpoint
images are used in the training stage. The unfamiliar car
imageisclassified by comparing thetraining images stored
in the kernelled feature space or called eigenspace. The
images of RTA data sets are already segmented front view
images of the moving cars taken at night. The Caltech car
images are only the rear views of cars and, therefore, it
represents and classifies the rear viewpoints only. A wide
range of non-car images obtained from the UIUC database
is used for evaluating the car and non-car classification in
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Figure 3: Cars marked in areal-world scene for obtaining the orientations.

the experiment. The information about theimages and data Table 2
setsused in the experiment for training and testing stagesis Datasets and images used in the experiment
described in Table 2. In case of obtaining the Smart Cars  patq et Training Images  Testing Images

database, we have manually marked and tracked the car

images obtained from the camera. These are classified as ?:t g:z g:?raocnkt 922 1888
three different views: Car-rear, Car-front and Car-side. The  gnart cars: Car-side 34 34
other images are considered asnon-cars. Fig. 3showssome  Smart Cars: Non-car 1000 3000
of the carsmarked in areal-world scene. Fig. 4 showssome  Caltech: Car-back 170 480
of the sample images from different databases used in the RTA :Car-front 160 360

UIUC :Non-car 160 360

experiments.

Car-back

-«f— Car-front

Figure 4: Some of the images used in the experiments.
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Each of theimagesthat has been used in our experiments
are initially resized into a 32x32 image from its original
resolution. Thecolor images areal so converted to grey-scale
before the kernelled feature space is developed. However,
the grey images obtained from some databases have been
omitted in thispre-processing conversion step.

5.2 Experimental Details

To observe the effectiveness of PCA and KPCA's ability,
we have designed two different experiments, (1) Car
viewpoint classification and (2) Car vs Non-car
classification. Since we have proposed and employed
eigenvectors to separate the feature spaces of the objects
and/or viewpoints, representation of the kernel feature
spaces isalso exhibited in this section. Some comparisons
have also been made with conventional distance based
classifiers in order to evaluate our proposed method.
Therefore, the results are mainly presented in threefold:
representation of kernel spaces, viewpoint classification

Elgenspace of Three different Car Onentatlons

#» Car-front
o Car-back
car-slde

elgenvector 3

Eigenvector 3

algenvector 2 0.5

algenvector 1

Figure 5. Representation of car views by PCA.

Table 3
Car viewpoint classification results by PCA

Data Sets Eigendimension Matching

False Positives

3%
5%
5%
2%
1%

Classification Rate

94%
89%
88%
96%
98%

Smart Cars-Car-back
Smart Cars-Car-front
Smart Cars-Car-side
Caltech-Car-rear
RTA-Car-front

5.2.1 Car viewpoint classification with PCA

The objective of the feature space representation is to
describe how the car’ s orientations of theimages appearsin
the eigenspace. Fig. 5 (left) shows the graphical
representation of the feature space by indicating three
different locations of the respective views with the Smart
Carsdatabase. Fig. 5 (right) representsa compari son between
Caltech’s car-back and RTA's car-front. One can easily

and car and non-car classification. It isworth mentioning
that all the experiments have been performed employing
both PCA and KPCA.. These have given us a comparison
of results between the PCA and KPCA where KPCA has
claimed to have better performance for separating the
nonlinear featuresthan PCA. Theresultshave also shown
false positive rates each time with the successful
classification rates.

The training part of the data was used for computing
the feature spaces and base learners, while the other part
was employed for testing. For classifying car and non-car
images, we employed the eigendimension matching
algorithm which classifies them in their feature spaces. By
considering only the maximum and minimum ranges of the
feature space, we are ableto classify imagesthat lie within
thisrange asCarsand therest asNon-cars. Wethen compare
the success of the eigendimens on matching classfier againgt
the conventional distance classifiers, Euclidean and
Mahalanobis.

Caltech Car-back vs
Car-front uisng PCA

o Car-back
* Car-front

Eigenvector 1

Eigenvector 2 0.4 04

observe that the respective views have clearly separated so
that they can readily be recognized. Table 3 and Table 4
show the classification rates achieved by the classifiers. Fig.
6 shows the classification rates in four different methods.
The mean eigenspace method has al so been placed wherea
mean is taken of some selected data sets and it is used for
developing the feature space [22].

5.2.2 Car viewpoint classification with KPCA

This particular experiment shows how KPCA separatesthe
respective features and it then becomes easy to employ our
eigendimension matching classifier for the purpose of
classification. Fig. 7 (Ieft) shows the clustered spaces of the
car orientations of the Smart Cars databasethat includes all
image views of the cars. Fig. 7 (right) illustrates the
comparison of the Caltech’s car-back and RTA’s car-front.
Thesetwofigures clearly show the difference of employing
KPCA for non-linear data sets where each data set is well
separated from the other.
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Table 4
Comparison results between Euclidean and M ahalanobis distance-based classifiers

Data Sets Euclidean Distance Mahal anobis Distance

Classification Rate False Positives Classification Rate False Positives
Smart Cars-Car-back 56% 17.5% 87.7% 4%
Smart Cars-Car-front 62.2% 12% 49% 20%
Smart Cars-Car-side 76.5% 6.8% 10% 30%
Caltech-Car-rear 65% 10% 85% 5%
RTA-Car-front 82.3% 6% 96% 2%

I Vv« on Eigerspace
: Ewclidean Distance
: Mahalenobis Disance
I Eio+ndimension Matching

Car Orlentation Classification Rates

o
P

2000 "

15{"]!. _,--"'
1000}

500 -.zatll

Car-back

Car-front

Car-side

Figure 6: Classification rates of car viewpoints by the four different classifiers.

The Eigenspace of cars - KPCA KPCA - Caltech Car-back vs

Eigenvector 3

Eigenvector 2

-06 -04

o Car-back Car-Front, rbf = 1.0 o Car-back
* Car-front *  Car-front

Car-side

Eigenvector 3
)
o

Eigenvector 1 Eigenvector2 ¢ 0.4 Eigenvector 1

Figure 7: Clustered spaces of the car views by KPCA.
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Table 5 presents the results for evaluating the
Eigendimension Matching classifier using KPCA. Table 6
outlines results achi eved by applying KPCA to the Euclidean
and Mahal anobi s distance based approaches.

Table 5
Results of the proposed method in KPCA

Data Sets Eigendimension Matching
Classification Rate False Positives
Smart Cars-Car-back 98% 1.2%
Smart Cars-Car-front 88% 7%
Smart Cars-Car-side 88% 11%
Caltech-Car-rear 96.9% 2.5%
RTA-Car-front 99.1% 0.1%

Table 6
Results of Euclidean and M ahalanobis distance based
classifiers in KPCA

Data Sets Euclidean Mahalanobis
Distance Distance
Classifica- False Classifica- False

tion Rate Positives tion Rate Positives

Smart Cars-Car-back 65% 34% 88% 9%
Smart Cars-Car-front 67% 35% 59% 42%
Smart Cars-Car-side 74.1%  27.3% 21% 73%
Caltech-Car-rear 65.8% 32% 87% 10%
RTA-Car-front 84% 15% 96.2% 1.6%

5.2.3 Car vs Non-car Classification with PCA

In this experiment, we have employed 1000 Non-car data
samples for training the system and 3000 samples for the
testing, as shown in Table 2. The objective of this
investigation isto highlight the effectiveness of the proposed
methods for car and non-car classification. Feature spaces
of the Car and non-car images have been placed in Fig. 8
(top left) wherethey are clearly divided into their respective
feature spaces. However, it may not always be possible to
create such separated feature spaces dueto various problems
such as occlusion. Fig. 8 (top right) represents the RTA's
Car-front and UIUC’s Non-car feature space. Fig. 8 (lower
row) illustratesthe feature space of Caltech’s Car-front and
UIUC’s Non-car. The obtained classification results
employing the Eigendimension Matching approach on a
number of data sets have been placed in Table 7. Table 8
givesdetails of the results achieved by applying PCA to the
Euclidean and Mahal anohisdistance based approaches.

Table 7
Evaluation of the Eigendimension M atching approach in PCA

Data Sets Ei gendimension Matching

False Positives
6%

13%

14%

2.3%

Classification Rate
92%
88%
86%
98%

Smart Cars-Car vs Non car
Smart Cars-Car vs UIUC
Caltech vs UIUC

RTA vs UIUC

Table 8
Evaluation of the Euclidean and M ahalanobis distance
based classifiersin PCA

Data Sets Euclidean Mahalanobis
Distance Distance
Classifica- False Classifica- False

tion Rate Positives tion Rate Positives

Smart Cars-Car vs 85% 17.5% 66% 27%
Non car

Smart Cars-Car vs 79.4% 16% 55% 21%
ulucC

Caltech vs UIUC 68.3% 34% 65% 20%
RTA vs UIUC 93% 8% 94% 5%

5.2.4 Car vs Non car Classification with KPCA

Asthe Gaussian Kernel playsan important rolefor clustering
the feature spaces, the results from tuning the kernel have
been highlighted in this subsection. Fig. 9 showsasequential
development of tuning the feature space of the Smart Cars
database’s Car and Non-car images by varying the radial
basis function. Then, anillustration of the RTA's Car-front
and UIUC’s Non-car feature space has been given in Fig.
10(left). Finally, theFig. 10(right) illustratesthe feature space
of Caltech’s Car-front and UIUC's Non-car. A result of
evaluations of the Eigendimension Matching approach using
KPCA listedin Table 9. Table 10 detail stheresult achieved
by applying KPCA to the Euclidean and Mahalanobis
distance based approaches.

Table 9
Evaluation of the Eigendimension Matching classifier in KPCA

Data Sets Eigendimension Matching

Classification Rate False Positives

Smart Cars-Car vs 94% 5.2%
Non car

Smart Cars-Car vs
uluc

Caltech vs UIUC

RTA vs UIUC

89%
87%
98.2%

9%
12%
1%

Table 10
Evaluation of the Euclidean and M ahalanobis distance
based classifiers in KPCA

Data Sets Euclidean Mahalanobis
Distance Distance
Classifica- False Classifica- False

tion Rate Positives tion Rate Positives

Smart Cars-Car vs 86.2% 12% 70% 4%
Non car

Smart Cars-Car vs 80% 16% 65% 15%
uluc

Caltech vs UIUC 70% 26% 75% 20%
RTA vs UIUC 94% 7% 95.2% 4.9%
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Car vs Non-car using PCA Car-Front vs Non-Car
Car-back

using PCA * Car—front
*  Car-front * Non-car
Car-side

Non-car
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Figure 8: Representation of car and non car images in their feature space.
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Kernel PCA - rbf = 0.7 Kernel PCA —rbf=1.0

o <
g 05 '§
i% 1 0.4 P
. -0.4 ] 4 Eigenvector 2
Eigenvector 1 -0.6 Eigenvector 2 Eigenvector 1 0.5 -0.6

(@]

Car-back
Car—front
Car-side
Non-car

Kernel PCA - rbf = 2.0

*
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Eigenvector 3
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Figure 9: Representation of kernel feature of Smart Cars database.

KPCA - Car Front vs Non Car KPCA - Caltech Car Rear vs
orbf = 1.0 + Car—froni Non Car, rbf = 1.0

* Non-car
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? o
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g 0 2
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Eigenvector 2

Eigenvector 1

o Car-back
+  Non-car

Figure 10: Representation of kernel feature between smart Car and UIUC’s Non-car images.
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6. DISCUSSION

Various issues related to the experimental complexity and
obtained results have been discussed in this section. Among
many issues, we mainly highlight the performances obtained
in the experiments and comment the eigendimensions we
employed for the matching algorithm. There are many
problemsthat opensup in this paper and wewill concentrate
on theseissuesin our futurework.

6.1 Effectivenessof PCA

As mentioned previously, PCA extracts the linear
relationshipsthat exist within a dataset. The experiment for
the car viewpoint representation suggests that there were
strong linear relationshi psbetween the different orientations
of cars. This can be easily deduced from the fact that
viewpoint classification achieved higher classification rates
in comparison to car and non-car classification. It can also
be noted that in car and non-car classification, the
classification rates are lower because the non-car data set
contains samples that do not have a high linear intra-class
relationship. Hence, when linear relationships are non-
existent in thedata, PCA's effectivenessis limited.

6.2 Effectiveness of KPCA

The non-linear feature extractor shows a significant
improvement over thelinear feature extractor in PCA. It is
important to realize that it is crucia to tune the Gaussian
Kernel when employing KPCA to attain effective
performance. We could visually observethe clear separation
that existsin the feature space of the different data setsusing
KPCA. The classifiers performance for car and non-car
classfication, in particul ar, wasmuch better because KPCA
could handle the non-linear intra-class relationships that
existed in the UIUC non-car data set. We can also note that
because of the presence of linear relationships in the data
sets of the earlier experiment, the classification results of
PCA and KPCA do not differ much. However, on thewhole,
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as expected KPCA produced an improved feature space for
the classification.

6.3 VariationsAssociated with Each of the Classifiers

Since minimum distance between two subspaces are
important for classifying images in the PCA based
classification, thelimitationsof the distance-based classifiers
are graphically shown in Fig. 11. Fig. 11 (left) and Fig. 11
(right) show the distribution of the minimum distances
between the training samples, i.e. car’s views and testing
samples, i.e. non-car images using Euclidean and
Mahalanobis distances, respectively. It is quite difficult to
select their distance threshold, since the minimum distances
are not well separated. Consequently, poor classification
results were obtained from the conventional methods. It
should also be noted that Mahalanobis classifier requiresa
significantly larger training dataset than the other classfiers.
This explains the reason behind Mahalanabis classifier’s
inability to distingui sh the comparatively lower number of
car-side samples. The obtained classification results from
eigendimensi on matching, on the other hand, proved to be
more effective than the conventional distance-based
methods.

6.4 Selection of Eigenvectors

All the imagesin the data sets vary because of differences
inillumination, small changesin theviewpoint and occlusion,
none of which arerelevant to thetask of identifying the test
image. The problem, of course, is knowing which
eigenvectors correspond to useful information and which are
simply meaningless variation. By looking at the images of
specific eigenvectors, it issometimes possible to determine
what features are encoded in that eigenvector. Removing
specific eigenvectors could in fact improve performance, by
removing noise.

It is also worth mentioning that the eigendimension
matching classifier needs only 3-7 eigenvectors whereas
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Figure 11: Graphical distribution of minimum distances between training and testing samples.
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conventional methodsrequire many morethan this. Fig. 12
shows a relationship between requirement of eigenvectors
and image characterisation that is suitable for the
conventional methods.

Relationship between Eigendimensions and
Image Characterization
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Figure 12: Relationship between eigenvectors and image
characterization.

6.5 Increasing the Number of Classes

An increase in the number of classes will result in amore
cluttered feature space. Thisin turn may have an adverse
effect on the classification results. However, if the feature
space is tuned to be well separated by choosing the
appropriate rbf values, the eigendimension matching
classification algorithm will produce better results.

6.6 Computational Time

Our training timein Matlab implementation software varies
from 3to5 minuteswith respect to the data setsthat is much
faster than the reported in [2], and the testing code runs
approximately 2-3 images/sec under P4, 3.20 GHz processor
with 1GB RAM.

7. CONCLUSION

Kernd based feature sel ection of non-linear objectsand their
classification have been introduced in this paper. The
proposed kernel tricks have shown its robustness in
extracting non-linear features. Eigenvectors have been used
for multi-class object classification. These have provided a
complete kernel based object classification system which
can be useful for detecting the moving vehicles. Thisnovel
classification method distinguished moving vehicles from
its viewpoints by comparing the feature space.

It introduced eigenvectors as a classifier by claiming
that eigenvectors can work independently asa classifier. A
series of results were obtained towards attaining the
objectives and the representations of feature space clusters
using bath PCA and KPCA with respect to thedata setswere
graphically shown. The success of our classifier was also
compared to the conventional methods. Our approaches

achieved successful classification rates of up to 99.1%
whereas the results of Euclidean and Mahal anobis distance-
based classifiers were only up to 67%.
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