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This paper presents a new method to quickly extract geodesic paths on images and 3D meshes. We use a heuristic to drive
the front propagation procedure of the classical Fast Marching. This resultsin a modification of the Fast Marching algorithm
that is similar to the A" algorithm used in artificial intelligence. In order to find very quickly geodesic paths between any
given pair of points, two methods are proposed to devise an heuristic that regtrict the front propagation. The multiresolition
heuristic computes the heuristic using a propagation on a coarse map. For applicationswhere pre-computation is acceptable,
the landmark-based heuristic pre-computes distance mapsto a sparse set of landmark points. We introduce various distortion
metrics in order to quantify the errors introduced by the heuristically driven propagations. e show that both heuristic
approaches bring a large speed-up for large scale applications that require the extraction of geodesics on images and 3D

meshes.
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Figure 1. In order to compute the geodesic path between two points on the surface, computation is needed on a large part of the
surface when using classical fast marching (left). When the distance map to a set of landmarks is pre-computed, and the
propagation is heuristically driven by these maps, only the colored region is explored, and it becomes smaller and smaller

as the number of landmarks increases.

1. PREVIOUSWORKS

The extraction of shortest paths is a building block for a
large class of applications ranging from graph theory to
computer vision. Thecomputation can becarried in atotally
discrete setting (such asagraph) or over adiscretized domain
(such asan imageor a 3D mesh).

1.1 Graphsand Discrete Computation

The canonical method to compute shortest paths on graphs
is the Dijkstra algorithm (see for instance [5]). Fast
exploration strategies have been used to speed-up the
computation. The A" algorithm [ 15] makesuse of a heuristic
toreducethe search space. Other exploration strategies have
been proposed in thefield of artificial intelligence, such as
IDA * [13].

1.2 Images and Continuous Setting

In order to extract geodesics for a continuous metric, the
Fast Marching algorithm [19] uses a front propagation to
solve non-iteratively afinitedifference approximation of the
Eikonal equation. A similar algorithm wasalso proposed in
[24]. Theminimal length properties of geodesics has been
applied in computer vision, for example to solve global
minimization problems for deformable models [3]. The
continuous nature of this method is particularly attractive
for image processing, for instance to extract tubular
structures and centerlinesin 3D medical data[6].

1.3 Path Planning: from Discrete to Continuous

Discrete computation on graphs gives rise to numerous
schemesto perform mation planning and the A* algorithm
is extensively used for path-finding in video games [21].
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For the case of Euclidean metrics, faster algorithms have
been devised that exploit specific data structures such as
visibility graphs[18]. The Fast Marching algorithm can be
used to extract paths with a non-Euclidean metric [19]. The
authors of temelchior-obstacle-danger compare the Fast
Marching and the A" algorithmsto perform motion planning,
but they do not propose a heuristic modification of the Fast
Marching.

2. SHORTEST PATH: CONTINUOUSAND
DISCRETEALGORITHMS

In this section we develop a unifying framework which
includes the Fast Marching [19], Dijkstra [5] and A" [15]
algorithms together with our new heuristically driven

propagation.
2.1 Front Propagation Methods for Shortest Path

We work on a discrete set of points and for each point x we
have accesstoitsneighborsy, defining therelation Y ~ X.
These points can be embedded in discretete grid (for Fast
Marching and for our method) or can be the vertices of a
graph (for Dijkstra and A *). Our goa is to compute the

distance functionU (x) = d(x,, X) to somestarting point x.

Table 1
Pseudo-code for the common framework for front propagation

Initialization:

» Alive set: the starting point x;
» Tria set: the neighbors of x;
¢ Far: the set of all other grid points.
Loop:
¢ Let x bethe Trial point with the smallest priority P (X);
« Move it from the Trial to the Alive set;
« For each neighbor y of the current point x:
— if y is Far, then add it to Alive and compute a new value for

u(y),
— if yisAlive, recompute the value U(y), and updateit if the new

value is smaller,
— recompute the priority P (y).
* If the end point x = x, is reached, stop the algorithm.

The propagation methods label the points during the
computation according to:
1. Aliveistheset of points at which the distance value U
has been computed and will not change;

2. Trial isthe set of next grid points to be examined and
for which an estimate of U has been computed,;

3. Faristheset of all other grid points, for which thereis
not yet an estimatefor U.

Table 1 shows the main steps of the algorithms. Each
algorithm must implement the following sub-functions

4. A waytoupdatethevalue U(y) at agiven Trial pointy.
This computation uses the values of U at the adjacent
| ocations. Thiscomputation depends on the metric used,
which can bedefined on agraph (for discrete methods)

or on the whole space (for continuous methods). We
explain in sections 2.2 and 2.3 specific instantiations
for the Dijkstraand Fast Marching algorithms.

5. Apriority map P ordersthe st of Alivepoints according
to some computational criterion. In the Fast Marching
and Dijkstra algorithm, P(x) = U(X) is the current
distance to the starting point. In our heuristical front
propagation as in the A" algorithm, P(x) is chosen to
minimize the number of visited points. We explain in
sections 3 to 5 how to actually construct a priority
function that makes use of a heuristic.

2.2 DiscreteCase: Dijkstra

In the discrete setting, a symmetric weight g(x, y) isused to
define the distance between two adjacent pointsx ~y of the

graph. The length of a path Vv=[V, ~...~Vv_], of m

adjacent pointsv, is L(v) = Z g(v,v,,), and wedefinethe
distance between two vertices

d(%, %) = MN LV, = X,V = X,

Thedistance U(x) at avertex xin thealive set isupdated
during the propagation according to

U =minU(y)+9(x ).
The shortest path v from x to x, istracked backward using

Vo =% and Vi+1:y~ViU(y)‘

2.3 Continuous Case: Fast Marching

In RY, we are given a potential function g(x) > 0, and the
wei ghted geodesic distance between two points x, X, € R?,
isdefined as

(% %) = min [} 17O lgO)ct . @

where y is a piecewise regular curve with y(0) = x, and
7(1) =x,. When g =1, theintegral in (1) correspondsto the
length of the curvey and distheclassical Eudlidean distance.

TheFast Marching method usesthefact that thefunction
U satisfiesthe nonlinear Eikonal equation:

VU () lI= g(x). )

ThedisanceU(x) =uatapoint X=X ; inthetrial setis

updated during the propagati on according to the solution of
max(u—U (X_;;),u-U(X,.;),0°+

maX(U -U ()g,j—l)a u-u ()g,jﬂ)’ 0)2 = hzg()gj )2'
Thisis a second order equation (the equation iswritten in
R2for smplicity) and it can be solved asdetailed for example
in[4].

The geodesic curvey from x; to x, can be computed by

extracting the parametric curve C(t) that solves the back
propagation equation:
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dc 3.1 Propagation with a Heuristic

Thisgradient descentisalocal computation, andit only
uses the value of U for a small fraction of the visited grid
points. Note that these grid points are those located in the
Aliveset at the end of the front propagation procedure.

In order to minimize the number of Alive pointsat the end
of thefront propagation procedure, one should useapriority
function P that tries to advance the front toward the goal
point x,. In order to do so, we assume that, together with the
current weighted distance to the start point

U (X) = d(x,, X) , we have an estimate of the remaining
3. HEURISTICALLY DRIVEN FRONT
PROPAGATION weighted distance V (X) = d(X;, X) . Our heuristical front
In this section we explain our algorithm in the 2D setting, ~ Propagation agorithm followsthe implementation of table
and show some numerical results that illustrate the main 1 Withapriority map

features of this method. P(x) =U(X) +V(X). 3

3D view of the potential No heuristic, A = 0 A=0.5 A=0.8 A=1

Figure 2: An example of 2D path planning. The set of alive points according to increasing heuristic is shown in red.

The rationale behind the definition of P is 3.2 Evaluation of a Heuristic
that d (X,, X) +d (X, X) isminimal and constant along the
geodesic path joining x, and x,, see[12].

A * Algorithm: For discrete graphs, it has been shown
that if the heuristic satisfies V(x) < d(x,X) , then the
extracted geodesicis apath of minimum length. Thisleads

We cast the problem of finding a good heuristic into the
problem of approximating the distance function d(x, y)
between two points (X, y) by somefunction d. We define the
heuristicusing

to the A" algorithm of [15]. Various strategies have been V(X) = d(x, X) = d(x, X).
proposed to devise admissible heuristics, see [10] and the _
referencestherein. This approximated distanced should satisfyd<d in

Heuristically driven Fast Marching: Infigure2, one  order not to perturb the propagation from the true shortest
can see afront propagation, wherewe have used theoracle  path (computed with V = 0). It must be fast to evaluate and
heuristic V (x) =Ad(x,, X) , with a parameter A €[0,1]. The  can use areasonable amount of pre-computed data.
value A = 0 corresponds to the classical Fast Marching Section 4 uses a propagation on acoarse map in order
propagation, which resultsin alarge region of Alive points
(colored in red). However, as we increase the value of A
toward 1, the explored region shrinks around the geodesic
path that linksx to x..

There are however two important issues with this
ordering of the Trial set:

«  Thisordering can break the monotonecondition thatis ~ estimation of the real distance d whileenforcing d <d.
required by the Fast Marching algorithm to produce a To eval uate the quality of the heuristic, we propose two
valid approximation of the continuous underlying metrics
distance function. We show in the numerical results . The approximation metric
presented in sub-section 2 that the geometric error on

to compute such an approximate g . This multiresolution

heuristicisfast to compute and does not require the storage
of additional data. Section 5 uses pre-computed distances
to landmark points to compute d. This landmark-based
heuristic requiresadditional databut leadsto highly accurate

the extracted g@acrgnamslow. N El(d,a) =Ij|d(X, y)—d(x, y) |2dxdy’

*  We do not have immediate access to the remaining ) ) _ ) ) o
distance d(x, x,), since it would involve performing isapproximated dur_mg eval uation using afinite number
another front propagation from x,. We explain in of precomputed distance mapsd(p;,x) to a set of

sections 4 and 5 two methodsto overcome this problem. points{ p};"; chosen at random
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£ d) == [1d(R,y)-d(p Y F o

* The computation gain metric: We measure the
usefulness of the heuristic for extracting geodesics

between a set of pairs of points { (X, X, )}, . For each

front propagation fromx(i) to xi we measure the

area.4(d) of theAliveset at theend of the propagation.

We also measure the area A (0) of the Alive set for a
propagation without the heuristic. We define the
computation gain metricto be

E.(.d) ==Y A@/AO).

* When the geodesics queries are random, these two
metricstend to be the same. However, the computation-
gain metricisableto better adapt to typical applications
where queries can be highly non-uniform (for instance
in road or tubular structure extraction).

4. MULTIRESOLUTION HEURISTIC

4.1 Coarse-to-fine Geodesic Computations

In order to compute the remaining distanceV (x) ~ d(x, X )
with a fast algorithm, we perform a Fast Marching front
propagation starting fromthepoint X, , but on a.coarser grid.
We thus have introduced a second parameter for our
heuristical front propagation: theresolution R € (0,1) weuse
for the coarse grid. If the original potential map gis of size
Nnx N, the query of (y) thusrequires:
» The pre-computation of a coarse potential map g, of
size (Rn) x (Rn). Thisisdoneby first pre-filtering g (to

s
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avoid aliasing of high frequencies) and then applying a
cubic splinere-interpol ation on a coarser grid.

*  The pre-computation of the approximate distance map
V of size (Rn) x (Rn) isdone by performing afull Fast
Marching on a coarse grid, using potential g, and
starting from point x.

* During the heuristical front propagation starting from
point X, when P(y) is queried, the value of V is
interpolated with cubic splines on the coarse grid to
retrieveavalueon theoriginal grid.

In figure 3 one can see the coarse map g, and high
frequency details such as small roads disappear as the
resolution getstoo [ow.

Thereisclearly atradeoff between choosing alow Rto
reduce the computation time, and a high R so that V(x)
approximates d(x, x,) well.

The new algorithm we propose allows us to use
multiresolution computation for the extraction of geodesic
curves. Using a multiresolution framework for solving the
poi nt-to-point geodesic problem isnot so easy becauseit is
a boundary problem, and for instance, multigrid methods
are not suitable. Adaptive mesh [7] and multigrid methods
[16] have been used in conjunction with geodesic active
contoursfor segmentation.

R=30%  R=15%

Figure 3: Resulting potential map g, for various values of R.
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Figure 4: Influence of heuristic strength and resolution on number of visited cells, Hausdor ff error and computation time reduction.
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W,
Figure 5: Influence of theresolution of theheuristic on the shape
of the geodesic.

4.2 Numerical Validation of Multiresolution Heuristic

In order to estimate the precision of the results, we use the
Hausdorff error between the paths obtai ned by fast marching
with and without the multiresolution heuristic. In figure 6
one can see the geodesics extracted for different values of
A. Figure 4 shows the result of our algorithm for various
settings on (&) a synthetic map and (b) asatelliteimage. We
have depicted:

e The 2D map: Thered curves indicate the boundary of
the visited region. One can seethat these curves shrink
toward the geodesic (central blue curve) as oneincrease
the strength of the heuristic from 0% to 100%.

» Hausdorff error vs. heuristic strength A: We have set
the heuristic resolution Rto 50%. One can seethat the
error is higher for the synthetic map (a). Thisis dueto
the fact that thismap containslargeflat areas, wherea
small error in the computed geodesic distance leads to
deviation of the extracted geodesic. In contrast, the
geodesic in the satellite image (b) contains very
ani sotropic areas, which gabilize the extracted geodesic.

»  Hausdorff error vs. heurigtic resolution R: We have set
the heurigtic strength A to 50%. One can see that the
synthetic map (a) is nearly insensitive to the resolution
of the coarse map used to compute the heurigtic. Thisis
because the underlying function is very smooth, so one
can reduce the resolution alot without too much impact
on the accuracy of theheuristic. In contrast, onecan see
that the satellite image suffers from excessive variation
when theresolution parameter R becomes smaller than
60% and then again for 90%. This is due to strong
topological changesin the path, asdepictedin figure5.

I

0%

0%

T,

Figure 6: Graphical display of extracted geodesics for various
heuristic strengths.

»  Computational time saving vs. heuristic strength A: The
saving iscomputed rel ativeto thetime spent by classcal
Fast Marching. In 2D the computation times decrease
roughly linearly with the strength of the heuristic.

» Computational time saving vs. heuristic resolution R
(not shown): There is a constant overhead due to the
coarse resol ution computation (which resultsin an offset
between the curves for R = 50% and R = 20%). For
R = 20%, this overhead is balanced by the heuristic
saving as soon as A > 5%.

Thesetestsclearly show that our algorithm can bring a
large computational speed-up, but the parameters should be
findy tuned to adapt to the characteristic of each map. For
instance, these experiments show that the user must have
some prior knowledge about the typical width of the tubul ar
structures he wants to extract, and set the resolution R so
that the coarse map V, still containsthese structures.

4.3 Applications of a Multiresolution Heuristic

Volumetric Geodesic Extraction: 3D geodesic extraction
isvery useful in medical volumetric dataanalysis. It can be
applied to perform tubular structure extraction, and it is
extended to virtual endoscopy in [6]. In figure 7 one can see
the extraction of 3D geodesi csfrom synthetic data (top and
middle rows) and from real medical data (bottom row) for
R = 20%. The red surface shows the boundary of the
explored regionsof alive cells. The computational timegain
(Comp. gain) isalsoindicated.

Glabally Optimal Geodesic Active Contours: The
concept of circular geodesics was first introduced in [22].
Theauthors of [ 1] proposed asimpleway to compute circular
geodesics around a point, in order to compute a globally
optimal geodesic, with an application to object segmentation.
Theuser simply select a point C inside the object to segment
(seefigure 8), and then the algorithm virtually “cuts’ the
image along a horizontal linethat links C tothe boundary of
the image. This way, one can force a geodesic path to go
around C by running aclassical Fast Marching from a point
Sto itsdf, but forbidding the front to pass through the
segment CD.

For an underlying image | , the globally optimal
geodesic around C isdefined asthe closed geodesic curve
with minimum length, where the metricis defined as

1 1
C-x1+VI(x)?
where ||C — X|| is the distance from the curve point X to the
center C.

Theauthorsof [1] proposed apowerful agorithm based
on the branch-and-bound paradigm, which isabinary search
that avoids computing the closed geodesic for each point S
on the segment CD. However, with our heuristic front
propagation, we have tested a simpler algorithm that works
well in practice. We simply compute the circular geodesics
that pass though a given fixed number of points along the

g(x) = +é&, 4
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Figure 7: Extraction of geodesicsin 3D.

N\ N

Figure 8: Cutting the square domain to compute circular paths.

cut segment CD. These extractionscan be performed quickly
using our heurigtically driven front propagation, with the
restriction that the front should not pass though the cut
segment.

In figure9, we have shown a globally optimal circular
geodesic, computed with various heuristic strengths .

Geodesic Extraction on 3D Meshes: The Fast
Marching algorithm hasbeen extended to 3D meshesin [20].
Our heuristic algorithm also extends to 3D meshes, with the
following modifi cations with respect to the Euclidean setting:

Wemust construct a coarse mesh approximation of the
original 3D mesh. Mesh simplification isalargetopic,
and several greedy methodsexist, seefor example[11].
In our tests, we usethe farthest point strategy proposed
in [17] for remeshing, sinceit uses Fast Marching asa
buil ding bl ock.

Oncethe heuristic function has been computed on the
coarse mesh, it must be interpolated on the original
dense mesh. Several methods for data interpolation on
3D meshes exist, and we have used a method derived

Heuristic 0% 40% 60%

80% 100%

Figure 9: Globally optimal circular path extraction with increasing heuristic.
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from harmonic mesh parameterization [7]. Thisinvolves
the solution of a sparse linear system that describes a
harmonic function that fits the values computed on the
coarse mesh.

Thesetwo steps are quite computationally intensive, but
notethat:
*  The coarse mesh can be pre-computed, and can be re-
used for multiple geodesic extraction.

» Toavoidthe computational overhead of computing the
interpolation on the whole mesh, we use the local
parameterization strategy of [23]. We compute the
interpolation only on a small set of overlapping disk-
likechartsthat cover theregion of alive vertices.

In figure 1 and 10, one can seethe algorithmin action
on various meshes, and for various values of the parameter
A

Coarse mesh Heuristic 0%

50%

90% 100%

Figure 10: Heuristically driven front propagation on 3D meshes with a multiresolution heuristic.

5. LANDMARK-BASED FRONT PROPAGATION

In this section, we describe an alternate way to implement
the heuristic. This heuristic is computed using an
approximated distanceq evaluated with a set of pre-
computed distancesto landmark points.

5.1 Landmark-based Heuristic

A new method for distance eval uation on a graph has been
introduced in [10] as an admissible heuristic for the A
algorithm. We explain why this method can be useful for
our heurigtically driven Fast Marching and give aquantitative
numerical study.

This method exploits the triangle inequality, since we
have, for every pair of pointsxandyy,

d(x, Y)=Slip(| d(x,2)-d(zy)|).

Thisequality is till valid in the continuous framework
of Fast Marching, and in order to derive a useful heuristic,
one can choseasmall set z,,..., z of Landmark points. The
set of distancemapsd, (X) = d(z,, X) ispre-computed, and
we define the approximation

d,...,0) = 0 (16, (9 -4, () ©

In thefollowing, wedrop thez, ... z dependencies and
call the approximated distance . We note that this
approximation always satisfiesthe condition § < .

Figure 11 givesan intuiti ve explanation of the efficiency
of this approximation. In the ideal case, the geodesic vy,
joining alandmark z, to x also passesthrough y. In this case,

wehaved(x, y) = d(x, y) and thereisno approximation. But

in most cases, thisis not true, but ageodesic y, passes close
toy andg isindeed a good approximation of the real
distance.

5.2 Landmark-based Path Extraction
Thislandmark-based propagation can be used to speed-up
the computati on of most path planing applications, including
path findingin video games or robotic path planing.

Tk
Real life case

Ideal case

Figure 11: Justification of the approximation properties of .
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Figure 12: Example of propagation using a landmark-based heuristic with random seeding of base points.

In figure 12, one can seethe active region explored by
the propagation algorithm for an increasing number of
landmark points. These points are chosen at random on the
2D image. The explored region progressively shrinkstoward
the central extracted curve when we add more points, since
the heuristic isbecoming more accurate.

Hausdforff error

o B Hi

pat | 1
# landmarks

In figure 13, one can seea numerical evaluation of the
precision of the extracted geodesic. It reportsthedistortion

Il»—=71l,, between the original geodesic y (computed

without the heuristic) and 7 (computed with the heuristic).
We use the symmetri c mean-square Hausdorff metric

Hausdforff error

i} &0

0 _' W
# landmarks

Figure 13: Distortion caused by our heuristic propagation on the extracted geodesics. The error is reported using the Hausdor ff
distance expressed in pixels (the size of the image is 256x256).

a2 1 f CyIR f CuIR
=71 5], min - y I ces [ min -y o),

since this captures the geometric distortion caused by our
partial propagation.

On 2D maps containing important curvilinear features
(such astheroad in the exampl e on the left), the distortion
caused by the heuristic is nearly unnoticeable. On the
contrary, for relatively flat maps (such as the one depicted
on theright) the distortion can berelatively high (about few
pixelsfor a map of 256 x 256 pixels). Thisis because the
salient features of this map catch the geodesic and avoid
large lateral moves when the front propagation is modified.

In order to improvethe quality of the heuristic and thus
the resulting speed-up, one has to carefully seed the
landmarks acrosstheimage. In the next section we set up a
complete framework for the evaluation of this sampling,

together with strategiesto get a high-quality seeding of the
base points.

5.3 Seeding Strategiesfor the Landmarks

The quality of a sampling can be measured using the
previoudly introduced metrics

E(z,.2)=E(d.d, ,) for i=12
In order to find sampling locations{ z,..,z} for the
landmarks, we use various strategies, among which:

(8 A manual sampling that exploits specific knowl edge of
the2D map g. Thissemi-automati c method isnot studied
in this paper.

(b) A random samplingin theimage.

(c) A uniform sampling according to the distance d. This
can be accomplished using the farthest point sampling
procedure proposed in [17], where one chooses
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Z,,= argmax (argmln d(z,2).

(d) A uniform seeding on the boundary of the domain.
(e) A greedy strategy minimizing the E, metric. We define
thelocationsrecursively
z,,=agmin E(z,...,7,,2),

zeR

where Ris some small set of random candidates.
(f) Sameas(e) but using E, instead of E,.

Potential ¢

Real distance to I’

Distance Approximation Evaluation: A good seeding
strategy should beableto put alandmark before any couple
of pointsin the domain, near the geodesi c path connecting
these points. For a constant (i.e. Euclidean) metric, (d) is
thus the optimal sampling scheme. However, for acomplex
metric, thisisno morethecase.

In figure 14, one can see the approximated

distanced(x,, x) to atarget point x,, computed for n = 32
landmarks using various seeding strategies.

(a) Random sampling (d] Boundary sampling (e) Error- based sampling

Figure 14: Graphical display of the approximated distance d(x,, x) for various seeding str ategies.

In figure 15, one can see a plot of the approximation
error E; (X,..., X)). The error-driven seeding strategy (€)
clearly performs the best as expected by itsdefinition. For a
smooth potential g (1 eft) the seeding strategy on the boundary
(d) performs well, but it fails to capture the topology of
complex 2D maps (right).

Computational Saving Evaluation: In order to
evaluate our algorithm in a real setting, we have set-up a

— {a) Random

(d) Boundary

(e) Error driven

L 2 '
log (#Landmarks )

compl ete framework using 500 typical queries{ (x}, x;)}; for
various 2D maps. Some resulting shortest paths queries are
shown on the left of figure 16, they are relevant for many
standard applications such as path finding in video games
or robot path planing.

The right of figure 16 shows how the computational
metricE, (X, ..., X)) decreasesfor several sampling strategies.
For the greedy sampling strategy (f), we have used another

1 2
log, (#Landmarks )

Figure 15: Decreasing of the approximation error E, (z,...,z)) for various seeding str ategies.
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Typical shortest paths queries
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Figure 16: Computation speed-up E, (z,..., Z)) obtained with a various number of landmarks. The areas colored in red correspond

to the explored region without heuristic.

set of 100 typical queries, in order not to bias the
computation of the error E,.

One can see that the computation-driven sampling
strategy (f) clearly outperforms the other strategies. In
particul ar, the approximation-based strategy (€) doesnot give
good results, mainly becausetypical pathsare not correlated

to areaswhere the approximation error || d —d || islarge.

5.4 Reducing Memory Usage

Cells Representation: Classical methods, such asusing an
octree data gructure, can be used to reduce the memory usage
of level set algorithms, for examplein order to perform image
segmentation [7].

We choose to implement a simple data structure to
reduce the memory usage by allocating the grid cell on the
fly during the propagation. A typical cell datastructure, for
2D computation, is:

struct cell {
/I current geodesi ¢ distance
double distance;
/I either alive, trial or far
char state;
/I pointerstothe 4 neighbors
cdl* neighborg[4]; };

To beabletoretrieveagiven cdl in constant time, we
also store the list of allocated cellsin ahash table. Thisis
important because when a new cell is allocated, we need to

connect it tothe existing cells. Figure 17 shows a graphical
display of the overall data structures.

This pointer-based representation of the neighboring
relation isconvenient to extract the geodesic with a gradient
descent. Thereissome memory overhead dueto the explicit
storage of pointersto neighbors, but thefact that our scheme
explores significantly fewer cells than classical Fast
Marching allows to save much more memory, as shown in
the next section. The computing time overhead due to the
use of a hash tableis about 40% in all our tests.

Computation from Compressed Data: To reduce the
storage requirement of the distances to landmark d,(x), we
implement a compression procedure. A typical
implementation shoul d:

* Allow random access of the value d (x), without
decompressing thewhole data.

* Be asymetric, since we do not care about the
compression time, but we need fast access to distance
values.

* Give low decompression error, since we need an
accurate heuristic and we need to satisfy the

condition § < ¢ asmuch aspossible.
We use a two-step procedure:
«  Differential representation: A (x) = d(x,, x) and

A(Jrl(x) = d(XkJrl’ X) - dxlxk (Xml’ X)a
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Figure 17: Data structures used for the propagation.

where we use the approximated distanced, , to give

an estimate of d(x,,,,X) using the first available k
landmarks. This new representation removes the
redundancy that exists between the different distance
maps.

We code each map A using avector quantization scheme
[9]. In our tests, we use codebl ocks of size 3x3, and we
quantize the resulting vectors of R® using a codebook
of size 256. Thisresultsin amemory gain of 36: 1 with
respect to storing single precision floats.

The constraints we have on the computation from
compressed dataaresimilar to the process of rendering from
compressed textures [2]. We use the differential coding
strategy to cope with the particul ar redundancy of distances
functions. The compression produces neither noticeable
artifacts nor distortion of the extracted geodesics. The
computational time overhead dueto decompression is about
15%in CPU time.

5.5 Applicationsof Landmar k-based Heuristics

Our landmark-based propagation can be applied verbatim
to higher dimensional propagation and to triangulated
surfacesin order to speed up shortest path queries.
Constrained Path Planning: Geodesics can be used
to compute the path of arobot with various shape and motion

Speed function P

Figure 18: Examples of constrained path planning.

EH; ~ NULL<—cell J+—s{cell|»NULL
0,0) ). T A

congraints[19]. Basically, each additional degree of freedom
adds a new dimension to the domain in which the front
propagation should be performed. Solving such high
dimensional problemsistime and memory consuming, so
theuse of aheuristicishighly desirable. In our experiment,
the most important issueisthe memory used by the full-grid
classical Fast Marching, and the memory management
strategy exposed in subsection 4 is crucial to scale to
complex problems.

In figure 18, one can see two examples of path
extractions in 2D with one rotational additional degree of
freedom. This results in 3D front propagation, and the
corresponding speed function is depicted on theleft. Figure
19 shows the influence of the heuristic strength A on the
cells explored by the front propagation.

Geodesic Extraction on 3D Meshes: The Fast
Marching algorithm hasbeen extended to 3D meshesin [20].
Our heurigtically driven front propagation extends to 3D
surfaces in a straightforward manner. We use a constant
metric g = 1 and as the surfaces considered do not have
boundaries, the uniform seeding strategy (c) gives the best
results for the E, metric. In figure 20, one can see the
approximated distance d(x,x) for various numbers of
landmarks. In figure 20, one can see the front for various
numbers of landmark points.
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Figure 19: Explored area for constrained path planning.
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Figure 20: Approximation of the distance function d(x,, x) using d(x,, x) on a 3D mesh, with an increasing number of landmarks.
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