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Material Properties and Extended Sources for
Surface Rendering

Jan J. Koenderink & Sylvia C. Pont
Department of Physics and Astronomy, Universiteit Utrecht, The Netherlands

We consider generic BRDFs (Bidirectional Reflectance Distribution Functions) for rendering material surface properties.
This is of importance in diverse graphics applications. Of various formal proposals found in the literature many are not
plausible because they violate one or more physical constraints on BRDFs and of the plausible ones it is often unknown
whether they are feasible, i.e., whether an exact physical model exists. Apart from the (default) Lambertian case, no analytical
examples from the literature are conservative (i.e.. remit all of the incident light). We investigate the simplest types of
plausible BRDF that mimick the generic lobes commonly encountered in the daily environment: diffuse lobe (sand,
paper, …), specular lobe (smooth plastic, brushed metal, …), backscatter lobe (rough plaster, lawn, …) and asperity scattering
lobe (velvet, hairy or dusty surfaces, …). We propose novel methods to handle not just collimated, but also diffuse and
ambient light beams for arbitrary surface rendering. These methods allow rendering of plausible “material properties”
with no more overhead than the familiar “Lambertian surface illuminated by point source at infinity with ambient term”.
The results are exact for convex objects, though only approximate in more complicated cases.
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INTRODUCTION

In scientific visualization one often uses “shading” to augment
the visual impression of three–dimensionality of mere outline
graphics [11]. In order to do so one has to simulate light
sources and the way photons are bounced off the surfaces.

With “local rendering” we imply the determination of
the radiance of the beam scattered towards the eye in the
absence of such multilocal effects as cast shadowing and
multiple scattering (reflexes). The most general case where
local rendering is exact is that of arbitrarily illuminated
convex objects. In this paper we restrict the radiation to
beams due to sources at (effective) infinity, though this is
not an essential constraint. The simplest implementation of
the irradiating beam involves a “point source at infinity” and
the simplest implementation of scattering the “Lambertian
surface” [19,5]. More “realistic” implementations consider
“extended sources” [29] and general BRDFs.

As is well known from photography, in order to suggest
both shape and material properties one needs strategically
placed extended sources and characteristic, non–Lambertian
BRDFs [22]. This is awkward from the perspective of
computer graphics implementation since standard graphics
pipelines assume point sources and Lambertian surfaces. For
“cheap rendering” the choice of suitable BRDFs and
extended sources are critical in computer graphics.

EXTENDED SOURCES

An “extended source” is fully described through the radiance
of the incident beam [4]. Let n denote the unit surface normal,
i the direction towards an infinitesimal element of the source,
N

i
(i) the radiance. Then the irradiance H(n) of a surface

element is

0
( ) ( ) ( )
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where di denotes an infinitesimal vector solid angle in the
direction of i. The irradiance depends upon the spatial
attitude of the surface element with respect to the incident
beam through the “Lambert cosine Law” (i . n).

For the purposes of this paper we consider only three
extreme types of incident beams, namely the collimated beam
(often—rather awkwardly—called “point source at infinity”),
the hemispherical diffuse beam with a total angular spread
of 2� steradians, and the Ganzfeld with a total angular spread
of 4� steradians. The collimated beam is a good model for
direct sunlight (actual angular spread 6 × 10–5 steradians),
the hemispherical diffuse beam for overcast sky (though we
take the sky radiance as uniform instead of decreasing by
about a factor of three from zenith to horizon), and the
Ganzfeld for “ambient light” (a pure Ganzfeld exists only
in circumstances like the “polar white–out”).

Collimated beam Consider a surface element with unit
(outward) normal n, irradiated from the direction (unit
vector) i and viewed from the direction (unit vector) j. Let
the normal irradiance caused by the incident beam be H

0
,

then the irradiance is H (i, n) = H
0
 i . n (by Lambert’s law).

The radiance arriving at the eye is proportional with the
irradiance, thus N (i, j, n) = f(i, j, n) H (i, n). Here the function
f (i, j, n) is the “bidirectional reflectance distribution function
(BRDF)”. Notice that i . n � [0, 1], whereas i . n � 0 implies
“body shadow”. (For an overview of recommended
terminology see [1].)

Hemispherical diffuse beam Consider a surface that
is irradiated with a hemispherical diffuse beam of radiance
N(k) = N

i
 for i . k > 0 and zero otherwise. The “direction” of
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the beam is i. The radiance ofthe scattered beam is (notice
that you may take [ 1 1]� � � ��i n  here!):

( 0) ( 0)
( ) ( ) ( ) ( ) ( )

� � � � �
� � � � � � � � � ��j i iN N f d N g

i n i k
i j n k n k k j n k i j n

The function g (i, j, n) sums up the effect of self–
occultation (or “vignetting”) of the source, so it may be called
the “Law of Vignetting”. For a white, Lambertian surface

you obtain ( ) (1 ) 2� � � � � �Lg i j n i n , thus the scattered radiance

does not depend on the viewing direction j. In the Lambertian
case the result is reminescent to the “point source at infinity
with ambient light” formula. This is a mere accidental fact
that applies only to the Lambertian case and does not
generalize to general surfaces (vide infra).

Fully diffuse beam: “Ganzfeld” Since the incident
radiance is independent of direction, the integrand depends
only on the nature of the BRDF. One has

0
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Thus the scattered radiance depends only on the viewing
direction j. In analogy with the case of radiation seeping
out of a translucent medium one might call h(j, n) the “Law
of Darkening” [7]. For a white Lambertian surface the law
of darkening is h

L
 = 1. Thus a white Lambertian surface

becomes invisible in a Ganzfeld whereas a convex, gray
Lambertian surface is rendered as a uniform silhouette. For
general BRDFs the law of darkening is not constant and
characteristic of the material though. Thus in general the
contribution due to “ambient light” is not an additive constant
as it is in the case of Lambertian surfaces. In order to render
correctly one has to precompute the proper law of darkening
for any material in the scene.

In general the case of diffuse beams is very complicated,
since one has to perform a double integration for each
location. The use of a canonical beam, such as the
hemispherical diffuse beam, allows one to use a function of
three directions instead. This is convenient, since i, j and n
are available in the graphics pipeline. Thus it really saves
much computation to stick to canonical illuminations and
analytical BRDFs.

Notice that the material (scattering) properties of a
surface are conveniently summed up in terms of three
functions, namely

— the “Law of Shading” f(i, j, n),
— the “Law of Vignetting” g(i, j, n), and
— the “Law of Darkening” h(j, n).
A convenient measure of the “lightness” of a surface is

the double diffuse reflectance, that is the fraction of a fully
diffuse beam (Ganzfeld) scattered into any direction. One
has

0 0
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For the Lambertian surface r
L
 = 1, this surface is a

perfect scatterer. For a surface that is not a perfect scatterer

(“not conservative”) is it useful to define the “albedo” as

the function 0
( ) ( ) ( )
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i n j n i j n j . Because of

“Helmholtz reciprocity” (see below) one has that

( ) ( )� � �a hk n k n . Apparently 1
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the Lambertian white surface 1�La , in general ( ) 1� �a i n ,

due to the requirement of conservation of radiant flux.
For purposes of rendering in collimated and diffuse light

fields surfaces are fully described through the functions

( )� �f i j n ,  ( )� �g i j n ,  ( )�h j n ,  whereas ( )�a i n  and r

characterize overall reflecting properties. For the Lambertian
surface you have the simple expressions

( 1� �Lf � , ( ) (1 ) 2� � � � �Lg i n i n  and 1� � �L L Lh a r ) that are

usually implemented in rendering pipelines (see figure 1).
For more general surfaces these functions can be almost
arbitrarily complicated. This is no problem in practice though
since they may be precomputed and frozen in lookup tables.

BRDFS

“Default” material properties are Lambertian [19], but often
one prefers a “more realistic” type of surface material with
a certain degree of gloss, etc. This introduces the problem
of theoretical (analytic or algorithmic) surface scattering,
typically handled via special BRDFs [1,25]. Often such
BRDFs are chosen for computational convenience [11],
rather than physical plausibility. Many shading algorithms
in common use implement physically impossible surface
scattering properties [2, 3, 27]. Attempts to replace these
with physically realistic alternatives meet with perhaps
unexpected problems. For instance, it is very hard to
conceive of “interesting” (that is different from the default
Lambertian) analytical expressions that would simulate
physically admissible surface scattering properties and that
are also conservative, i.e., that scatter all incident photons
without absorbing any.

Notice that the Lambertian BRDF (the generic instance)
is plausible in the sense that it does not violate known
physical constraints (non–negativity, Helmholtz reciprocity
and energy conservation, vide infra), but that it is unknown
whether it is also feasible. A BRDF may be called “feasible”
if there exists a model surface that yields that BRDF in terms
of geometrical optics. (For examples [18,8, 33].) Although
we can easily check BRDFs on plausibility, we can less easily
check them on feasibility. Attempts to “explain” the
Lambertian BRDF have been going on since the 18th century
[5], but so far all have failed. The BRDFs known to be
feasible have all started out as models (e.g., the perfect
mirror, etc.) of particular physical surfaces [16,28], not as
ad hoc postulated analytical expressions.

General Properties of BRDFs

The BRDF is a property of a surface. It is clearly non–
negative throughout. General arguments suggest that the
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BRDF is a symmetrical function in the directions of the
entrance and exit beams, so called “Helmholtz reciprocity”
[25, 21, 14, 18]. For a surface area A the incident radiant
power is H (i, n)A, whereas the total remitted radiant power
is

(2 ) ( 2 )
( ) ( )( )� � � � � � �� �N d N A d

� �
�i j n i j n j n j

Here d� is the element of étendue (or throughput), and dj is
an element of solid angle in the direction of j. The symbol

(2�) denotes integration over the hemisphere 0� �j n . Since

the surface is assumed to (perhaps) absorb radiation, but
emit none, conservation of energy requires that the “albedo”

( ) 1� �a i n . A “conservative” surface is a surface of “unit
albedo”, that is one that remits all radiation falling upon it,
irrespective the direction of the entrance beam. These
exhaust all constraints on the BRDF that are listed in the
literature:

( ) 0� � �f i j n       non-negativity (1)

( ) ( )� � � � �f f Hi j n j i n   Helmholtz reciprocity (2)

( ) 1a � �i n             “conservation of energy” (3)

Although there are several BRDFs in use that “conserve
energy [20]” none of them has unit albedo except for the
Lambertian case. In this paper we restrict the term “energy
conservation” solely to the case of unit albedo. The final
inequality is then simply a necessary condition for a BRDF
to be counted as “plausible”.

A great many BRDFs in common use fail to be plausible
[20]. Although this is known to violate basic radiometry such
BRDFs are used because of algorithmic speed or ease of
implementation in hardware graphics pipelines. Many users
prefer speed over realism that they “can’t see”. Perhaps the
most popular choices are the Phong [27] and the Blinn–
Phong [2,3] BRDFs. Neither of these are plausible though
because they violate Helmholtz reciprocity.

Generic, Simple, Analytic BRDFs

One can easily frame plausible BRDFs through simple
analytic expressions. Many are simple enough that they pose
no problems of algorithmic speed or ease of implementation.
We suggest useful examples below.

The major modes of surface scattering are bulk
scattering, specular reflection, backscattering and asperity
scattering. Together (and in various combinations) these
account for most of the materials encountered in the daily
human environment. Exceptions involve macroscopic or
microscopic deterministic structure [34,35,36] (coombed
hair, opals, peacock feathers), we ignore these. The generic
scattering modes give rise to more or less well defined
“lobes” in the scattering indicatrix, often easily identified in
empirically determined BRDFs.

Bulk scattering is due to photons that did enter the bulk
of the material and emerge after multiple (sub–surface)
scattering events [26, 7]. After such multiple scattering events

all traces of the direction of incidence are wiped out. This
results in a broad, diffuse lobe centered on n. Almost any
material shows some bulk scattering;

Specular reflection is due to Fresnel reflection at planar
interfaces between materials of different refractive index
[4,14]. Often the surface is only locally planar, but
macroscopically or mesoscopically “bumpy”. In such cases
one observes a lobe that is roughly centered on

2( )� � �k i n n i , that is the direction of the mirror–reflected
ray, but broadened due to the bumpiness [32,12]. The degree
of broadening can vary enormously. In some cases (lemon–
peel for instance) the lobe has stochastic structure due to
sparse sampling of the bumpiness;

Backscattering is typical for rough surfaces [18]. The
combined influence of cast shadowing and visual occlusion
(both due to vignetting) makes that only illuminated parts
of the surface are seen from the direction of incidence [31,22]
(“heiligenschein”). One obtains a rather broad lobe centered
on i. This is why the full moon is so bright [13,22] (for that
reason called “opposition effect”);

Asperity scattering is due [17,10] to a layer of
asperities that cover the nominal surface like a thin
“atmosphere”. Common examples are human skin or plant
leaves covered with tiny hairs, the tips of which act as
asperities. Dust or face powder has a similar effect. Synthetic
examples include various types of velvet. Peaches are
optically different from plums due to asperity scattering. One
has a typically narrow lobe extended along the surface,
orthogonal to n.

Models of various complexity (and physical realism)
can be framed for any of these modes. Usually one has
insufficient knowledge concerning a surface to actually apply
a full blown physical model though. There is a room for
simple analytical expressions that manage to capture the
essence of the major modes. One may regard them as
“phenomenological models” since they not necessarily
respect all kinds of physical constraints. We will only
consider plausible models though.

Since we require the BRDFs to be plausible, they have
to be non–negative functions of the basic constituents:
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1
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Notice that these parts are all in the range [0, 1], thus
they are not to be considered BRDF’s as such. Since the
parts satisfy Helmholtz reciprocity, any function of them will
too. The scalar product i . j captures the similarity between
the directions of exit and incidence and thus allows one to
capture the geometry of backscattering. Likewise, the
product (( )( ))� �i n j n  allows one to capture the geometry
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of asperity scattering. In order to capture the characteristic
properties of the “lobes” we only consider unimodal BRDFs.
All cases are illustrated in figure 1.

For typical materials the BRDF is multimodal and
determined by a combination of bulk scattering (“diffuse
reflectance”), specular reflectance (“gloss”), backscattering
and asperity scattering [9]. Such combinations can be
constructed by “partitive mixture of BRDFs”, that is to say

1

1
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( ) �
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k kk
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kk

f
f

�

�

i j n
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One easily shows that such a mixture is non–negative
throughout, conforms to Helmholtz reciprocity and does not
violate energy conservation if this applies to the individual
components. The method is well suited to be combined with
a method suggested by Ngan et al. [24] for image driven
BRDF selection.

Bulk Scattering

The best known (and most frequently used) instance of bulk
scattering is of course the Lambertian surface. There doesn’t
exist a physical model, so the Lambertian BRDF is a
phenomenological model. It does not fit cases of actual
diffuse scattering particularly well, especially in the cases
of grazing directions of incidence or viewing [23,26]. In
order to correct for this Minnaert [22] suggested the
expression (“d” for “diffuse”)

� � 2
( ) ( )( ) with

2d d df C C
� � �
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�

i j n i n j n

The parameter � controls the degree of “edge
darkening”. The parameter � may take any positive values,
but realistic values are in the range from zero to one. For
��= 0 the Minnaert BRDF turns into the Lambertian, a
realistic value for use is � = 1. The value of the constant C

d

has been chosen to be the maximum value that does not
violate energy conservation. This simple but instructive case
allows us to introduce some important notions. The Minnaert
BRDF produces a lobe centered upon the surface normal,
irrespective of the direction of the incident beam. The
radiance in directions that graze the surface is zero. Thus an
object rendered with a Minnaert BRDF will have a dark edge,
different from the Lambertian case.

The Law of Vignetting can be found analytically by
straightforward integration, but is complicated, because
expressed in terms of confluent hypergeometric functions
[6]:
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where B
z
 denotes the incomplete beta–function. Simple

expressions are obtained for small integer exponents, e.g.,
for � = 1 one has:

2( ) arccos( ) 1 ( )
� �
� �
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Thus it is indeed different from the Lambertian
expression. In the case of the Lambertian BRDF the
rendering function is equal to that for a “point source at
infinity with ambient light”, but we now see that this is
fortuitous. The law of darkening can also be obtained in

closed form, namely ( ) ( )� � �dh �j n j n . It depends on the

value of the edge darkening parameter. (See figure 2)
Apparently the Minnaert BRDF is not conservative, indeed

the albedo for collimated illumination is ( )� �da �i n . Since

1�da  for 0��  the Minnaert surface does not scatter all

photons, but absorbs some. The surface is as bright as the
constraints allow, yet scatters less effectively than the
Lambertian surface. The double diffuse reflectance is

2 (2 )� � �dr � .

Specular reflection

A simple expression for a specular lobe is (“s” stands for
“specular”):

1
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where we limit � to positive integer values. The expression
captures the mirror reflection in the simplest possible way.
An expression due to Lewis [20] (known as “cosine lobe”
illumination model) is very similar, but fails to be non–
negative and when this is cured turns out to have as purious
lobe (due to the original negative part). The above expression
is unimodal by design. Again, the normalization factor C

s

has been chosen to be as large as is compatible with energy
conservation. This BRDF has a single lobe in the direction
of the reflected ray. The width of the lobe can be controlled
through the parameter �. Realistic values run from
��= 1 (a dull gloss) to very high (looks more specular). The
illustration is for ��= 8. Although the Law of Vignetting and
the Law of Darkening can be obtained in terms of elementary
functions for integer values of ��> 0, the resulting expressions
contain so many terms that they are practically useless for
realistic values of the parameter. It is a simple matter to
precalculate a lookup table of course. The BRDF is not

conservative, e.g., the albedo is (3 2 ) 5� � � �sa i n  for

� = 1, and a
s
 =

� �24201945 33554432cos 9773400cos 2 415212cos 4 10728cos6 45cos8

67125248

� � � � �
�

� � � � �

for � = 8, where arccos( )� �� i n . A sphere in a Ganzfeld
shows a dark edge. (See figure 3).
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Figure 1: The Lambertian case. At top left a graphical rendering of the scattering indicatrix and right a rendering of a sphere
illuminated with a collimated beam (at 45° from the viewing direction, from upper right—as indicated by the arrow). At
bottom left a sphere illuminated with a hemispherical diffuse beam and right a sphere in a Ganzfeld.

Figure 2: The Minnaert diffuse lobe for  = 1. At top left a graphical rendering of the scattering indicatrix and right a rendering of
a sphere illuminated with a collimated beam (at 45° from the viewing direction, from upper right—as indicated by the
arrow). At bottom left a sphere illuminated with a hemispherical diffuse beam and right a sphere in a Ganzfeld.
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Figure 3: The specular lobe for  = 8. At top left a graphical rendering of the scattering indicatrix and right a rendering of a sphere
illuminated with a collimated beam (at 45° from the viewing direction, from upper right—as indicated by the arrow). At
bottom left a sphere illuminated with a hemispherical diffuse beam and right a sphere in a Ganzfeld.

Backscattering

Arguably the simplest expression that yields a true
backscatter lobe is (“b” stands for “backscatter”):

1 6
( )

2 5 2

� �� �� � � � � �� �� �
b b bf k C with C

�

��
i j

i j n

where the normalizing factor C
b
 has been chosen to maximize

the reflectance. One easily checks that the scattered beam is
unimodal, its width can be controlled through the parameter
�. The Law of Vignetting and the Law of Darkening can be
obtained analytically for integer values of ��> 0. The
resulting expressions are numerically useful for small values
of � (a realistic case). For instance, for ��= 1 you have that

� �3 1
( ) (1 cos ) cos cos( 2 ) 2( )sin sin

10 5
� � � � � � � � � �bg � � � � � � � �
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i j n

where cos� � �i n ,  sin sin� � � �j n  and

[ ] cos sin� � � � � �i j n . For instance, for 1��  the Law of

Darkening is ( ) (3 2 ) 5� � � � �bh i n i n . Thus the BRDF is

not conservative, there is a slight edge darkening. (See
figure 4).

Perhaps remarkably, it is possible to design a “perfect
backscatterer”, that is a surface whose reflectance in the

backscatter direction does not depend upon the direction of
incidence. A sphere of such a material, when viewed from
the direction of the incident beam (e.g., the full moon),
appears like a featureless, uniform disk. A simple BRDF that
achieves this is

1

(1 ) 1
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� � �
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�
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for integer ��� 2. We do not know whether this is the only
possible BRDF with this property.

Asperity Scattering

A simple expression that yields a “surface lobe” typical of
asperity scattering is (“a” stands for “asperity scattering”):

� � 1
( ) 1 ( )( )� � � � � � � � �a a af k C with C

�

�
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The normalizing factor C
a
 is as large as possible as is

compatible with the plausibility constraints. The parameter
� should be larger than one. For high values of the parameter
one has strong, velvet–like, asperity scattering. Notice that
the expression is much like the “complementary” of the
Minnaert BRDF. For any direction of incidence the radiance
is highest (namely C

a
) in directions grazing the surface. The
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radiance falls off rapidly for less oblique rays. The parameter
� controls the “‘width” of the asperity scattering lobe. The
Law of Vignetting and the Law of Darkening can be obtained
analytically for integer values of ��> 0. For small values of
� one obtains useful expressions though. For instance, for
the realistic value ��= 1 one has
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2 2

1 4
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The BRDF is not conservative. This material shows an
edge lightening, as is typical for a material like velvet which
shows strong asperity scattering. (See figure 5)

CONCLUSIONS

The literature on ad hoc expressions for the bidirectional
reflectance distribution function is rather muddled. Even
today (mainly in the computer graphics community) BRDF
expressions that fail on mere plausability are in common
use. Non–plausibleBRDF expressions have become scarce
in applied optics after Minnaert’s work. As we have shown

simple analytical expressions can be framed such that no
physical constraints are violated and yet such that well known
generic physical properties of common materials such as
diffuse scattering, specular scattering (gloss), backscattering
and asperity scattering are represented in a parameterized
manner. One property that cannot so easily be accommodated
is conservation of radiant power though.

The choice of a few canonical surfaces and a few
canonical light fields as advocated here has the merit that it
is easily integrated in existing graphics pipelines with almost
negligible (as compared to the Lambertian assumption)
overhead, yet without violating basic physical constraints.
This allows more realistic rendering to be done “on the
cheap”. The method is exact for convex objects, though only
approximate for non–convex ones, precisely as with the
standard default rendering method.

In general one will assign different colors to the various
components, e.g., the diffuse component is due to the bulk
material and will be assigned the “body color”, the backscatter
component is due to multiple scattering microcavities, thus
willbe assigned the body color at higher saturation level,
whereas the specular and asperity components are due to
directly scattered or Fresnel reflected radiation, thus will be
assigned the color of the source [15, 30, 37].

Figure 4: The backscatter lobe for  = 1. At top left a graphical rendering of the scattering indicatrix and right a rendering of a
sphere illuminated with a collimated beam (at 45° from the viewing direction, from upper right—as indicated by the
arrow). At bottom left a sphere illuminated with a hemispherical diffuse beam and right a sphere in a Ganzfeld.
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