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This paper proposes an action specific model which automatically learns the variability of 3D human postures observed in
a set of training sequences. First, a Dynamic Programing synchronization algorithm is presented in order to establish a
mapping between postures from different walking cycles, so the whole training set can be synchronised to a common time
pattern. Then, the model is trained using the public CMU motion capture dataset for the walking action, and a mean
walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and
motion direction are also computed at each time step. As a result, in this work we have extended a similar action model
successfully used for tracking, by providing facilities for gait analysis and gait recognition applications.
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1. INTRODUCTION

Human motion analysis has received great attention from
the research community during the past years. The promising
applicationsit brings comprise automatic video surveillance,
gait recognition, human body tracking, automatic video
annotation, realistic motion synthesis, sports performance
and medical applications among others. At present, there
exist alot of publicationsrelated to thiswide and rel atively-
old research area [27, 25, 1] dueto the number of involved
tasks, which isdirectly proportional to the huge number of
potential applications.

The nature of the open problems and techniques used
in human motion analysis approaches strongly depend on
the goal of the final application. Hence, most approaches
oriented to surveillance demand performing activity
recognition tasks in real-time dealing with illumination
changesand |l ow-resol ution images. Thus, they requirerobust
techniques with alow computational cost, and mostly, they
tend to use simple models and fast algorithms to achieve
effective segmentation and recognition tasks in real-time.
Additionally, unlike applicationswhich require finding body
parts, maost approachestreat theimage asawholeand extract
2D features which are fed into classification schemes to
providethe maost plausible explanation of what ishappening
in the scene [7, 20]. Complementarily, other video-
surveillance approaches are aimed to discover unusual or
unseen situations, trigger an alarm when such situations are
detected, and let ahuman operator supervise the scene. An
example of this kind of systems is[8] where the system is
designed to supervise a swimming pool environment so an
alarm can be triggered in case there is a water-related
situation. They extract several features such as speed,

posture, submersion time, etc. from each of the tracked
objects within the surveillance perimeter, and fed them into
apolynomial network in order to detect emergency events.

In contrast, approaches focused to 3D tracking and
reconstruction, require to deal with a more detailed
representation about the current posture that the human body
exhibits[19, 22, 6, 23]. Theaim of full body tracking isto
recover the body mation parametersfrom image sequences
dealing with 2D projection ambiguities, occlusion of body
parts, and loose fitting clothes among others. Thus, they
require human body models able to capture the relative
positions between joints and limbs. Towards this end, an
“stick figure” model [14] is usually used to represent the
human body configuration, wherebody parts are represented
as segments which are connected by jointswith a predefined
number of Degrees of Freedom (DOF). Additionally, the
stick-figure model can be fleshed out by using volumetric
primitives such as cylinders, truncated cones or €llipsoids
in order to model the surface of the human body [26, 5].
The number of segments and joints affects the complexity
of the model, which in turn, is strongly determined by the
final goal of the application.

On the other hand, gait analysi s applications demand
methods suitable for comparing maotion sequences between
individuals, between the same subject, and w.r.t. some
universal representation of the same motion. They may be
based on the detailed analysis of body partstrajectories[10],
or in the extraction of characteristic simple image-based
features for each individual from the image sequences[15,
11]. Similarly, some gait identification approaches use the
information from joint trajectories, according to Johansson’'s
studiesfrom theearly 70’s[12] pointing out that the motion
of the joints provides the key to recognize the behaviour
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and the identity of the whole figure. Other approaches to
gait recognition are based on appearance cues of the
individuals[2, 4, 17, 13]. For instance, in [ 13] they present
two methods for identification of humans using gait. They
extract a binary silhouette of the individual and compute
thewidth of its outer over time. Then, these features are fed
into an Hidden Markov Moddl (HMM) for classification.

Finally, motion synthesisapplications usually deal with
complex models having alarge number of DOF [16, 22, 24].
Here, the pursued objectiveisto providerealism and natural
motion to animations rather than merely describing the
motion performed. For example, in [24] they use a database
of pre-recorded motion capture sequences and learn an
statistical model for segments of the original motion capture
data. Then, they are able to re-use previously recorded
motion subsegquences in the actual animation, providing
realism and soft transi tions between motions.

Complementarily, we present an action-specific model
of human motion suitable for many applications, that has
been successfully used for full body tracking [19, 18]. In
this paper, we explore and extend its capahilities for gait
analysis and recognition tasks. Additionally, we present a
method for synchronizing similar motion sequencesin order
to allow comparison between them. Our action-specific
modd istrained with 3D mation capture datafor thewalking
action from the Carnegie Mellon University’s (CMU)
GraphicsLabMation capture database. In our work, human
postures are represented by means of a full body 3D model
composed of 12 limbs. Limbs' orientations are represented
within thekinematic tree using their direction cosines[28].
Asaresult, we avoid singularities and abrupt changes due
to therepresentation. Moreover, near configurations of the
body limbs account for near positionsin our representation
at the expense of extra parameters to be included in the
model. Then, Principal Component Analysis (PCA) is
applied to the training data to perform dimensionality
reduction over the highly corrd ated input data. Additionally,
the main modes of variation of human gait are naturally
represented by means of the principal components found.
Thisleadsto a coarse-to-finerepresentation of human motion
which relatesthe precision of themodel with its complexity
in anatural way, and makesit suitable for different kind of
applications which demand more or less complexity in the
modd.

Subsequently, all the walking performances are
synchronised using a Dynamic Programming (DP) algorithm
and a mean manifold for a set of training performancesis
computed. As a result, we can analyse intra-performance
differencesin each timestep. In other words, we can quantify
the difference between the same part of two different
performances of the same action, enabling to achieve gait
analysis for sports performance or medical applications
among others. Finally, we learn a mean direction of motion
for subsequences of a determined length, and extract
stati stics from the synchroni sed dataset that characterisethe

variation observed in each step between different training
performances. Thisleads, together with the computed mean
performance, to gait identification applications sincewe can
establish classification boundariesaccording to the variation
observed from the mean performance. Both the action-
specific mode and the synchronization algorithm constitute
themain contribution of this paper.

The remainder of this paper is organised as follows.
Section 2 details the composition of the motion database
used for training, the human body modd employed, and
explains the method used for synchronising the whole
training set. Then, Section 3 describes the action specific
model and explainsthe procedurefor learning its parameters
from the synchronised training set. Section 4 introduces how
this model is used for gait analysis and gait recognition
applications and some experimental results are shown.
Finally, Section 5 concludesthis paper and outlinesthefuture
research lines.

2. MOTION DATABASE SYNCHRONIZATION

In order to train and test our approach, we used the CMU
Graphics Lab Mation capture database. The motion datawas
acquired at 120 fpswith aVicon Motion Capture System,
using a4l markers set. The database contains atotal of 2622
performances classified in 23 different motion categories
such aswalking, boxing or running, and were performed by
different subjects. We encourage thereader to refer totheir
website for further details on the acquisition procedure,
markers positionsand database organization.

2.1 Human Body M odel

The body model employed in our work is composed of
twelve rigid body parts (hip, torso, shoulder, neck, two
thighs, two legs, two arms and two forearms) and fifteen
joints, see Fig. 1(a). These joints are structured in a
hierarchical manner, constituting akinematic tree, wherethe
root islocated at the hip.

However, posturesin the CM U database are represented
using the XYZ position of each marker that was placed to
the subject in an absolute world coordinates system.
Therefore, we must sel ect some principal markersin order
to make the input motion capture data usable according to
our human body representation. Figure 1(b) relates the
absol ute position of each joint from our human body model
with the markers' used in the CMU database. For instance,
in order to compute the position of joint 5 (head) in our
representation, we should compute the mean position
between the RFHD and LFHD markers from the CMU
database, which correspond to the markers placed on each
side of the head. Notice that our model considers the |eft
and theright parts of the hip and the torso asa uniquelimb,
and therefore wereguire a unique segment per each. Hence,
we compute the position of joints 1 and 4 (hip and neck
joints) asthe mean between the previous'y computed joints
2 and 3, and 6 and 9 respectively.
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We use directional cosines to represent relative
orientations of the limbs within the kinematic tree[28]. As
a result, we represent a human body posture ¢ using 36
parameters, i.e.

v ={67,6;,0],...,05,,05,,05}, (1)

where 0/,0/,0; aretherelativedirectional cosines for the

limbl, i.e. the cosine of the angle between alimb | and each
axis x, y, and z respectively. Subsequently, let us define a
particular performance ¥, of an action as a time-ordered
sequence of F, postures such as

\Pi :{wila"'awiﬁ}a (2)
where the index i denotes the number of performance.
Finally, an action A, ={¥,...,'¥', } isdefined by all the
I, performancesthat belong to that action.

Directional cosines constitute a good representation
method for body modeling, since it does not lead to
discontinuities, in contrast to other methods such as Euler
angles or spherical coordinates. Additionally, unlike
guaternions, they have a direct geometric interpretation.
However, given that we are using 3 parametersto determine
only 2 DOF for each limb, such representation generates a
considerable redundancy of the vector space components.
Additionally, the human body motion is intrinsically
constrained, and these natural constraints lead to highly
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correlated datain the original space. Therefore, we aim to
find a more compact representation of the original datato
avoid redundancy. To do this, we consider a set of
performances corresponding to a particular action A, and
perform PCA to all the postures that belong to that action.
Then, we project all thetraining posturestothe PCA space,
i.e

P=[ey,...6] (V—1), ©)

where referstothe original posture, {p denotesthe lower-

dimensional version of the posture represented in the PCA
space, [e,,..., €] isthe PCA spacetransformation matrix that

correspond to the first b selected elgenvectors, and {p is

the mean of all the postures. The resulting PCA-like space
where postures are represented will be denoted as () A. As
a result, we obtain a lower-dimensional representation of
human postures which is more suitable to describe human
motion, since we found that each dimension on the PCA
space describesa natural mode of variation of human motion
[9]. Choosing different valuesfor b lead to models of more
or less complexity in terms of their dimensionality. Hence,
while the gross-motion? is explained by the very first
eigenvectors, subtlemaotionsinthe PCA spacerepresentation
requires more eigenvectorsto be considered. The projection
of thetraining sequencesinto the PCA spacewill constitute
theinput for our sequence synchronization algorithm.
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Figure 1. Details of the human body model used (a) and the relationship to the marker set employed in the CM U database (b).
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2.2 Composition of the Training Set

Given that we are focused in modeling the walking action,
we only usethe walking sequences from the CM U database.
As a result our training set is composed of 12 subjects
showing different performances of the walking action. In
turn, each walking performance consigtsin avariable number
of cyclesranging from 1 to 5. Subsequently, each recorded
performanceis split into its compaosing walking cycles. We
used the angle between the | eft and right legsasthecriterion
for splitting walking cycles. A full cycleisdefined asall the
body posturesin between two consecutive maximums of the
angle between both legs when the left leg remainsin the
back. Incomplete cycles and erroneous sequences were
discarded from the training set. Asaresult, wefinally end
up with a set of 16891 body postures corresponding to 126
walking cycles performed by 12 different actors showing
different speeds and different body configurations while
performing the same action. Table 1 detail sthe composition
of our training set. The number of each subject and recorded
performance corresponds to the same indexes used in the
CMU database.

Table 1
Detail of the Training Set Composition

Subject Index of selected #recorded Total #of  Total #
id. performances perfor-  walking body

mances cycles postures
2 {1, 2} 2 3 372
5 {1} 1 3 448
7 {1,2,3,6,7,8,9, 10,11} 9 15 2027
8 {1,2,3,6,9, 10} 6 9 1058
12 {3} 1 3 482
16 {15, 16, 21, 22, 31, 32,47} 7 15 1977
35 {1,2,3,4,5,6,7,8, 23 42 5782

9,10, 11, 12, 13, 14,
15, 16, 28, 29, 30,
31, 32, 33, 34}
38 {1, 2} 2 4 540
39 {1,2,3,4,5,6,7,8, 13 26 3260
9, 10, 12, 13, 14}

43 {1} 1 2 263
49 {1} 1 3 491
55 {4} 1 1 191
Total 67 126 16891

2.3 Synchronization Algorithm

As stated before, thetraining sequences are acquired under
very different conditions, showing different durations,
velocities and accelerations during the performance of a
particular action. Asaresult, it isdifficult to perform useful
dtatistical analysisto theraw training set, sSince we cannot
put in correspondence postures from different cycles of the
same action. Therefore, a method for synchronizing the

whole training set is required so that we can establish a
mapping between postures from different cycles.

Inspired by techniques used in the stereo-matching and
image procesing literature [3, 21], we developed a nove
dense matching algorithm based on Dynamic Programming
(DP), which allows us to find an optimal solution for
synchronizing the pre-recorded motion sequences of the
same class in the presence of different speeds and
accelerations. Towards this end, we first compute the
similarity between each pair of training sequences with a
given metric. Then, in order to extract from theinput data
set the best time scal e pattern for synchronization, an intra-
class minimum global distancecriterion isused. Finally, all
walking cycles are synchronised to the computed time
pattern. The detail ed explanation of the processisasfoll ows.

The projection of the training sequences into the PCA
space constitutes theinput for our sequence synchronization
algorithm. Hereafter, we consider amultidimensional signal
X, (t) as an interpolated expansion of each training
performance \J, such as

X =1q if t=(f-15f; f=1..,F; (4

where the time domain of each action performance x(t) is
[0, T).

Before darting synchronising thedataset, al thewalking
cycle performances are resampled, using cubic spline
interpolation, so that all the performances have exactly the
same number of frames F. The longest performance from
thetraining set is chosen to be the onewhich determinesthe
number of framesF of therest of the set. Asaresult, all the
input sequences x (t) have thesame period T.

The problem of synchronizing two multidimensional
signalsx (t) and x_(t) issimilar to the matching problem of
two epipolar linesin astereoimage. For stereo matching a
Disparity Space Image (DSI) representation is usually
employed [3, 21]. The DSl approach assumesthat a2D DSl
matrix has dimensionstime p and and disparity d, ranging
from0<p<P,and-D<d<D. Let E(d, p) denotethe DS
cost value assigned to each DSI matrix element (d, p)
calculated by

E, (P, d) =[x, (pdt) - X, (pdt + dat)[",
where 5t standsfor thetime sampling interval used.

Consequently, weformulatethe synchronization task as
an optimization problem asfollows: find thetime-disparity
function A (p), which minimizes the synchronization
distance between the compared signalsx andx , i.e.

()

Aun(P) =a0gMINY. B, () + 4 Y [d+D-d()]. (o

Thediscretefunction A__(p) coincides with the optimal
path through the DSI trellis. In other words, we must find
the path whose sum of cost values plusits wei ghted length
is minimal among all other possible paths. Thisis solved
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efficiently by using the Dynamic Programming. The method
consists of an step-by-step control and optimization given
by thefollowing recurrencerelation:

S(p,d) = E(p,d)+mnl{8(p—1d+k)+y1d+k1},
S(0,d) = E(G,d), (7)
where the scope of the minimization parameter ischosen in

accordance with

Apm(P+D=A,L( p)| <1.By using that

recurrence relation, the minimal value of the objective
function in Eq.(6) can be found at the last step of
optimization. Next, theagorithm worksin reverse order and
recovers a sequence of optimal steps (stored in a lookup
table K(p,d) for the values of theindex k in the recurrence
relation given by Eq. (7)) and eventually the optimal path,
given by

d(p-1) =d(p)+K(p,d(p)),
d(P-1) =0,

A(p) =d(p). (8
Finally, havingfound A_ _(p), the synchronised version
of x_(t) to abase rate sequence x (t) might be calcul ated by

Xom(PO) =X, (P3L+ A, (P)S). (9)

Summarizing, the dense matching algorithm that
synchronises two arbitrary human motion sequences
X, (t)and x_ (t) isasfollows:

1. Preparea2D DS| matrix, and set initial cost values

E, using Eq. (5)
2. Find the optimal path trough the DSI using
recurrence Egs. (7), (8).

3. Synchronise x (t) totherateof x (t) using Eq. (9).

Our algorithm assumes that a particular sequence is
chosen to be atime scale pattern for all other sequences. In
order to make an optimal choice of the sequence that will
be used as the pattern for synchronizing the rest, a
statistically proven rule according to some appropriate

DIM 1 (69.7%)

DIM 2 (8.5%)

criterion is desirable. Towards this end, we define the
synchronisation distance between a pair of sequences
(n, m) as

P

Dn m= Z
i

P-1

)

i=0

Then, we can compute the global distance of the full

synchronization of all the sequencesm rdativeto the pattern
sequence n as

X (181) = X (5t + A ()OO

Apn(i + D)8t = A, (i), (10)

D,= Y. Dy
meA

We thus choose the synchronizing pattern sequence with

minimal global distance D : in astatistical sense, such signal

can be considered as a median value over all the

performances that belong to the set of A _or can bereferred
to as median sequence.

Finaly, after running thealgorithm on all our training

performances , all the walking cycles have been

synchronised and will be denoted as . ={1?,..., )} -

Figure 2(a) shows the first 4 dimensions of the input
walking sequences represented in the PCA space without
performing any synchronisation. Figure 2(b) showsthe same
situation after applying the synchronization algorithm
proposed in thiswork. Notice that acommon mation pattern
arises after the synchronisation step.

(11)

3. LEARNINGTHE MOTION MODEL

Once al thewalking sequences share the sametime pattern,
we learn an action specific model for walking which is
accurate without loosing generality, and suitable for many
applications such as gait analysis, gait recognition and
tracking. Thus, we want to learn where the posturesliein
the space used for representation, how do they change over
time as the action goes by, and what characteristics do the
different performances have in common which can be

DIM 1 (69.7%)

DIM 2 (8.5%)

) 50 100 150 200 “o 50 100 150 200
t t

DIM 3 (8.2%)

DIM 4 (4.0%)

Figure 2: Thefirst b = 4 dimensions within the PCA space before (a) and after (b) synchronization of the training set.



38 International Journal of Computational Vision and Biomechanics

DIM 1 (69.7%)

DIM 2 (8.5%)

DIM 3 (8.2%)

1 1
0.5 ,’-\ P
) X K Y
LA \ N
047 AN P N
’
-0.5 \J’ ‘\_,f
. ] -1 . . -1 . .
0 100 200 0 100 200 0 100 200
DIM 4 (4.0%) DIM 5 (2.5%) DIM 6 (1.4%)
1 1 0.5
0.5 'f'--.b\ 0.5 a8 ," —\\ 'J‘-\ ~
S R \‘ . . P L p—p ‘ ’

T

Y

N\, ,
Ny ———
0_/-\—"-\ Uw;.-\‘ 0 P ™ N

P

(N wn .y
'\‘ ’Fn—“\ ” N
— gy

-0.5

0 100 200 0

100

200 0 100 200

Figure 3: Learned mean performance g and standard deviationo, for the walking action.

exploited for enabling the aforementioned tasks. In other
words, we aim to characterize the shape of the synchronised
version of thetraining set for thewalking action in the PCA-
like space. The processis asfollows.

First, weextract fromthetraining set A, ={ ¥y ¥, }
amean representation of the action by computing the mean
performance §* ={,..,'}, where each mean
posturey);' is defined as
t=1..F.

$=Z%v (12)

i=1
|, isthe number of training performances for theaction A,

{bitcorresponds to the t-th posture from the i-th training

performance, and finally, F denotes the total number of
postures of each synchronised performance.
Then, we want to quantify how much the training

performances J; vary from the computed mean

performance g * of Eq. (12). Therefore, for each time step

t, we compute the standard deviation o, of all the postures
1 that sharethe sametimestampt, i.e.

(13)

Figure 3 shows the learned mean performance  (red
solid line) and +3 times the computed standard deviation o,
(dashed black line) for the walking action. Weused b = 6
dimensions for building the PCA space representation
explaining the 93.3% of total variation of training data.

On the other hand, we are also interested in
characterising the temporal evolution of the action.
Therefore, we computethe main direction of themotion v,
for each subsequence of d postures from the mean
performance g, i.e.

zt—m—l (djl_ujlfl)
=t @-3 _ vV
V= %; Vi :Hv_t’ (19

where y, is a unitary vector representing the observed
direction of motion averaged from the last d postures at a
particular timestep t. In Figure 2, the first 3 dimensions of
the mean performance are plotted together with the direction
vectorscomputed in Eq. (14). Each black arrow corresponds
to the unitary vector y, computed at time t, scaled for
visualization purposes. Hence, each vector encodes the mean
observed motion’sdirection fromtimet—dtotimet, where
d stands for the length of the motion window considered.
Additionally, selected posturesfrom the mean performance
have been sampled at timest = 1, 30, 55, 72, 100, 150 and
168 and overlaid in the graphic.
As aresult, the action model "4 is defined by

M ={Q% ¥ 0,v}, t=1.F, (15)

where (A isthe PCA space definition for action A, g

is the mean performance, and o,,y, correspond to the

computed standard deviation and mean direction of motion
at each time step t, respectively.

Finally, to handlethe cyclic nature of the waking action,
we concatenate thelast posturesin each cyclewith theinitial
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Figure 4: Sampled postures at different time steps, and learnt direction vectors Vl from the mean perfor mance for the walking action.

postures of the most close performance according to a
Euclidean distance criterion within the PCA space.
Additionally, thefirst and last (d/2) posturesfrom the mean
performance (where d is the length of the considered
subsequences) are resampl ed using cubic plineinterpolation
in order to soft thetransition between walking cycles. Asa
result, we are able to compute ¢, and v, forthelast postures
of afull walking cycle.

4. APPLICATIONSAND EXPERIMENTAL
RESULTS

In this section we use the action specific model A in
different application scenarios. A similar model was
successfully used within aBayesian 3D tracking framework
in [18], and here its applicability for gait analysis and gait
identification is presented and some experimental resultsare
shown.

4.1 Gait Analyss

Given the synchronisation of different performancesto the
same time pattern, the angle variation between different
performances can be quantified and analysed at any
particular moment of the action.

We took three performances from different subjects,
namely S2, S5 and S7, in order to analyse how different
they perform on a walking cycle. The first performance
corresponds to subject #2, 1st walking cycle from
performance #1, and will be denoted as ‘¥',. The second

one, ¥, corresponds to the 1st cycle of the 1st

performance of subject #5, and finally, thefirst cycle from
performance #2 from subject #7 was compared and will be
denoted as ¥ ¢,. Figure 3 shows the evolution of absol ute
direction cosine angles from 4 limbs of the body model,
namely the hip, the shoulders, the right upper arm and the
right upper leg, respectively. It isworth saying that subjects
S2 and S7 were males, while subject S5 corresponds to a
female. By comparing the depicted angle variation values
between the three walkers, one can observe several
differences. In the first place, there are not substantial
differences between hip’s motion between the two male
subjects. However, the hip’sanglesw. r. t. the X and Y axes
from subject S5, corresponding to the elevation and rotation
parallel to the floor according to Fig. 1, are alot different
from the other tested subjects. Thus, the swing movement
of the hip is more emphasized in the female subject
performance. Contrarily, when comparing the anglevariation
of theright arm and | eg between mal ewalkersand thefemale,
few dissimilarities can be derived except that the female
walker exhibits a less emphasized swing movement in the
whole walking cycle. On the other hand, the shoulder
movement isdlightly different specially concerning the angle
w.r.t. Y axis, corresponding to the elevation of the limb. In
general, while subjects S2 and S7 show some differences,
they share a very similar walking style compared to subject
5. Theseresults confirm the conclus ons stated in [10] about
differences between wal king stylesbetween male and female
actors.
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Figure 5: Absolute direction cosines computed for subjects S2, S5 and S7 for the hip, shoulder, right upper arm and upper leg limbs.

4.2 Gait Identification

Totest thesuitability of our action modd for gait recognition
applications, weaim to identify which subject is performing
an action by analysing the observed motion from a particular
test subject. Hence, we trained an specific modd for each
subject § , wherej identifies the subject according to
Table 1. Asaresult, welearned 11 different action models,
name]y s2, rss, 7, S8, Si2, S, S5, S8, S39,
rs#, and s« All subject-dependent action model s share
the same PCA space representation A so all the postures
are represented in acommon space. Noticethat subject 55
was not considered in this experiment sincewehad only 1
walking cycle available from this subject.

Table 2
Confusion Matrix in Percentages for Full Cycle Recognition

S & S B S12 S16 85 S38 39 A3 A9

S2  66.7 0 O 0 0 0 0 0333 0 0
S5 0 100 O 0 0 0 0 0 0 O 0
S7 0 0 80 13.3 0 0 0 6.7 0 O 0
S8 0 0 0 778 0 0 0 0222 0 0
S12 0 0 O 0 100 0 0 0 0 O 0
S16 0 0 O 0 0 40 334 133 0133 0
S35 0 0 O 0 0 7.14 92.86 0 0 O 0
S38 0 0 O 0 0 25 0 75 0 O 0
S39 154 0 0 192 0 0 0 0654 O 0
A3 0 0 O 0 0 0 0 0 0 100 0
$49 0 0 O 0 0 0 0 0 0 0 100

The approach is as follows: given an input motion
sequence of length d, we compute the similarity Sto all the
subsequences of the samelength from the 11 learned mean
performances. Then, the subsequence which best matched a
subject’s mean performance according to our measure
determinestheidentity of the subject.

Hence, the s milarity measure used for gait i dentification
between 2 subsequences of length d, namely

We ={y},.., 05} and WP ={y,.., 05} is defined as
follows:

(Va ® Vb) +l

S(\Pa,\yb):exp(DM(lPa,wb))[ 5

} > (16)
wheree stands for the dot product between vectors y,, and
v, corresponding to the average direction of motion
computed following Eq. (14). D,, is the sum of the
Mahalanobis distance within the PCA space A« between

each posturembi1 and wé from the subsequences,

j =1..d. Our similarity measureis decomposed in two terms.
The exp term accounts for the similarity between postures
within the PCA space, whilethe dot product term expresses
similarity between directions of motion across time,
regardlessthe body postures exhibited. Finally the exponent
o controls the importance given to the latter term for
computing the final similarity. In other words, high val ues
for o will provide high similarity values to sequences
following the same direction of motion, while low values
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will take more into account the position of their postures
within the PCA space. Therefore, this similarity metric
defines a trade off from one hand between sequences that
exhibit similar motion directions, and from the other hand
sequences with close postures within the PCA space
according to their Mahalanobis distances. Asaresult, only
close sequences which follow the same direction will get
high scores, while sequences that do not match in motion
direction or position aregiven low similarity scores.

In our first experiment, wetook a full walking cycle of
each individual for testing the identification approach. We
chose b = 10 dimensionsfor the PCA space representation
of human postures. Subsequently, the similarity of the full
test cycleto each specific action model’s mean performance
was computed according to Eqg. (16). The tested walking
cydewasremoved from thetraining set in thelearning sage.
Then, this experiment was repeated for each cycle of the
database, resulting in atotal of 126 identification tests. The
confusion matrix explaining the recognition performance can
be seenin Table 2. Several miss classificationsoccur dueto
different reasons. On the one hand, results obtained for
subjects S2, S38, A3 and 49 arenot statistically confident
sincelessthan 5 cydesare provided in thetraining database.
On the other hand, looking at themiss cl assification obtained
between subjects S16 and S35 we discovered that indeed
they correspond to the same actor who performed the
recording. Despite of thefact that in the specification of the
CMU database, these subjects are defined as different, the
authors of this paper recognised that the same person

performed the recordings for both subjects datasets by
subsequently checking the video recordings from those
Sessions.

Afterward, we ran another experiment takingd= 10 as
the length of the subsequences considered for performing
gait identification. All thetesting walking cycleshave atotal
length of F = 200 postures. Then, for each subject, we
selected arandom test walking cycle from the database. Thus,
each tested cycle is composed of a total of (F—d+1)
overlapping motion subsequences. Hence, we ran the gait
identification experiment for each possible motion
subsequence of each tested subject and computed its
confusion matrix. The same experiment wasrepeated atotal
of 10 times. The average of the obtained confusion matrices
can be seen in Table 3. One can observethat the performance
obtained is comparable with the full cycle experiment, but
using only 1/20 of a walking cycle. Although some miss
classifications occur between subjects that did not appear
in the previous experiment, in some cases the performance
is even better. This can be explained because of the better
dtatistical robustness of thisexperiment, sincewe performed
an identification test for each of the (F—d + 1) = (200-10 +
1) = 191 subsequences belonging to a full tested cycle. This
resultsin atotal of 191 * nSubjects * timesRepeated = 191
* 11 * 10 identification tests as opposed to the 126
identifi cation testsfrom the previous experiment. Theresults
are very encouraging, since they show that we are able to
recogni se which subject is performing an action by observing
only avery reduced mation portion from it.

Table 3
Confusion Matrix in Percentages for Subsequences of d = 10 postures

2 5 S7 B S12 S16 S35 S38 S39 A3 49
S2 91.28 0 0.05 0.47 0 0 0 0 7.04 1.16 0
S5 0 97.21 0 0 1.92 0 0 0.35 0 0 0.52
S7 0.35 1.80 89.88 0.12 0 0 0.06 2.50 0.12 1.92 3.25
S8 0.47 0 0.29 91.86 0 0 0 0.12 7.26 0 0
S12 0 0 0 0 99.83 0 0 0 0 0 0.17
S16 0 0 0 0 3.20 64.17 19.37 6.34 0 2.04 4.88
S35 0 1.34 0.06 0 4.19 19.09 69.28 3.84 0 1.10 1.10
S38 0 1.28 0 0 1.86 6.17 291 76.85 0 0 10.93
S39 6.51 0 0.06 3.49 0 0 0 0 88.66 1.28 0
A3 0 0 0 0 0 0 0 0 0 100 0
$49 0 0 0 0 0.17 0 0 0 0 0 99.83

5. CONCLUSIONSAND FUTURE WORK

We have presented an action-specific model suitable for gait
analysis, gait identification and tracking applications. The
model istested for thewalking action, and is automatically
learnt from the public CMU motion capture database. A
methodol ogy for synchronising the original human motion
input sequences is detailed, which uses Dynamic
Programming techniques. As a result, we learnt the

parametersof our action modd which characterise the pose
variability observed within a set of wal king performances
used for training.

Theresulting action model consists of arepresentative
manifold for the action, namely the mean performance, the
standard deviation from the mean performance, and themean
observed direction vectors from each motion subsequence
of agiven length. The action model can be used to classify
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which posturesbe ong to the action or not. Moreover, thetrade
off between accuracy and generality of themodd can betuned
using more or less dimensions for building the PCA space
representation of human postures. Hence, using this coarse-
to-fine representation, the main modes of variation correspond
tomeaningful natural motion modes. Thus, for example, we
found that themain modes of variation for thewal king action
obtained from PCA, explain the combined motion of both
thelegsandthe arms whilein the bending action they mainly
correspond to themotion of thetorso.

Subsequently, the learnt action model was used in
combination with the synchronisation algorithm for gait
analysis applications. This enabled us to compare and
quantify the difference between different performances of
the same action. Furthermore, the computed mean observed
direction vectors for a performance allow the formulation
of asimilarity measure S between motion subsequences of
the same length. The measure combines similarity in the
direction of the performed motion and distance within the
PCA space. Its usefulness for gait identification has been
presented, and experimental results point out that we are
ableto recognisethe 11 tested subjects using avery reduced
number of motion samples.

Futureresearch linesrdy on obtaining thejoint pasitions
directly from image sequences. Previoudly, the action model
has been successfully used in a probabilistic tracking
framework for estimating the parameters of our 3D model
from a sequence of 2D images. In [19], the action model
improved the efficiency of the tracking algorithm by
constraining the space of possible solutionsonly to the most
feasible postures while performing a particular action, thus
avoiding estimating postures which are not likely to occur
during an action. However, we need to develop robust image-
based likelihood measures which evaluate the predictions
from our action model according to the measurements
obtained fromimages. Work based on extracting theimage
edges and the silhouette from the tracked subject is currently
in progress. Hence, the pursued objectiveistolearn a piece-
wiselinear model which evaluates thefitness of segmented
edges and silhouettesto the 2D projection of the tick figure
from our human body model. Methods for estimating the
6DOF of the human body within the scene, namely 3D
tranglation and orientation, also need to beimproved. Lastly,
a method for automatically initialising the tracker is also
being studied, sincethe Bayesian inference framework used
to face the tracking problem does not provide any clue for
theinitial state of thetracked object.

Finally, even using tracking approaches, recovering all
joints positionsfrom images accurately is specially difficult
in the presence of occlusions and when all joints are not
directly observable due to 2D projection effects. Therefore,
we aim to explore and extend the gait analysis and
identification facilities of the action model presented here
in case that not al the joints positions are available or
correctly estimated by the tracking algorithm.
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