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This paper proposes an action specific model which automatically learns the variability of 3D human postures observed in
a set of training sequences. First, a Dynamic Programing synchronization algorithm is presented in order to establish a
mapping between postures from different walking cycles, so the whole training set can be synchronised to a common time
pattern. Then, the model is trained using the public CMU motion capture dataset for the walking action, and a mean
walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and
motion direction are also computed at each time step. As a result, in this work we have extended a similar action model
successfully used for tracking, by providing facilities for gait analysis and gait recognition applications.
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1. INTRODUCTION

Human motion analysis has received great attention from
the research community during the past years. The promising
applications it brings comprise automatic video surveillance,
gait recognition, human body tracking, automatic video
annotation, realistic motion synthesis, sports performance
and medical applications among others. At present, there
exist a lot of publications related to this wide and relatively-
old research area [27, 25, 1] due to the number of involved
tasks, which is directly proportional to the huge number of
potential applications.

The nature of the open problems and techniques used
in human motion analysis approaches strongly depend on
the goal of the final application. Hence, most approaches
oriented to surveillance demand performing activity
recognition tasks in real-time dealing with illumination
changes and low-resolution images. Thus, they require robust
techniques with a low computational cost, and mostly, they
tend to use simple models and fast algorithms to achieve
effective segmentation and recognition tasks in real-time.
Additionally, unlike applications which require finding body
parts, most approaches treat the image as a whole and extract
2D features which are fed into classification schemes to
provide the most plausible explanation of what is happening
in the scene [7, 20]. Complementarily, other video-
surveillance approaches are aimed to discover unusual or
unseen situations, trigger an alarm when such situations are
detected, and let a human operator supervise the scene. An
example of this kind of systems is [8] where the system is
designed to supervise a swimming pool environment so an
alarm can be triggered in case there is a water-related
situation. They extract several features such as speed,

posture, submersion time, etc. from each of the tracked
objects within the surveillance perimeter, and fed them into
a polynomial network in order to detect emergency events.

In contrast, approaches focused to 3D tracking and
reconstruction, require to deal with a more detailed
representation about the current posture that the human body
exhibits [19, 22, 6, 23]. The aim of full body tracking is to
recover the body motion parameters from image sequences
dealing with 2D projection ambiguities, occlusion of body
parts, and loose fitting clothes among others. Thus, they
require human body models able to capture the relative
positions between joints and limbs. Towards this end, an
“stick figure” model [14] is usually used to represent the
human body configuration, where body parts are represented
as segments which are connected by joints with a predefined
number of Degrees of Freedom (DOF). Additionally, the
stick-figure model can be fleshed out by using volumetric
primitives such as cylinders, truncated cones or ellipsoids
in order to model the surface of the human body [26, 5].
The number of segments and joints affects the complexity
of the model, which in turn, is strongly determined by the
final goal of the application.

On the other hand, gait analysis applications demand
methods suitable for comparing motion sequences between
individuals, between the same subject, and w.r.t. some
universal representation of the same motion. They may be
based on the detailed analysis of body parts trajectories [10],
or in the extraction of characteristic simple image-based
features for each individual from the image sequences [15,
11]. Similarly, some gait identification approaches use the
information from joint trajectories, according to Johansson’s
studies from the early 70’s [12] pointing out that the motion
of the joints provides the key to recognize the behaviour
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and the identity of the whole figure. Other approaches to
gait recognition are based on appearance cues of the
individuals [2, 4, 17, 13]. For instance, in [13] they present
two methods for identification of humans using gait. They
extract a binary silhouette of the individual and compute
the width of its outer over time. Then, these features are fed
into an Hidden Markov Model (HMM) for classification.

Finally, motion synthesis applications usually deal with
complex models having a large number of DOF [16, 22, 24].
Here, the pursued objective is to provide realism and natural
motion to animations rather than merely describing the
motion performed. For example, in [24] they use a database
of pre-recorded motion capture sequences and learn an
statistical model for segments of the original motion capture
data. Then, they are able to re-use previously recorded
motion subsequences in the actual animation, providing
realism and soft transitions between motions.

Complementarily, we present an action-specific model
of human motion suitable for many applications, that has
been successfully used for full body tracking [19, 18]. In
this paper, we explore and extend its capabilities for gait
analysis and recognition tasks. Additionally, we present a
method for synchronizing similar motion sequences in order
to allow comparison between them. Our action-specific
model is trained with 3D motion capture data for the walking
action from the Carnegie Mellon University’s (CMU)
Graphics Lab Motion capture database. In our work, human
postures are represented by means of a full body 3D model
composed of 12 limbs. Limbs’ orientations are represented
within the kinematic tree using their direction cosines [28].
As a result, we avoid singularities and abrupt changes due
to the representation. Moreover, near configurations of the
body limbs account for near positions in our representation
at the expense of extra parameters to be included in the
model. Then, Principal Component Analysis (PCA) is
applied to the training data to perform dimensionality
reduction over the highly correlated input data. Additionally,
the main modes of variation of human gait are naturally
represented by means of the principal components found.
This leads to a coarse-to-fine representation of human motion
which relates the precision of the model with its complexity
in a natural way, and makes it suitable for different kind of
applications which demand more or less complexity in the
model.

Subsequently, all the walking performances are
synchronised using a Dynamic Programming (DP) algorithm
and a mean manifold for a set of training performances is
computed. As a result, we can analyse intra-performance
differences in each time step. In other words, we can quantify
the difference between the same part of two different
performances of the same action, enabling to achieve gait
analysis for sports performance or medical applications
among others. Finally, we learn a mean direction of motion
for subsequences of a determined length, and extract
statistics from the synchronised dataset that characterise the

variation observed in each step between different training
performances. This leads, together with the computed mean
performance, to gait identification applications since we can
establish classification boundaries according to the variation
observed from the mean performance. Both the action-
specific model and the synchronization algorithm constitute
the main contribution of this paper.

The remainder of this paper is organised as follows.
Section 2 details the composition of the motion database
used for training, the human body model employed, and
explains the method used for synchronising the whole
training set. Then, Section 3 describes the action specific
model and explains the procedure for learning its parameters
from the synchronised training set. Section 4 introduces how
this model is used for gait analysis and gait recognition
applications and some experimental results are shown.
Finally, Section 5 concludes this paper and outlines the future
research lines.

2. MOTION DATABASE SYNCHRONIZATION

In order to train and test our approach, we used the CMU
Graphics Lab Motion capture database. The motion data was
acquired at 120 fps with a Vicon Motion Capture System,
using a 41 markers set. The database contains a total of 2622
performances classified in 23 different motion categories
such as walking, boxing or running, and were performed by
different subjects. We encourage the reader to refer to their
website for further details on the acquisition procedure,
markers’ positions and database organization.

2.1 Human Body Model

The body model employed in our work is composed of
twelve rigid body parts (hip, torso, shoulder, neck, two
thighs, two legs, two arms and two forearms) and fifteen
joints, see Fig. 1(a). These joints are structured in a
hierarchical manner, constituting a kinematic tree, where the
root is located at the hip.

However, postures in the CMU database are represented
using the XYZ position of each marker that was placed to
the subject in an absolute world coordinates system.
Therefore, we must select some principal markers in order
to make the input motion capture data usable according to
our human body representation. Figure 1(b) relates the
absolute position of each joint from our human body model
with the markers’ used in the CMU database. For instance,
in order to compute the position of joint 5 (head) in our
representation, we should compute the mean position
between the RFHD and LFHD markers from the CMU
database, which correspond to the markers placed on each
side of the head. Notice that our model considers the left
and the right parts of the hip and the torso as a unique limb,
and therefore we require a unique segment per each. Hence,
we compute the position of joints 1 and 4 (hip and neck
joints) as the mean between the previously computed joints
2 and 3, and 6 and 9 respectively.
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We use directional cosines to represent relative
orientations of the limbs within the kinematic tree [28]. As
a result, we represent a human body posture � using 36
parameters, i.e.

1 1 1 12 12 12{ }x y z x y z� � �� �� � ����� �� �� �� (1)

where x y z
l l l� �� ��  are the relative directional cosines for the

limb l, i.e. the cosine of the angle between a limb l and each
axis x, y, and z respectively. Subsequently, let us define a
particular performance �

i
 of an action as a time-ordered

sequence of F
i
 postures such as

1{ }iF
i i i� � ����� �� � (2)

where the index i denotes the number of performance.

Finally, an action 1{ }
kk IA � � ������  is defined by all the

I
k
 performances that belong to that action.

Directional cosines constitute a good representation
method for body modeling, since it does not lead to
discontinuities, in contrast to other methods such as Euler
angles or spherical coordinates. Additionally, unlike
quaternions, they have a direct geometric interpretation.
However, given that we are using 3 parameters to determine
only 2 DOF for each limb, such representation generates a
considerable redundancy of the vector space components.
Additionally, the human body motion is intrinsically
constrained, and these natural constraints lead to highly

correlated data in the original space. Therefore, we aim to
find a more compact representation of the original data to
avoid redundancy. To do this, we consider  a set of
performances corresponding to a particular action A

k
, and

perform PCA to all the postures that belong to that action.
Then, we project all the training postures to the PCA space,
i.e.

1[ ] ( )T
b� ����� � �e e�� � � (3)

where � refers to the original posture, ��  denotes the lower--

dimensional version of the posture represented in the PCA
space, [e

1
,..., e

b
] is the PCA space transformation matrix that

correspond to the first b selected eigenvectors, and ��  is

the mean of all the postures. The resulting PCA-like space
where postures are represented will be denoted as kA� . As
a result, we obtain a lower-dimensional representation of
human postures which is more suitable to describe human
motion, since we found that each dimension on the PCA
space describes a natural mode of variation of human motion
[9]. Choosing different values for b lead to models of more
or less complexity in terms of their dimensionality. Hence,
while the gross-motion2 is explained by the very first
eigenvectors, subtle motions in the PCA space representation
requires more eigenvectors to be considered. The projection
of the training sequences into the PCA space will constitute
the input for our sequence synchronization algorithm.

Figure 1: Details of the human body model used (a) and the relationship to the markerset employed in the CMU database (b).
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2.2 Composition of the Training Set

Given that we are focused in modeling the walking action,
we only use the walking sequences from the CMU database.
As a result our training set is composed of 12 subjects
showing different performances of the walking action. In
turn, each walking performance consists in a variable number
of cycles ranging from 1 to 5. Subsequently, each recorded
performance is split into its composing walking cycles. We
used the angle between the left and right legs as the criterion
for splitting walking cycles. A full cycle is defined as all the
body postures in between two consecutive maximums of the
angle between both legs when the left leg remains in the
back. Incomplete cycles and erroneous sequences were
discarded from the training set. As a result, we finally end
up with a set of 16891 body postures corresponding to 126
walking cycles performed by 12 different actors showing
different speeds and different body configurations while
performing the same action. Table 1 details the composition
of our training set. The number of each subject and recorded
performance corresponds to the same indexes used in the
CMU database.

Table 1
Detail of the Training Set Composition

Subject Index of selected # recorded Total # of Total #
id. performances perfor- walking body

mances cycles postures

2 {1, 2} 2 3 372

5 {1} 1 3 448

7 {1, 2, 3, 6, 7, 8, 9, 10 ,11} 9 15 2027

8 {1, 2, 3, 6, 9, 10} 6 9 1058

12 {3} 1 3 482

16 {15, 16, 21, 22, 31, 32, 47} 7 15 1977

35 {1, 2, 3, 4, 5, 6, 7, 8, 23 42 5782
9, 10, 11, 12, 13, 14,

15, 16, 28, 29, 30,
31, 32, 33, 34}

38 {1, 2} 2 4 540

39 {1, 2, 3, 4, 5, 6, 7, 8, 13 26 3260
9, 10, 12, 13, 14}

43 {1} 1 2 263

49 {1} 1 3 491

55 {4} 1 1 191

Total 67 126 16891

2.3 Synchronization Algorithm

As stated before, the training sequences are acquired under
very different conditions, showing different durations,
velocities and accelerations during the performance of a
particular action. As a result, it is difficult to perform useful
statistical analysis to the raw training set, since we cannot
put in correspondence postures from different cycles of the
same action. Therefore, a method for synchronizing the

whole training set is required so that we can establish a
mapping between postures from different cycles.

Inspired by techniques used in the stereo-matching and
image procesing literature [3, 21], we developed a novel
dense matching algorithm based on Dynamic Programming
(DP), which allows us to find an optimal solution for
synchronizing the pre-recorded motion sequences of the
same class in the presence of different speeds and
accelerations. Towards this end, we first compute the
similarity between each pair of training sequences with a
given metric. Then, in order to extract from the input data
set the best time scale pattern for synchronization, an intra-
class minimum global distance criterion is used. Finally, all
walking cycles are synchronised to the computed time
pattern. The detailed explanation of the process is as follows.

The projection of the training sequences into the PCA
space constitutes the input for our sequence synchronization
algorithm. Hereafter, we consider a multidimensional signal
x

i
 (t) as an interpolated expansion of each training

performance �� i such as

( ) ( 1) 1
f

i i
t if t f f f F� � � � � � ����� �x �� (4)

where the time domain of each action performance x
i
(t) is

[0, T).
Before starting synchronising the dataset, all the walking

cycle performances are resampled, using cubic spline
interpolation, so that all the performances have exactly the
same number of frames F. The longest performance from
the training set is chosen to be the one which determines the
number of frames F of the rest of the set. As a result, all the
input sequences x

i
(t) have the same period T.

The problem of synchronizing two multidimensional
signals x

n
(t) and x

m
(t) is similar to the matching problem of

two epipolar lines in a stereo image. For stereo matching a
Disparity Space Image (DSI) representation is usually
employed [3, 21]. The DSI approach assumes that a 2D DSI
matrix has dimensions time p and and disparity d, ranging
from 0 � p < P, and –D � d � D. Let E(d, p) denote the DSI
cost value assigned to each DSI matrix element (d, p)
calculated by

2
( ) ( ) ( )n m n mE p d p t p t d t� � � � � � � � �x x (5)

where �t stands for the time sampling interval used.
Consequently, we formulate the synchronization task as

an optimization problem as follows: find the time-disparity
function �

n,m
(p), which minimizes the synchronization

distance between the compared signals x
n
 and x

m
, i.e.

1

0 0

( ) arg min ( ( )) ( 1) ( )
� � �

� �
� �

� � � � � � �� �
P P

n m n m
d

i i

p E i d i d i d i� (6)

The discrete function �
n,m

(p) coincides with the optimal
path through the DSI trellis. In other words, we must find
the path whose sum of cost values plus its weighted length
is minimal among all other possible paths. This is solved
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efficiently by using the Dynamic Programming. The method
consists of an step-by-step control and optimization given
by the following recurrence relation:

� �
0 1

( ) ( ) min ( 1 ) 1 1
� ��

� � � � � � � � � �
k

S p d E p d S p d k d k�

 (0 ) (0 )� � � �S d E d (7)

where the scope of the minimization parameter is chosen in

accordance with ( 1) ( ) 1� �� � � � �n m n mp p . By using that

recurrence relation, the minimal value of the objective
function in Eq.(6) can be found at the last step of
optimization. Next, the algorithm works in reverse order and
recovers a sequence of optimal steps (stored in a lookup
table K(p,d) for the values of the index k in the recurrence
relation given by Eq. (7)) and eventually the optimal path,
given by

( 1) ( ) ( ( ))� � � � �d p d p K p d p

( 1) 0� � �d P

( ) ( )� � �p d p (8)

Finally, having found �
n,m

(p), the synchronised version
of x

m
(t) to a base rate sequence x

n
(t) might be calculated by

( ) ( ( ) )n m m n mp t p t p t� �� � � � � � �x x (9)

Summarizing, the dense matching algorithm that
synchronises two arbitrary human motion sequences
x

n
 (t) and x

m
 (t) is as follows:

1. Prepare a 2D DSI matrix, and set initial cost values
E

o
 using Eq. (5)

2. Find the optimal path trough the DSI using
recurrence Eqs. (7), (8).

3. Synchronise x
m
(t) to the rate of x

n
(t) using Eq. (9).

Our algorithm assumes that a particular sequence is
chosen to be a time scale pattern for all other sequences. In
order to make an optimal choice of the sequence that will
be used as the pattern for synchronizing the rest, a
statistically proven rule according to some appropriate

criterion is desirable. Towards this end, we define the
synchronisation distance between a pair of sequences
(n, m) as

2

0

( ) ( ( ) )� �
�

� � � ��
P

n m n m n m
i

D i t i t i t� � �x x

1

0

( 1) ( )
�

� �
�

� � � � � ��
P

n m n m
i

i t i� � (10)

Then, we can compute the global distance of the full
synchronization of all the sequences m  relative to the pattern
sequence n as

�
�

� ��
k

n n m
m A

D D (11)

We thus choose the synchronizing pattern sequence with
minimal global distance D

n
: in a statistical sense, such signal

can be considered as a median value over all the
performances that belong to the set of A

k
 or can be referred

to as median sequence.
Finally, after running the algorithm on all our training

performances �� i  all  the walking cycles have been

synchronised and will be denoted as 1ˆ ˆˆ { }F
ii � ������ �� �  .

Figure 2(a) shows the first 4 dimensions of the input
walking sequences represented in the PCA space without
performing any synchronisation. Figure 2(b) shows the same
situation after applying the synchronization algorithm
proposed in this work. Notice that a common motion pattern
arises after the synchronisation step.

3. LEARNING THE MOTION MODEL

Once all the walking sequences share the same time pattern,
we learn an action specific model for walking which is
accurate without loosing generality, and suitable for many
applications such as gait analysis, gait recognition and
tracking. Thus, we want to learn where the postures lie in
the space used for representation, how do they change over
time as the action goes by, and what characteristics do the
different performances have in common which can be

Figure 2: The first b = 4 dimensions within the PCA space before (a) and after (b) synchronization of the training set.
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exploited for enabling the aforementioned tasks. In other
words, we aim to characterize the shape of the synchronised
version of the training set for the walking action in the PCA-
like space. The process is as follows.

First, we extract from the training set 1
ˆ ˆ ˆ{ }� ������ � kIkA

a mean representation of the action by computing the mean

performance 1{ }k
FA � ������ � � ,  where each mean

posture t
�  is defined as

1

ˆ
1

k
tI

t i

i k

t F
I�

� � � � ��� �� �� (12)

I
k
 is the number of training performances for the action A

k
,

ˆ t

i� corresponds to the t-th posture from the i-th training

performance, and finally, F denotes the total number of
postures of each synchronised performance.

Then, we want to quantify how much the training

performances �̂ i  vary from the computed mean

performance � kA  of Eq. (12). Therefore, for each time step

t, we compute the standard deviation �
t
 of all the postures

ˆ t
�  that share the same time stamp t, i.e.

1

1 ˆ( )
kI

t t

t i
ikI �

� � � �� �� (13)

Figure 3 shows the learned mean performance � (red
solid line) and ±3 times the computed standard deviation �

t

(dashed black line) for the walking action. We used b = 6
dimensions for building the PCA space representation
explaining the 93.3% of total variation of training data.

On the other  hand, we are also interested in
characterising the temporal evolution of the action.
Therefore, we compute the main direction of the motion tv
for  each subsequence of d postures from the mean
performance � kA , i.e.

1

1

1 ( )

( )

j j

j j

t d

j t
t

t t
td

�

�

� � �

� �
� � � �
� v

v v v

� �

� �
(14)

where tv  is a unitary vector representing the observed
direction of motion averaged from the last d postures at a
particular time step t. In Figure 2, the first 3 dimensions of
the mean performance are plotted together with the direction
vectors computed in Eq. (14). Each black arrow corresponds

to the unitary vector tv  computed at time t, scaled for

visualization purposes. Hence, each vector encodes the mean
observed motion’s direction from time t – d to time t, where
d stands for the length of the motion window considered.
Additionally, selected postures from the mean performance
have been sampled at times t = 1, 30, 55, 72, 100, 150 and
168 and overlaid in the graphic.

As a result, the action model� kA  is defined by

{ } 1� � � � � � � � �� ��k k kA A A
t t t F� v (15)

where � kA  is the PCA space definition for action A
k
, � kA

is the mean performance, and �t t� v  correspond to the

computed standard deviation and mean direction of motion
at each time step t, respectively.

Finally, to handle the cyclic nature of the waking action,
we concatenate the last postures in each cycle with the initial

Figure 3: Learned mean performance � and standard deviation t�  for the walking action.
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postures of the most close performance according to a
Euclidean distance criterion within the PCA space.
Additionally, the first and last (d/2) postures from the mean
performance (where d is the length of the considered
subsequences) are resampled using cubic spline interpolation
in order to soft the transition between walking cycles. As a
result, we are able to compute �

t
 and tv  for the last postures

of a full walking cycle.

4. APPLICATIONS AND EXPERIMENTAL
RESULTS

In this section we use the action specific model � kA in
different application scenarios. A similar model was
successfully used within a Bayesian 3D tracking framework
in [18], and here its applicability for gait analysis and gait
identification is presented and some experimental results are
shown.

4.1 Gait Analysis

Given the synchronisation of different performances to the
same time pattern, the angle variation between different
performances can be quantified and analysed at any
particular moment of the action.

We took three performances from different subjects,
namely S2, S5 and S7, in order to analyse how different
they perform on a walking cycle. The first performance
corresponds to subject #2, 1st walking cycle from
performance #1, and will be denoted as 2�S . The second

one, 5�S ,  corresponds to the 1st cycle of the 1st

performance of subject #5, and finally, the first cycle from
performance #2 from subject #7 was compared and will be

denoted as 7� S . Figure 3 shows the evolution of absolute

direction cosine angles from 4 limbs of the body model,
namely the hip, the shoulders, the right upper arm and the
right upper leg, respectively. It is worth saying that subjects
S2 and S7 were males, while subject S5 corresponds to a
female. By comparing the depicted angle variation values
between the three walkers, one can observe several
differences. In the first place, there are not substantial
differences between hip’s motion between the two male
subjects. However, the hip’s angles w. r. t. the X and Y axes
from subject S5, corresponding to the elevation and rotation
parallel to the floor according to Fig. 1, are a lot different
from the other tested subjects. Thus, the swing movement
of the hip is more emphasized in the female subject
performance. Contrarily, when comparing the angle variation
of the right arm and leg between male walkers and the female,
few dissimilarities can be derived except that the female
walker exhibits a less emphasized swing movement in the
whole walking cycle. On the other hand, the shoulder
movement is slightly different specially concerning the angle
w.r.t. Y axis, corresponding to the elevation of the limb. In
general, while subjects S2 and S7 show some differences,
they share a very similar walking style compared to subject
S5. These results confirm the conclusions stated in [10] about
differences between walking styles between male and female
actors.

Figure 4: Sampled postures at different time steps, and learnt direction vectors tv  from the mean performance for the walking action.
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4.2 Gait Identification

To test the suitability of our action model for gait recognition
applications, we aim to identify which subject is performing
an action by analysing the observed motion from a particular
test subject. Hence, we trained an specific model for each
subject Si , where i  identifies the subject according to
Table 1. As a result, we learned 11 different action models,
namely 2�S , 5�S , 7�S , 8�S , 12�S , 16�S , 35�S , 38�S , 39�S ,

43�S , and 49�S . All subject-dependent action models share
the same PCA space representation � kA  so all the postures
are represented in a common space. Notice that subject S55
was not considered in this experiment since we had only 1
walking cycle available from this subject.

The approach is as follows: given an input motion
sequence of length d, we compute the similarity S to all the
subsequences of the same length from the 11 learned mean
performances. Then, the subsequence which best matched a
subject’s mean performance according to our measure
determines the identity of the subject.

Hence, the similarity measure used for gait identification
between 2 subsequences of length d,  namely

1{ }a d
a a� � ������ � and 1{ }b d

b b� � ������ �  is defined as

follows:

� � ( ) 1
( ) exp ( )

2

� �� �� �� � � �� �� �� �
a b a b a b

MS D
�

v v
(16)

where�  stands for the dot product between vectors av  and

bv  corresponding to the average direction of motion
computed following Eq. (14). D

M
 is the sum of the

Mahalanobis distance within the PCA space � KA  between

each posture j
a�  and j

b�  from the subsequences,

j = 1..d. Our similarity measure is decomposed in two terms.
The exp term accounts for the similarity between postures
within the PCA space, while the dot product term expresses
similarity between directions of motion across time,
regardless the body postures exhibited. Finally the exponent
� controls the importance given to the latter term for
computing the final similarity. In other words, high values
for � will provide high similarity values to sequences
following the same direction of motion, while low values

Figure 5: Absolute direction cosines computed for subjects S2, S5 and S7 for the hip, shoulder, right upper arm and upper leg limbs.

Table 2
Confusion Matrix in Percentages for Full Cycle Recognition

S2 S5 S7 S8 S12 S16 S35 S38 S39 S43 S49

S2 66.7 0 0 0 0 0 0 0 33.3 0 0

S5 0 100 0 0 0 0 0 0 0 0 0

S7 0 0 80 13.3 0 0 0 6.7 0 0 0

S8 0 0 0 77.8 0 0 0 0 22.2 0 0

S12 0 0 0 0 100 0 0 0 0 0 0

S16 0 0 0 0 0 40 33.4 13.3 0 13.3 0

S35 0 0 0 0 0 7.14 92.86 0 0 0 0

S38 0 0 0 0 0 25 0 75 0 0 0

S39 15.4 0 0 19.2 0 0 0 0 65.4 0 0

S43 0 0 0 0 0 0 0 0 0 100 0

S49 0 0 0 0 0 0 0 0 0 0 100
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Table 3
Confusion Matrix in Percentages for Subsequences of d = 10 postures

S2 S5 S7 S8 S12 S16 S35 S38 S39 S43 S49

S2 91.28 0 0.05 0.47 0 0 0 0 7.04 1.16 0

S5 0 97.21 0 0 1.92 0 0 0.35 0 0 0.52

S7 0.35 1.80 89.88 0.12 0 0 0.06 2.50 0.12 1.92 3.25

S8 0.47 0 0.29 91.86 0 0 0 0.12 7.26 0 0

S12 0 0 0 0 99.83 0 0 0 0 0 0.17

S16 0 0 0 0 3.20 64.17 19.37 6.34 0 2.04 4.88

S35 0 1.34 0.06 0 4.19 19.09 69.28 3.84 0 1.10 1.10

S38 0 1.28 0 0 1.86 6.17 2.91 76.85 0 0 10.93

S39 6.51 0 0.06 3.49 0 0 0 0 88.66 1.28 0

S43 0 0 0 0 0 0 0 0 0 100 0

S49 0 0 0 0 0.17 0 0 0 0 0 99.83

will take more into account the position of their postures
within the PCA space. Therefore, this similarity metric
defines a trade off from one hand between sequences that
exhibit similar motion directions, and from the other hand
sequences with close postures within the PCA space
according to their Mahalanobis distances. As a result, only
close sequences which follow the same direction will get
high scores, while sequences that do not match in motion
direction or position are given low similarity scores.

In our first experiment, we took a full walking cycle of
each individual for testing the identification approach. We
chose b = 10 dimensions for the PCA space representation
of human postures. Subsequently, the similarity of the full
test cycle to each specific action model’s mean performance
was computed according to Eq. (16). The tested walking
cycle was removed from the training set in the learning stage.
Then, this experiment was repeated for each cycle of the
database, resulting in a total of 126 identification tests. The
confusion matrix explaining the recognition performance can
be seen in Table 2. Several miss classifications occur due to
different reasons. On the one hand, results obtained for
subjects S2, S38, S43 and S49 are not statistically confident
since less than 5 cycles are provided in the training database.
On the other hand, looking at the miss classification obtained
between subjects S16 and S35 we discovered that indeed
they correspond to the same actor who performed the
recording. Despite of the fact that in the specification of the
CMU database, these subjects are defined as different, the
authors of this paper recognised that the same person

performed the recordings for both subjects datasets by
subsequently checking the video recordings from those
sessions.

Afterward, we ran another experiment taking d = 10 as
the length of the subsequences considered for performing
gait identification. All the testing walking cycles have a total
length of F = 200 postures. Then, for each subject, we
selected a random test walking cycle from the database. Thus,
each tested cycle is composed of a total of (F–d+1)
overlapping motion subsequences. Hence, we ran the gait
identification experiment for each possible motion
subsequence of each tested subject and computed its
confusion matrix. The same experiment was repeated a total
of 10 times. The average of the obtained confusion matrices
can be seen in Table 3. One can observe that the performance
obtained is comparable with the full cycle experiment, but
using only 1/20 of a walking cycle. Although some miss
classifications occur between subjects that did not appear
in the previous experiment, in some cases the performance
is even better. This can be explained because of the better
statistical robustness of this experiment, since we performed
an identification test for each of the (F – d + 1) = (200–10 +
1) = 191 subsequences belonging to a full tested cycle. This
results in a total of 191 � nSubjects � timesRepeated = 191
� 11 � 10 identification tests as opposed to the 126
identification tests from the previous experiment. The results
are very encouraging, since they show that we are able to
recognise which subject is performing an action by observing
only a very reduced motion portion from it.

5. CONCLUSIONS AND FUTURE WORK

We have presented an action-specific model suitable for gait
analysis, gait identification and tracking applications. The
model is tested for the walking action, and is automatically
learnt from the public CMU motion capture database. A
methodology for synchronising the original human motion
input sequences is detailed, which uses Dynamic
Programming techniques. As a result, we learnt the

parameters of our action model which characterise the pose
variability observed within a set of walking performances
used for training.

The resulting action model consists of a representative
manifold for the action, namely the mean performance, the
standard deviation from the mean performance, and the mean
observed direction vectors from each motion subsequence
of a given length. The action model can be used to classify
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which postures belong to the action or not. Moreover, the trade
off between accuracy and generality of the model can be tuned
using more or less dimensions for building the PCA space
representation of human postures. Hence, using this coarse-
to-fine representation, the main modes of variation correspond
to meaningful natural motion modes. Thus, for example, we
found that the main modes of variation for the walking action
obtained from PCA, explain the combined motion of both
the legs and the arms, while in the bending action they mainly
correspond to the motion of the torso.

Subsequently, the learnt action model was used in
combination with the synchronisation algorithm for gait
analysis applications. This enabled us to compare and
quantify the difference between different performances of
the same action. Furthermore, the computed mean observed
direction vectors for a performance allow the formulation
of a similarity measure S between motion subsequences of
the same length. The measure combines similarity in the
direction of the performed motion and distance within the
PCA space. Its usefulness for gait identification has been
presented, and experimental results point out that we are
able to recognise the 11 tested subjects using a very reduced
number of motion samples.

Future research lines rely on obtaining the joint positions
directly from image sequences. Previously, the action model
has been successfully used in a probabilistic tracking
framework for estimating the parameters of our 3D model
from a sequence of 2D images. In [19], the action model
improved the efficiency of the tracking algorithm by
constraining the space of possible solutions only to the most
feasible postures while performing a particular action, thus
avoiding estimating postures which are not likely to occur
during an action. However, we need to develop robust image-
based likelihood measures which evaluate the predictions
from our action model according to the measurements
obtained from images. Work based on extracting the image
edges and the silhouette from the tracked subject is currently
in progress. Hence, the pursued objective is to learn a piece-
wise linear model which evaluates the fitness of segmented
edges and silhouettes to the 2D projection of the stick figure
from our human body model. Methods for estimating the
6DOF of the human body within the scene, namely 3D
translation and orientation, also need to be improved. Lastly,
a method for automatically initialising the tracker is also
being studied, since the Bayesian inference framework used
to face the tracking problem does not provide any clue for
the initial state of the tracked object.

Finally, even using tracking approaches, recovering all
joints’ positions from images accurately is specially difficult
in the presence of occlusions and when all joints are not
directly observable due to 2D projection effects. Therefore,
we aim to explore and extend the gait analysis and
identification facilities of the action model presented here
in case that not all the joints’ positions are available or
correctly estimated by the tracking algorithm.
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